English
新闻公告
More
化学进展 2022, Vol. 34 Issue (10): 2316-2328 DOI: 10.7536/PC211220 前一篇   

• 综述与评论 •

微乳液法制备介孔碳材料

赵筱茜, 王聪, 田勇*(), 王秀芳*()   

  1. 广东药科大学药学院 广州 510006
  • 收稿日期:2021-12-15 修回日期:2022-03-31 出版日期:2022-10-24 发布日期:2022-06-20
  • 通讯作者: 田勇, 王秀芳
  • 基金资助:
    广东省自然科学基金项目(2022A1515011225); 广东省高校创新强校工程重点项目(2020ZDZX2023)

Preparation of Mesoporous Carbon Materials via Emulsion Method

Zhao Xiaoxi, Wang Cong, Tian Yong(), Wang Xiufang()   

  1. College of Pharmacy, Guangdong Pharmaceutical University,Guangzhou 510006, China
  • Received:2021-12-15 Revised:2022-03-31 Online:2022-10-24 Published:2022-06-20
  • Contact: Tian Yong, Wang Xiufang
  • Supported by:
    Natural Science Foundation of Guangdong Province(2022A1515011225); Key Project for Innovation/ Enhancing Guangdong Pharmaceutical University(2020ZDZX2023)

介孔碳材料因具有高比表面积,规则的孔隙结构,低密度,良好的生物相容性及导电性,被广泛应用于催化、能量储存及转化、吸附分离和药物递送等领域。微乳液法具有制备工艺简便、环境友好、可大规模生产及产物结构可控性强等突出优势,在制备孔隙结构可控和特殊形态介孔碳方面取得突破性的进展。本文首先着重分析了微乳液法制备介孔碳的反应机理,包括微乳液诱导协同组装机制、乳液溶胀效应和微流控液滴技术。其次,进一步探讨了控制介孔碳材料孔隙形态、外部形貌及内部结构的影响因素。最后,对新型介孔碳材料在能源储存与转化、催化、吸附以及药物递送领域的应用进行了归纳,并对未来的发展提出了展望。

Mesoporous carbons with unique features, such as high specific surface area, regular pore channels, homogeneous nano-framework, and tunable pore size, stand out from carbonaceous materials and are applied in a wide range of fields, including energy storage and conversion, catalyst, adsorption as well as drug delivery. Microemulsion method is characterized by simple preparation process, environmental friendliness, feasibility for large-scale production, and controllable product structure, which has made a breakthrough in preparation of mesoporous carbon with controllable pore structure and special morphology. Herein, the research progress of microemulsion preparation of mesoporous carbon is reviewed and the reaction mechanisms are analyzed. Besides, influencing factors controlling the pore morphology and internal structure of mesoporous carbon materials are further investigated. Finally, applications of novel mesoporous carbon materials in the fields of energy storage, catalyst, adsorption and drug delivery are summarized, and the future development prospects are put forward.

