English
新闻公告
More
化学进展 2022, Vol. 34 Issue (7): 1626-1641 DOI: 10.7536/PC220348 前一篇   

• 综述 •

古生物化学中的凝聚态化学反应

黄大一*()   

  1. 中国台湾中兴大学 中国 台中 402
  • 收稿日期:2022-03-10 修回日期:2022-03-25 出版日期:2022-07-24 发布日期:2022-06-20
  • 通讯作者: 黄大一

Condensed Matter Chemical Reactions in PaleoChemistry

Timothy D. Huang()   

  1. Chung Hsing University of China, Taichung 402, China
  • Received:2022-03-10 Revised:2022-03-25 Online:2022-07-24 Published:2022-06-20
  • Contact: Timothy D. Huang

研究古生物学,必须从古生物变“化”之学的方向着手,深入化石骨头和细胞里面,探讨在漫长时间内、该古生物的化学组成、细微构造等起了什么变化?化成了什么?如今保留的是什么?保存这些有机残留物的化学机制 (Mechanism) 是什么?凝聚态化学在此又扮演了什么关键角色?在此我以个人所知一点点从凝聚态化学的角度,来探讨古生物领域诸多古化学相关的最基本底层奥秘,本文举三个实例说明可能的凝聚态化学反应,肯定在古生物化学中扮演了关键的基本机制,等着我们去揭发;如:一般认为化石就是古代生物变化成为石头,从有机体变成无机的矿物质,有机体不可能保存成千万上亿年;然而,我们团队却在 1.95 亿年前的禄丰龙胚胎骨头内,发现了被保存下来的原生 I 型胶原蛋白 (Native Collagen I);又在 22 亿年前化石内发现多种氨基酸,和证明为最早多细胞真核生物的甾烷;这是地球生命演化重大的发现;从这些古生物化石的实例来说,可以看出凝聚态化学绝非仅是个理论化学的旁观者,而是关键角色,它的重要性,非常值得我们投入去深入探讨,揭开从古代生物到你我手中化石无数化学反应最底层化学的奥秘。

For the study of paleontology, we must start from the direction of paleontological "changes," go deep inside the fossil bones and cells, and explore what changes had taken place in terms of chemical composition, the structural and morphological changes of the ancient organisms over a very long time ago. What does it change into? What remains and preserved as fossils do we have in our hands today? Then the most important question: what is the chemical mechanism for preserving these organic residues? What is the critical role of condensed matter chemistry in these complex geological events? From the perspective of condensed matter chemistry in this paper, the author tries his best to explore the most fundamental mysteries related to PaleoChemistry in paleontology. Three examples are given to illustrate possible condensed matter chemical reactions, which must have played a critical primary mechanism in PaleoChemistry, waiting for us to uncover. For example, fossils are generally believed to be ancient organisms that changed into stone/rock, from once-living organisms to lifeless inorganic minerals. It is commonly believed that organic matters cannot be preserved for millions or billions of years. However, our team found preserved native collagen Type I in the 195 million years ago Lufengosaurus embryonic bones. Many amino acids were found in the 2.2 billion-year-old fossils. The evidence of steranes proved these organisms were the oldest multicellular eukaryotes. This is one of the most significant discoveries in the life evolution of the Earth. From the examples of these paleontological fossils, it can be seen that condensed matter chemistry is not only a bystander of theoretical chemistry but a key role. Its importance is worthy of our investment in the in-depth study to uncover the mysteries of the fundamental chemistry of countless chemical reactions from ancient organisms to fossils in our hands.