()
图1 介孔碳材料的发展历程[10,14,15,23,27,28]
Fig. 1 The development of mesoporous carbon[10,14,15,23,27,28]
表1 微乳液法制备介孔碳纳米粒子的工艺比较
Table 1 Technology comparison for mesoporous carbon nanoparticles prepared by microemulsion methods
图2 (a)碗状介孔碳纳米粒子合成示意图;(b~d)不同TMB含量所制备的介孔颗粒的SEM图像[27]
Fig. 2 (a) Schematic illustration of the construction of bowl-like mesoporous carbon nanoparticles; (b~d) SEM images of mesoporous nanoparticles under different TMB content[27]. Copyright? 2016, American Chemical Society
图3 (a) 不同水热时间生成的HOCFs的电镜图;(b) HOCFs的生长机理示意图[19];(c) 不同乙醇浓度下介孔碳@硅纳米粒子的TEM图像及氮气吸附等温线[44]
Fig. 3 (a) Electron microscopic images of HOCFs generated at different hydrothermal times; (b) Schematic growth mechanism of the HOCFs[19]; Copyright 2017, American Chemical Society. (c) TEM images and nitrogen sorption isotherms of mesoporous carbon @silicon nanoparticles synthesized with different ethanol concentrations[44]. Copyright 2021, Elsevier
图4 (a) 采用W/O/W乳液制备孔-壳微粒的工艺[51];(b)微流控液滴技术制备介孔碳球的流程示意图[53]
Fig. 4 (a) fabrication procedure of the desired hole-shell microparticles from W/O/W emulsions[51]; Copyright 2017, Wiley. (b) microfluidic production of mesoporous carbon spheres[53]. Copyright 2015, Elsevier
图5 (a)不同形貌碳纳米球的形成过程示意图[60];(b)梯度孔介孔碳纳米球的形成过程示意图和(c) 透射电镜图[61]
Fig. 5 (a) Schematic illustration of the formation process for the carbon nanospheres with various morphology[60]; Copyright 2019, American Chemical Society. (b) Schematic illustration of the formation process and (c) TEM images of the gradient-pore mesoporous carbon nanospheres[61]. Copyright 2021, Elsevier
图6 (a)聚多巴胺颗粒中间相转变示意图和电子显微镜图像[74];(b)各向异性聚合物粒子形成机制的示意图[28]
Fig. 6 (a) Schematic representation and electron microscopy images of mesophase transition of polydopamine particles[74]; Copyright 2018, Wiley. (b) schematic illustration of the construction mechanisms of anisotropic polymeric particles[28]. Copyright 2021, Wiley
图7 (a) 多腔室介孔碳纳米球的合成示意图[76];MCM的内部结构演变与(b)碱浓度和(c)温度和苯酚量的关系[77]
Fig. 7 (a) schematic diagram of synthesis of multi-chamber mesoporous carbon nanospheres[76]; Copyright 2017, Wiley. the interior structural evolution of MCMs as a function of (b) base concentration, and (c) temperature and amount of phenol[77]. Copyright 2019, American Chemical Society
图8 (a) PtCo@HPS 合成示意图及电镜图像[37];(b) 树枝状Au/RA-MC催化剂用于催化4-硝基苯酚加氢制备4-氨基苯酚[85]
Fig. 8 (a) synthesis diagram and electron microscope image of PtCo@HPS[37];Copyright 2014, Nature.(b) dendritic Au/RA-MC catalyst was used for the hydrogenation of 4-nitrophenol to 4-aminophenol[85]; Copyright 2020, Wiley
图9 (a) HaCaT细胞与树莓状介孔碳共培养的共聚焦显微镜成像图[40];(b) MC@MS溶血实验示意图及细胞摄取[44]
Fig. 9 (a) Confocal microscopy images of HaCaT cells co-cultured with raspberry-like mesoporous carbon[40]; Copyright 2020, Elsevier. (b) schematic diagram of hemolysis experiment of MC@MS and cell uptake experimental result[44]. Copyright 2021, Elsevier
[45]
Wang W, Zhang M J, Chu L Y. Acc. Chem. Res., 2014, 47: 373.

doi: 10.1021/ar4001263     URL    
[46]
Liu W Y, Wang W, Ju X J, Liu Z, Xie R, Chu L Y. Chem. Eng. Sci., 2021, 231: 116242.

doi: 10.1016/j.ces.2020.116242     URL    
[47]
Sundararajan P, Wang J, Rosen L A, Procopio A, Rosenberg K. Chem. Eng. Sci., 2018, 178: 199.

doi: 10.1016/j.ces.2017.12.013     URL    
[48]
Lee D, Weitz D A. Small, 2009, 5: 1932.

doi: 10.1002/smll.200900357     URL    
[49]
Chen C H, Abate A R, Lee D, Terentjev E M, Weitz D A. Adv. Mater., 2009, 21: 3201.

doi: 10.1002/adma.200900499     URL    
[50]
Werner J G, Lee H, Wiesner U, Weitz D A. ACS Nano, 2021, 15: 3490.

doi: 10.1021/acsnano.1c00068     pmid: 33556234
[51]
Wang W, Zhang M J, Xie R, Ju X J, Yang C, Mou C L, Weitz D A, Chu L Y. Angew. Chem. Int. Ed., 2013, 52: 8084.

doi: 10.1002/anie.201301590     pmid: 23754517
[52]
Pan Y C, Ju M H, Wang C Q, Zhang L X, Xu N P. Chem Commun., 2010, 46: 3732.

doi: 10.1039/c003161e     URL    
[53]
Ge H, Xu H B, Lu T Y, Li J, Chen H S, Wan J D. J. Colloid Interface. Sci., 2016, 461: 168.