()
图1 从活着到化石的可能变化历程
Fig. 1 Soft-Bodied Fossils Are Not Simply Rotten Carcasses-Toward a Holistic Understanding of Exceptional Fossil Preservation; Luke A. Parry et al
图2 古元古代实体化石,经聚焦离子束“轻轻地”处理表面,烧掉化石里的很多有机残留物
Fig. 2 A solid Paleoproterozoic fossil was “gently” treated with a focused ion beam (FIB) to burn off much of the organic residue in the fossil
图3 同一禄丰龙胚胎股骨的四重影像重叠,综合3种光学影像的信息,再加上 6.7 μm的中子扫描影像,可做更多元分析探讨;这些影像数据都非破坏性地取自于同样一个样本同样的位置,实现了真正的“原位同点多重分析”,避免了类似、但不同检体(如不同的显微切片)的差异
Fig. 3 Overlapping quadruple images of the same embryonic femur of Lufengosaurus. Combining the information of the three optical images and the neutron scan image of 6.7 μm, more multivariate analysis and discussion can be done. These imaging data are obtained nondestructively from the same sample at the same location, achieving true “in situ same-point multiplex analysis”, avoiding differences between similar but different specimens (e.g. different microsections)
图4 禄丰龙胚胎骨头三维拉曼扫描,显示骨头化石内化学成份的分布排列,蓝色的是磷灰石群矿物,绿色的是碳酸盐,红色的是胶原蛋白
Fig. 4 A scan of the embryo bone of lufenglong showing the distribution and arrangement of chemical components in the fossil bone. Blue is apatite group minerals, green is carbonate, and red is collagen
图5 22 亿年前最古老多细胞真核生物小虾米亮山体的三维拉曼,显示其体内化学成分的分布排列;红色与洋红为有机物(氨基酸),绿色和蓝色分别为钛和铁离子
Fig. 5 2.2 billion years ago, the oldest multicellular eukaryote, Liangshania shrimpy, showing the distribution and arrangement of its chemical composition; Red and magenta are organic compounds (amino acids), green and blue are titanium and iron ions, respectively
图6 利用同步辐射傅里叶转换红外光谱显微,在1.95 亿年前的恐龙胚胎骨头内,找到了有机残留物的证据
Fig. 6 Using synchrotron radiation and Fourier transform infrared spectroscopy microscopy, we found evidence of organic residues in the bones of 195-million-year-old dinosaur embryos
图7 禄丰龙胚胎上颌骨 X 光荧光扫描,显示其内有机硫的分布,骨头主要成份是磷灰石,所以这两种元素的着色:钙用绿色,磷用蓝色混和为底色,有机硫则以红色表达;影像中可见到很多红色的点和区块,表示这些地方含有有机硫
Fig. 7 X-ray fluorescence scanning of the maxilla of Lufengosaurus embryo shows the distribution of organic sulfur. The main component of bone is apatite, so the coloring of these two elements: calcium is green, phosphorus is mixed with blue as the background color, and organic sulfur is expressed in red. Many red dots and patches are visible in the image, indicating that these areas contain organic sulfur
图8 (上)恐龙骨头内保存 I 型胶原蛋白之红外光谱,排除细菌和胶水污染;(中)拉曼光谱证明右图中的小红点是赤铁矿的小球;(下)同步辐射的 TXM 提供赤铁矿小球的形态构造,确认为不是红血球,而是红血球的残留物
Fig. 8 (top) Infrared spectra of type I collagen preserved in dinosaur bones, excluding bacterial and watering contamination; Raman spectroscopy shows that the red dot on the right is a ball of hematite; (Bottom) TXM of synchrotron radiation provides the morphological configuration of hematite pellets, which are confirmed not as red blood
图9 禄丰龙和易门龙的成年龙与胚胎镧系稀土元素,浓度相差约十倍
Fig. 9 The lanthanide rare earth elements in adult and embryo of Lufengosaurus and Yimenosaaurus differ by about ten times
图10 烷基的红外光谱特征峰
Fig. 10 Characteristic peak of infrared spectrum of alkyl group. C—H, stretch, range 2800~3000 cm-1, strong; Methyl group symmetric and asymmetric(νsCH3 and νas CH3) and methylene symmetric and asymmetric(νsCH2 and νas CH2)
图11 纯、天然产和在珠母贝内的方解石的红外光谱:上,实验室合成纯方解石红外光谱;中,美国蒙大拿州采集的天然产方解石;下,珠母贝粉末(方解石)显示随着温度增加,烷基减少
Fig. 11 Infrared spectra of pure calcite synthesized in laboratory, natural and in nacre bead. Natural calcite collected in Montana, USA; Below, the mother-pearl shell powder (calcite) shows a decrease in alkyl group with increasing temperature
图12 多种不同地质时期、不同埋藏环境、不同生物化石的光谱比较,除了 j 为澎湖海沟捞出来的哺乳类动物化石之外,其他都有明显的烷基峰
Fig. 12 Comparison of the spectra of various biological fossils in different geological periods, different burial environments and different biological fossils. Except J, which is the mammal fossil retrieved from Penghu Ditch, all the others have obvious alkyl peaks
图13 肉食恐龙牙齿上小锯齿的碳酸盐胶合现象
Fig. 13 Carbonate gluing of small serrations on teeth of carnivorous dinosaurs
图14 22 亿年前古元古代两种多细胞真核生物实体化石,左:小虾米亮山体,大者可超过一公分长度;右:花生米亮山体,长度小于 1 mm
Fig. 14 Solid fossils of two types of multicellular eukaryotes in the Paleoproterozoic, 2.2 billion years ago; Left: Liangshania shrimpy, larger ones can be more than one centimeter in length; Right: Lianshania peanuti, less than 1 mm in length
图15 22 亿年前古元古代两种多细胞真核生物实体化石烷类比例;上:甾烷/藿烷比例,>1为真核生物;下:小虾米体内各甾烷比例
Fig. 15 Alkanes ratio of solid fossils of two Paleoproterozoic multicellular eukaryotes 2.2 billion years ago; Top: sterane/hopane ratio, > 1 for eukaryotes; Bottom: the proportion of steranes in Shrimpy
图16 22 亿年前古元古代两种多细胞真核生物实体化石细胞大小测量;上:小虾米亮山体,平均 12.6×2.9μm;下:花生米亮山体,平均 20.5×5.2μm
Fig. 16 Measurement of cell size of two Paleoproterozoic multicellular eukaryotic solid fossils 2.2 billion years ago; Upper: Liangshania shrimpy, average 12.6×2.9 μm; Bottom: Liangshania peanuti, average 20.5×5.2 μm
图17 22 亿年前古元古代小虾米亮山体和花生米亮山体的多种细胞内细胞器
Fig. 17 Various intracellular organelles in the body of Liangshania shrimpy and Liangshania peanuti 2.2 billion years ago in Ancient Proterozoic
图18 古元古代小虾米亮山体的身体内氨基酸组成
Fig. 18 Body amino acid composition of the Paleoproterozoic Shrimpy
图19 小虾米亮山体等的拉曼光谱显示身体内金属与氨基酸结合
Fig. 19 Raman spectra of Shrimpy show that metals in the body are bound to amino acids
图20 XRF 古元古代小虾米、花生米的身体内4种金属
Fig. 20 Four metals in XRF Protoproterozoic Shrimpy and Peanut
图21 透过小虾米花生米的三维拉曼扫描,可看到这些生物细胞的第三重事实证据;上列为小虾米的三维拉曼扫描,下列为花生米相片,这些影像有标示出有机物的轮廓,应该是对应于它们的细胞
Fig. 21 The third evidence of these biological cells can be seen through the 3D Raman scan of Shrimpy and Peanut. Above is a 3D Raman scan of a Shrimpy. Below are images of Peanut. These images show the outline of organic matter, which should correspond to their cells.
图22 两种入射激光波长小虾米和花生米拉曼光谱,显示 D 和 G 带波峰位置和强度变化
Fig. 22 Raman spectra of Shrimpy and Peanut with two incident laser wavelengths, showing the position and intensity changes of D and G band peaks
图23 拉曼光谱位移强度变化示意图
Fig. 23 Schematic diagram of variation of Raman spectral shift intensity
图24 小虾米等的地质与化学环境综合示意图,纵轴只为示意相对值
Fig. 24 Comprehensive schematic diagram of geological and chemical environment of Shrimpy etc. The vertical axis is only for relative values
[1]
Huang T D. An Introduction to PaleoChemistry. Beijing: Science Press, 2021.
(黄大一. 古生物化学入门. 北京: 科学出版社, 2021.).
[2]
Reisz R R, Huang T D, Roberts E M, Peng S, Sullivan C, Stein K, LeBlanc A R H, Shieh D, Chang R S, Chiang C C, Yang C W, Zhong S M. Nature, 2013, 496(7444): 210.