doi: 10.1016/j.jcis.2015.09.018     URL    
[54]
Wang W, Xie R, Ju X J, Liu Z, Chu L Y. Prog. Chem., 2018, 30 (1): 44.

doi: 10.7536/PC170835    
汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 化学进展, 2018, 30 (1): 44.).

doi: 10.7536/PC170835    
[55]
Liu C, Yu M H, Li Y, Li J S, Wang J, Yu C Z, Wang L J. Nanoscale, 2015, 7: 11580.

doi: 10.1039/C5NR02389K     URL    
[56]
Zhao J H, Shan W D, Zhang P F, Dai S. Chem. Eng. J., 2020, 381: 122579.

doi: 10.1016/j.cej.2019.122579     URL    
[57]
Zhang Y H, Liu B H, Borjigin T, Xia S B, Yang X F, Sun S H, Guo H. J. Power Sources, 2020, 450: 227696.

doi: 10.1016/j.jpowsour.2019.227696     URL    
[58]
Tang J, Liu J, Li C L, Li Y Q, Tade M O, Dai S, Yamauchi Y. Angew. Chem., 2015, 54: 588.
[59]
Zhang F Q, Meng Y, Gu D, Yan Y, Yu C Z, Tu B, Zhao D Y. J. Am. Chem. Soc., 2005, 127: 13508.

doi: 10.1021/ja0545721     URL    
[60]
Peng L, Hung C T, Wang S, Zhang X M, Zhu X H, Zhao Z W, Wang C Y, Tang Y, Li W, Zhao D Y. J. Am. Chem. Soc., 2019, 141: 7073.

doi: 10.1021/jacs.9b02091     URL    
[61]
Peng L, Peng H, Hung C T, Guo D Y, Duan L L, Ma B, Liu L L, Li W, Zhao D Y. Chem, 2021, 7: 1020.

doi: 10.1016/j.chempr.2021.01.001     URL    
[62]
Liu Q, Li H, Cui X, Liu X, Zhang X, Yang Y React. Funct. Polym., 2019, 144: 104349.

doi: 10.1016/j.reactfunctpolym.2019.104349     URL    
[63]
Du J, Yu Y F, Liu L, Lv H J, Chen A B, Hou S L. ACS Appl. Energy Mater., 2019, 2: 4402.

doi: 10.1021/acsaem.9b00578     URL    
[64]
Meng T J, Nsabimana A, Liu Z Y, Jia H X, An S Y, Wang H, Zhang Y F. J. Colloid Interface Sci., 2020, 579: 12.

doi: 10.1016/j.jcis.2020.06.053     URL    
[65]
Liang J, Kou H R, Ding S J. Adv. Funct. Mater., 2020, 31: 2007801.

doi: 10.1002/adfm.202007801     URL    
[66]
Li Y, Tan H B, Salunkhe R R, Tang J, Shrestha L K, Bastakoti B P, Rong H P, Takei T, Henzie J, Yamauchi Y, Ariga K. Chem. Commun., 2016, 53: 236.

doi: 10.1039/C6CC07360C     URL    
[67]
Zhao T C, Zhu X H, Hung C T, Wang P Y, Elzatahry A, Al-Khalaf A A, Hozzein W N, Zhang F, Li X M, Zhao D Y. J. Am. Chem. Soc., 2018, 140: 10009.

doi: 10.1021/jacs.8b06127     URL    
[68]
Agrawal G, Agrawal R. ACS Appl. Nano Mater., 2019, 2: 1738.

doi: 10.1021/acsanm.9b00283    
[69]
Chen C H, Xie L, Wang Y. Nano Res., 2019, 12: 1267.

doi: 10.1007/s12274-019-2324-9     URL    
[70]
Fu J Y, Gu Z Y, Liu Y, Zhang J, Song H, Yang Y N, Yang Y, Noonan O, Tang J, Yu C Z. Chem. Sci., 2019, 10: 10388.

doi: 10.1039/C9SC02961C     URL    
[71]
Zhu X H, Xia Y, Zhang X M, Al-Khalaf A A, Zhao T C, Xu J X, Peng L, Hozzein W N, Li W, Zhao D Y. J. Mater. Chem. A, 2019, 7:8975.