doi: 10.1038/nature11978     URL    
[3]
Lee Y C, Chiang C C, Huang P Y, Chung C Y, Huang T D, Wang C C, Chen C I, Chang R S, Liao C H, Reisz R R. Nat. Commun., 2017, 8: 14220.

doi: 10.1038/ncomms14220     URL    
[4]
Parry L A, Smithwick F, NordÉn K K, Saitta E T, Lozano-Fernandez J, Tanner A R, Caron J B, Edgecombe G D, Briggs D E G, Vinther J. BioEssays, 2018, 40(1): 1700167.

doi: 10.1002/bies.201700167     URL    
[5]
“Morphology Definition of Morphology by Oxford Dictionary on Lexico. com also meaning of Morphology”. Lexico Dictionaries English.[2022-03-01]https://www.lexico.com/.
[6]
Bennett V. Patterns in palaeontology: old shapes, new tricks—the study of fossil morphology by, 2013,3: 3.
[7]
Yan R H, Harrison T, Cater E, Bevitt J V, Huang T D. Dinosaur Embryology: in situ in loco 3D Chemical Composition of Lufengosaurus Embryo bone, in publication.
[8]
Zheng W X, Schweitzer M H,. Chemical Analyses of Fossil Bone, Bell Lynne S.. (Ed.), Forensic Microscopy for Skeletal Tissues: Methods and Protocols, Methods in Molecular Biology, Totowa: Humana Press.2012. 915. DOI:10.1007/978-1-61779-977-8_10.
[9]
Brink K S, Reisz R R, LeBlanc A R H, Chang R S, Lee Y C, Chiang C C, Huang T, Evans D C. Sci. Rep., 2015, 5: 12338.

doi: 10.1038/srep12338     pmid: 26216577
[10]
Wang C C, Song Y F, Song S R, Ji Q, Chiang C C, Meng Q J, Li H B, Hsiao K, Lu Y C, Shew B Y, Huang T, Reisz R R. Sci. Rep., 2015, 5: 15202.

doi: 10.1038/srep15202     URL    
[11]
Huang T D, Huang C L, Lin C T, Knell M, Yang W J. Western Pacific Earth Sciences, 2009, 9: 15.
(黄大一, 黄春兰, 林启灿, Mike Knell, 杨文质. 西太平洋地质科学, 2009, 9:15.).
[12]
Wang S L, Huang T D, Yan R H, Chen H W, Zhang S T, Li X B, KÓtai L, Reisz R R. Frontiers in Earth Science, 2020, 8: 230.

doi: 10.3389/feart.2020.00230     URL    
[13]
Huang T D, Lee Y C, Chiang C C, Reisz R R. The Generality of Preservation of Organic Remains in Body Fossils by FTIR Spectra Comparison. Biopetrology, 2022, 1(1):48-60. http://biepetrology,com/tdhtgo.
[14]
Verma D, Katti K, Katti D. Spectrochimica Acta Part A, 2006, 64: 1051.

doi: 10.1016/j.saa.2005.09.014     URL    
[15]
He C K. Science Development, 2011,(458).
(何传坤. 科学发展, 2011,(458).).
[16]
Brink K, Chen Y C, Wu Y N, Liu W M, Shieh D, Huang T, Sun C, Reisz R. J. R. Soc. Interface, 2016, 13: 20160626.
[17]
Liu J P, Zeng W T, Xu Y F, Sun B D, Hu S B, Liu G C, Song D H, Lü B Y, Wang X F. Geological Bulletin of China, 2018, 37(11):2055.
(刘军平, 曾文涛, 徐云飞, 孙柏东, 胡绍斌, 刘桂春, 宋冬虎, 吕勃烨, 王晓峰. 地质通报, 2018, 37(11):2055.).
[18]
Liu J P, Li J, Sun B D, Hu S B, Zeng W T, Liu Fagang, Sun Z M, Cong F, Xu Y F. Sedimentary Geology and Tethyan Geology, 2018, 38(1):37.
(刘军平, 李静, 孙柏东, 胡绍斌, 曾文涛, 刘发刚, 孙志明, 丛峰, 徐云飞. 沉积与特提斯地质, 2018, 38(01):37.).
[19]
Liu J P, Li J, Wang W, Sun B D, Zeng W T, Song D H, Guan X Q, Lü B Y, Hao X F, Sun P. Sedimentary Geology and Tethyan Geology, 2019, 39(4):57.
(刘军平, 李静, 王伟, 孙柏东, 曾文涛, 宋冬虎, 关学卿, 吕勃烨, 郝学锋, 孙鹏. 沉积与特提斯地质, 2019, 39(04):57.).
[20]
Liu J P, Li J, Wang G H, Sun B D, Hu S B, Yu S Y, Wang X H, Song D H. Geological Review, 2020, 66(2):350.
(刘军平, 李静, 王根厚, 孙柏东, 胡绍斌, 俞赛赢, 王小虎, 宋冬虎. 地质论评, 2020, 66(02):350.).
[21]
Li J, Liu G C, Liu J P, Hu S B, Zeng W T, Sun B D, Zhang H, Deng R H, Zhang Z B, Liu F G, Duan X D, Yu S Y, Wang X F, Zhao Y J, Zhou K. Geological Bulletin of China, 2018, 37(11):1957.
(李静, 刘桂春, 刘军平, 胡绍斌, 曾文涛, 孙柏东, 张虎, 邓仁宏, 张志斌, 刘发刚, 段向东, 俞赛赢, 王晓峰, 赵云江, 周坤. 地质通报, 2018, 37(11):1957.).
[22]
Li J, Liu J P, Sun B D, Liu G C, Hu S B, Zeng W T, Zhang H, Deng R H, Yu S Y. Geological Bulletin of China, 2018, 37( 11):2087.
(李静, 刘军平, 孙柏东, 刘桂春, 胡绍斌, 曾文涛, 张虎, 邓仁宏, 俞赛赢. 地质通报, 2018, 37(11):2087.).
[23]
Summons R E, Bradley A S, Jahnke L L, Waldbauer J R. Phil. Trans. R. Soc. B, 2006, 361(1470): 951.

doi: 10.1098/rstb.2006.1837     URL    
[24]
Sessions A L, Doughty D M, Welander P V, Summons R E, Newman D K. Current Biology, 2009, 19:R567. DOI:10.1016/j.cub.2009.05.054.

doi: 10.1016/j.cub.2009.05.054     URL    
[25]
Wang Z D, Fingas M, Yang C, Christensen J H.. Environmental Forensics. Amsterdam: Elsevier, 1964. 339-407.
[26]
Williams M R. Master Dissertation of University of California Riverside, 2012.
[27]
Williams T A, Foster P G, Cox C J, Embley T M. Nature, 2013, 504(7479): 231.

doi: 10.1038/nature12779     URL    
[28]
Salvador-Castell M, Tourte M, Oger P M. Int. J. Mol. Sci., 2019, 20(18): 4434.

doi: 10.3390/ijms20184434     URL    
[29]
van Maldegem L M, Nettersheim B J, Leider A, Brocks J J, Adam P, Schaeffer P, Hallmann C. Nat. Ecol. Evol., 2021, 5(2): 169.

doi: 10.1038/s41559-020-01336-5     pmid: 33230255
[30]
Bobrovskiy I, Hope J M, Nettersheim B J, Volkman J K, Hallmann C, Brocks J J. Nat. Ecol. Evol., 2021, 5(2): 165.

doi: 10.1038/s41559-020-01334-7     pmid: 33230256
[31]
Chu S W, Chen I H, Liu T M, Chen P C, Sun C K, Lin B L. Opt. Lett., 2001, 26(23): 1909.

pmid: 18059734
[32]
Sonay A Y, Pantazis P. SPIE Proceedings Clinical and Preclinical Optical Diagnostics, 2017, 10411:104110D.
[33]
Carlisle E M, Jobbins M, Pankhania V, Cunningham J A, Donoghue P C J. Sci. Adv., 2021, 7(5): eabe9487.

doi: 10.1126/sciadv.abe9487     URL    
[34]
Needham T E. Doctoral Dissertation of University of Rhode Island, 1970. 159. http://digitalcommons.uri.edu/ oa_diss/159.
[35]
Rasmussen C J. Nutritional Supplements for Endurance Athletes. In: Nutritional Supplements in Sports and Exercise. Humana Press, 2008. DOI: 10.1007/978-1-59745-231-1_11.
[36]
Chowdhury N, Bagchi A,. Bioinformation, 2018, 14(6): 315.