doi: 10.1039/C9TA01478K     URL    
[72]
Wang J, Chang Z, Ding B, Li T, Yang G L, Pang Z B, Nakato T, Eguchi M, Kang Y, Na J B, Guan B Y, Yamauchi Y. Angew. Chem. Int. Ed., 2020, 59: 19570.

doi: 10.1002/anie.202007063     URL    
[73]
Guan B Y, Yu L, Lou X W. Adv. Mater., 2016, 28: 9596.

doi: 10.1002/adma.201603622     URL    
[74]
Guan B Y, Zhang S L, Lou X W. Angew. Chem. Int. Ed., 2018, 57: 6176.

doi: 10.1002/anie.201801876     URL    
[75]
Hu X, Li J W, Zhong G B, Liu Y J, Yuan J, Lei S, Zhan H B, Wen Z H. Small, 2020, 16: e2005534.
[76]
Zhang L H, He B, Li W C, Lu A H. Adv. Energy Mater., 2017, 7: 1701518.

doi: 10.1002/aenm.201701518     URL    
[77]
Liu D, Xue N, Wei L, Zhang Y, Qin Z, Li X, Binks B P, Yang H. Angew. Chem. Int. Ed., 2018, 57: 10899.

doi: 10.1002/anie.201805022     URL    
[1]
Liu J, Wickramaratne N P, Qiao S Z, Jaroniec M. Nat. Mater., 2015, 14: 763.

doi: 10.1038/nmat4317     URL    
[2]
Pan P, Zhang T, Yue Q, Elzatahry AA, Alghamdi A, Cheng X, Deng Y. Adv. Sci., 2020, 7: 2000443.

doi: 10.1002/advs.202000443     URL    
[3]
Wickramaratne N P, Xu J T, Wang M, Zhu L, Dai L M, Jaroniec M. Chem., Mater., 2014, 26: 2802.
[4]
Wu Z X, Wu D W, Liu W J, Selomulya C, Chen X D, Zhao D Y. Angew. Chem., 2013, 125: 14009.

doi: 10.1002/ange.201307608     URL    
[5]
Li W, Liu J, Zhao D Y. Nat. Rev. Mater., 2016, 1: 6023.
[6]
Zu L, Zhang W, Qu L, Liu L, Li W, Yu A, Zhao D Y. Adv. Energy Mater., 2020, 10: 2002152.

doi: 10.1002/aenm.202002152     URL    
[7]
Doustkhah E, Lin J J, Rostamnia S, Len C, Luque R, Luo X, Bando Y, Wu K C, Kim J, Yamauchi Y, Yusuke I. Chem.Eur.J., 2019, 25: 1614.
[8]
Goscianska J, Olejnik A, Ejsmont A, Galarda A, Wuttke S. J. Colloid Interface Sci., 2021, 586: 673.

doi: 10.1016/j.jcis.2020.10.137     URL    
[9]
Kresge C T, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359: 710.

doi: 10.1038/359710a0     URL    
[10]
Ryoo R, Joo S H, Shinae J. J. Phys. Chem. B, 1999, 103: 7743.

doi: 10.1021/jp991673a     URL    
[11]
Han S, Hyeon T. Chem. Commun., 1999, 19: 1955.
[12]
Meng Y, Gu D, Zhang F Q, Shi Y F, Cheng L, Feng D, Wu Z X, Chen Z X, Wan Y, Stein A, Zhao D Y. Chem. Mater., 2006, 18: 4447.

doi: 10.1021/cm060921u     URL    
[13]
Huang Y, Cai H, Yu T, Zhang F, Zhang F, Meng Y, Gu D, Wan Y, Sun X, Tu B, Zhao D Y. Angew. Chem., 2007, 119: 1107.

doi: 10.1002/ange.200603665     URL    
[14]
Meng Y, Gu D, Zhang F, Shi Y, Yang H, Li Z, Yu C, Tu B, Zhao D Y. Angew. Chem., 2005, 117: 7215.

doi: 10.1002/ange.200501561     URL    
[15]
Fang Y, Gu D, Zou Y, Wu Z X, Li F Y, Che R C, Deng Y H, Tu B, Zhao D Y. Angew. Chem., 2010, 122: 8159.

doi: 10.1002/ange.201002849     URL    
[16]
Chen Y, Xu P, Wu M, Meng Q, Chen H, Shu Z, Wang J, Zhang L, Li Y, Shi J L. Adv. Mater., 2014, 26: 4294.