doi: 10.6026/97320630014315     pmid: 30237677
[37]
(Hertrampf, Olivares. Int. J. Vitam. Nutr. Res., 2004, 74(6): 435.

pmid: 15743019
[38]
Ghasemi S, Khoshgoftarmanesh A H, Hadadzadeh H, Jafari M. J. Plant Growth Regul., 2012, 31(4): 498.

doi: 10.1007/s00344-012-9259-7     URL    
[39]
Dickson A G. Mar. Chem., 1993, 44(2/4): 131.

doi: 10.1016/0304-4203(93)90198-W     URL    
[40]
Bush M F, Oomens J, Saykally R J, Williams E R. J. Am. Chem. Soc., 2008, 130(20): 6463.

doi: 10.1021/ja711343q     URL    
[41]
Kouketsu Y, Mizukami T, Mori H, Endo S, Aoya M, Hara H, Nakamura D, Wallis S. Island Arc, 2014, 23(1): 33.

doi: 10.1111/iar.12057     URL    
[42]
Wang J K. Instruments Today, 2002, 23(4):46.
(王俊凯. 科仪新知, 2002, 23(4):46.).
[43]
Poulton S W, Bekker A, Cumming V M, Zerkle A L, Canfield D E, Johnston D T. Nature, 2021, 592(7853): 232.

doi: 10.1038/s41586-021-03393-7     URL    
[44]
Ostrander C M, Johnson A C, Anbar A D. Annu. Rev. Earth Planet. Sci., 2021, 49: 337.

doi: 10.1146/annurev-earth-072020-055249     URL    
[45]
Huang T D, Lee Y C, Chiang C C, Reisz R R. Biopetrology, 2022, 1(1):48. http://biopetrology.com/tdhtgo.
[1] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[2] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[3] 曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
[4] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[5] 王亚韡, 王莹, 江桂斌. 短链氯化石蜡的分析方法、污染现状与毒性效应[J]. 化学进展, 2017, 29(9): 919-929.
[6] 万武波, 纪冉, 何锋*. 石墨烯基分离膜研究进展[J]. 化学进展, 2017, 29(8): 833-845.
[7] 卫林峰, 马建中, 张文博, 鲍艳. 氧化石墨烯和石墨烯量子点的两亲性调控及其在Pickering乳液聚合中的应用[J]. 化学进展, 2017, 29(6): 637-648.
[8] 郝锐, 张丛筠, 卢亚, 张东杰, 郝耀武, 刘亚青. 氧化石墨烯/金银纳米粒子复合材料的制备及其SERS效应研究[J]. 化学进展, 2016, 28(8): 1186-1195.
[9] 高玉荣, 黄培, 孙佩佩, 吴敏, 黄勇. 石墨烯/纤维素复合材料的制备及应用[J]. 化学进展, 2016, 28(5): 647-656.
[10] 饶红红, 薛中华, 王雪梅, 赵国虎, 侯辉辉, 王晖. 基于电化学还原氧化石墨烯的电化学传感[J]. 化学进展, 2016, 28(2/3): 337-352.
[11] 王茜, 郭晓燕, 邵怀启, 周启星, 胡万里, 宋晓静. 石墨烯及氧化石墨烯对分离膜改性的方法、效能和作用机理[J]. 化学进展, 2015, 27(10): 1470-1480.
[12] 周丽, 邓慧萍*, 万俊力, 张瑞金. 石墨烯基铁氧化物磁性材料的制备及在水处理中的吸附性能[J]. 化学进展, 2013, 25(01): 145-155.
[13] 张昊*, 崔华. 氧化石墨烯荧光传感器[J]. 化学进展, 2012, 24(08): 1554-1559.
[14] 马玲玲 徐殿斗 陈扬 柴之芳. 短链氯化石蜡分析方法*[J]. 化学进展, 2010, 22(04): 720-726.
[15] 徐秀娟 秦金贵 李振. 石墨烯研究进展[J]. 化学进展, 2009, 21(12): 2559-2567.
阅读次数
全文


摘要

古生物化学中的凝聚态化学反应