doi: 10.1002/adma.201400303     URL    
[17]
Qi J, Lai X, Wang J, Tang H, Ren H, Yang Y, Jin Q, Zhang L, Yu R, Ma G, Su Z, Zhao H, Wang D. Chem. Soc. Rev., 2015, 44: 6749.

doi: 10.1039/C5CS00344J     URL    
[78]
Ye W, Wang L, Yin Y, Fan X, Cheng Y, Gao H, Zhang H, Zhang Q, Luo G, Wang M S. ACS Energy Lett., 2021, 6: 2145.

doi: 10.1021/acsenergylett.1c00456     URL    
[79]
Ren D F, Xu J Q, Chen N, Ye Z X, Li X F, Chen Q F, Ma S Y. Colloids Surf. A Physicochem. Eng. Asp., 2021, 611: 125773.

doi: 10.1016/j.colsurfa.2020.125773     URL    
[80]
Na X M, Gao F, Zhang L Y, Su Z G, Ma G H. ACS Macro Lett., 2012, 1: 697.

doi: 10.1021/mz200222d     URL    
[81]
Qian Q, Huang X, Zhang X, Xie Z, Wang Y. Angew. Chem. Int. Ed., 2013, 52: 10625.

doi: 10.1002/anie.201305003     URL    
[82]
Tan H, Tang J, Henzie J, Li Y, Xu X, Chen T, Wang Z, Wang J, Ide Y, Bando Y, Yamauchi Y. ACS Nano, 2018, 12: 5674.

doi: 10.1021/acsnano.8b01502     URL    
[83]
Guo D Y, Fu Y X, Bu F X, Liang H C, Duan L L, Zhao Z W, Wang C Y, El-Toni A M, Li W, Zhao D Y. Small Methods, 2021, 5: 2001137.

doi: 10.1002/smtd.202001137     URL    
[84]
Zhang W, Zhu K R, Ren W X, He H L, Liang H C, Zhai Y P, Li W. Adv. Mater. Interfaces, 2022, 9: 2101528.

doi: 10.1002/admi.202101528     URL    
[85]
Yang X Y, Lu P H, Yu L, Pan P P, Elzatahry A A, Alghamdi A, Luo W, Cheng X W, Deng Y H. Adv. Funct. Mater., 2020, 30: 2002488.

doi: 10.1002/adfm.202002488     URL    
[86]
Zhou T S, Zhou Y, Ma R G, Zhou Z Z, Liu G H, Liu Q, Zhu Y F, Wang J C. Carbon, 2017, 114: 177.

doi: 10.1016/j.carbon.2016.12.011     URL    
[87]
Bi T J, Wan J F, Yang S L, Yu X J, Ma F W. Nano, 2015, 10: 1550076.

doi: 10.1142/S1793292015500769     URL    
[88]
Singh G, Lee J, Karakoti A, Bahadur R, Yi J, Zhao D Y, AlBahily K, Vinu A. Chem. Soc. Rev., 2020, 49: 4360.

doi: 10.1039/D0CS00075B     URL    
[89]
Yang Y Q, Chuah C Y, Bae T H. ACS Sustain. Chem. Eng., 2021, 9: 2017.

doi: 10.1021/acssuschemeng.0c06280     URL    
[90]
Lakhi K S, Singh G, Kim S, Baskar A V, Joseph S, Yang J H, Ilbeygi H, Ruban S J M, Vu V T H, Vinu A. Microporous Mesoporous Mater., 2018, 267: 134.

doi: 10.1016/j.micromeso.2018.03.024     URL    
[91]
Choma J, Jedynak K, Fahrenholz W, Ludwinowicz J, Jaroniec M. Appl. Surf. Sci., 2014, 289: 592.

doi: 10.1016/j.apsusc.2013.11.051     URL    
[92]
Lakhi K S, Park D H, Singh G, Talapaneni S N, Ravon U, Al-Bahily K, Vinu A. J. Mater. Chem. A, 2017, 5: 16220.

doi: 10.1039/C6TA10716H     URL    
[93]
Liu L, Xu S D, Wang F Y, Song Y J, Liu J, Gao Z M, Yuan Z Y. RSC Adv., 2017, 7: 12524.

doi: 10.1039/C6RA26424G     URL    
[94]
Wu Z, Webley P A, Zhao D Y. J. Mater. Chem., 2012, 22: 11379.

doi: 10.1039/c2jm16183d     URL    
[18]
Zhang H, Noonan O, Huang X, Yang Y, Xu C, Zhou L, Yu C. ACS Nano, 2016, 10: 4579.

doi: 10.1021/acsnano.6b00723     URL    
[19]
Chen C, Wang H, Han C, Deng J, Wang J, Li M, Tang M, Jin H, Wang Y J. Am. Chem. Soc., 2017, 139: 2657.

doi: 10.1021/jacs.6b10841     URL    
[20]
Zhang Z, Qin M, Jia B, Zhang H, Wu H, Qu X. Chem. Commun., 2017, 53: 2922.

doi: 10.1039/C7CC00219J     URL    
[21]
Peng L, Peng H R, Liu Y, Wang X, Hung C, Zhao Z W, Chen G, Li W, Mai L Q, Zhao D Y. Sci. Adv., 2021, 7: eabi7403.

doi: 10.1126/sciadv.abi7403     URL    
[22]
Jung D S, Hwang T H, Lee J H, Koo H Y, Shakoor R A, Kahraman R, Jo Y N, Park M S, Choi J W. Nano Lett., 2014, 14: 4418.

doi: 10.1021/nl501383g     pmid: 25007002
[23]
Qiao Z A, Guo B, Binder A J, Chen J, Veith G M, Dai S Nano Lett., 2013, 13: 207.

doi: 10.1021/nl303889h     URL    
[24]
Huang W Q, Chong J, Tian Y, Wang X F. Chem. Eng. J., 2017, 327: 18.

doi: 10.1016/j.cej.2017.06.041     URL    
[25]
Wang Q G, He L, Zhao L Y, Liu R S, Zhang W P, Lu A H. Adv. Funct. Mater., 2019, 30: 1906117.

doi: 10.1002/adfm.201906117     URL    
[26]
Wu J H, Hu L, Wang N, Li Y M, Zhao D K, Li L G, Peng X W, Cui Z M, Ma L J, Tian Y, Wang X F. Appl. Catal. B, 2019, 254: 55.

doi: 10.1016/j.apcatb.2019.04.064     URL    
[27]
Guan B Y, Yu L, Lou X W. J. Am. Chem. Soc., 2016, 138: 11306.

doi: 10.1021/jacs.6b06558     URL    
[28]
Li C, Peng H, Cai J, Li L, Zhang J, Mai Y. Adv. Mater., 2021, 33: e2102930.
[29]
Fan J B, Song Y Y, Liu H, Lu Z Y, Zhang F L, Liu H L, Meng J X, Gu L, Wang S T, Jiang L. Sci. Adv., 2017, 3: e1603203.

doi: 10.1126/sciadv.1603203     URL    
[30]
Liu Y D, Goebl J, Yin Y D. Chem. Soc. Rev., 2013, 42: 2610.

doi: 10.1039/C2CS35369E     URL    
[31]
Schacht S, Hou Q, Voigt-Martin I G, Stucky G D, Schiith F. Science, 1996, 273: 768.

doi: 10.1126/science.273.5276.768     URL    
[32]
Xia Y, Na X, Wu J, Ma G. Adv. Mater., 2019, 31: e1801159.
[33]
Hu J, Zhou S, Sun Y, Fang X, Wu L. Chem. Soc. Rev., 2012, 41: 4356.

doi: 10.1039/c2cs35032g     URL    
[34]
Piradashvili K, Alexandrino E M, Wurm F R, Landfester K. Chem. Rev., 2015, 116: 2141.

doi: 10.1021/acs.chemrev.5b00567     URL    
[95]
Liu L, Deng Q F, Ma T Y, Lin X Z, Hou X X, Liu Y P, Yuan Z Y. J. Mater. Chem., 2011, 21: 16001.

doi: 10.1039/c1jm12887f     URL    
[96]
Kalantari M, Zhang J, Liu Y, Yu C Z. Chemosphere, 2019, 215: 716.

doi: S0045-6535(18)31926-X     pmid: 30352371
[97]
Kalantari M, Yu M H, Noonan O, Song H, Xu C, Huang X D, Xiang F X, Wang X L, Yu C Z. Chemosphere, 2017, 166: 109.

doi: S0045-6535(16)31286-3     pmid: 27689890
[98]
Zhu X J, Chong J, Hu T, Wang X F, Tian Y. J. Mater. Chem. A, 2017, 5: 8297.

doi: 10.1039/C6TA10892J     URL    
[99]
Wang W, Wang P, Chen L, Zhao M, Hung C T, Yu C, Al-Khalaf A A, Hozzein W N, Zhang F, Li X, Zhao D Y. Chem., 2020, 6: 1097.

doi: 10.1016/j.chempr.2020.01.010     URL    
[100]
Xing Y, Zhou Y, Zhang Y, Zhang C, Deng X, Dong C, Shuang S. ACS Biomater. Sci. Eng., 2020, 6: 1573.

doi: 10.1021/acsbiomaterials.0c00042     URL    
[101]
Teng Z, Wang C, Tang Y, Li W, Bao L, Zhang X, Su X, Zhang F, Zhang J, Wang S, Zhao D Y, Lu G. J. Am. Chem. Soc., 2018, 140: 1385.

doi: 10.1021/jacs.7b10694     URL    
[102]
Zhuo S Y, Yu X, Wang C, Liu S L, Wang X F, Tian Y. Mater. Lett., 2021, 289: 129440.

doi: 10.1016/j.matlet.2021.129440     URL    
[103]
Liu J, Xie L, Deng J, Gong Y, Tang G, Bai H, Wang Y. Chem. Mater., 2019, 31: 7186.

doi: 10.1021/acs.chemmater.9b01449     URL    
[104]
Xie H, Zhao Y, Tian Y, Wang X, Yan M. Carbon, 2019, 152: 295.

doi: 10.1016/j.carbon.2019.06.029     URL    
[105]
Fang Y, Zheng G, Yang J, Tang H, Zhang Y, Kong B, Lv Y, Xu C, Asiri A M, Zi J, Zhang F, Zhao D Y. Angew. Chem. Int. Ed., 2014, 126: 5470.

doi: 10.1002/ange.201402002     URL    
[35]
Anjali T G, Basavaraj M G. Langmuir, 2018, 35: 3.

doi: 10.1021/acs.langmuir.8b01139     URL    
[36]
Liu J, Yang T, Wang D W, Lu G Q, Zhao D Y, Qiao S Z. Nat. Commun., 2013, 4: 2798.

doi: 10.1038/ncomms3798     URL    
[37]
Wang G H, Hilgert J, Richter F H, Wang F, Bongard H J, Spliethoff B, Weidenthaler C, Schuth F. Nat. Mater., 2014, 13: 293.

doi: 10.1038/nmat3872     URL    
[38]
Liu X, Song P P, Hou J, Wang B, Xu F, Zhang X M. ACS Sustain. Chem. Eng., 2018, 6: 2797.

doi: 10.1021/acssuschemeng.7b04634     URL    
[39]
Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 21: 11518.
[40]
Liu J, Zhao Y J, Xu L L, Wang X, F Tian Y. Microporous Mesoporous Mater., 2020, 293: 109803.

doi: 10.1016/j.micromeso.2019.109803     URL    
[41]
Wang T, Sun Y, Zhang L L, Li K Q, Yi Y K, Song S Y, Li M T, Qiao Z A, Dai S. Adv. Mater., 2019, 31: 1807876.

doi: 10.1002/adma.201807876     URL    
[42]
Liu D, Peng X, Wu B, Zheng X, Chuong T T, Li J, Sun S, Stucky G D. J. Am. Chem. Soc., 2015, 137: 9772.

doi: 10.1021/jacs.5b05027     URL    
[43]
Chen C H, Li X F, Deng J, Wang Z, Wang Y. ChemSusChem., 2018, 11: 2540.

doi: 10.1002/cssc.201801215     URL    
[44]
Zhao Y J, Lyu H L, Liu Y J, Liu W J, Tian Y, Wang X F. Carbon, 2021, 183: 912.

doi: 10.1016/j.carbon.2021.07.073     URL    
[1] 何天稀, 王文斌, 王九, 陈波水, 梁琼麟. 介孔碳球的制备及作为药物传输系统的应用[J]. 化学进展, 2020, 32(2/3): 309-319.
[2] 张凌峰, 胡忠攀, 高泽敏, 刘亚录, 袁忠勇. 有序介孔碳基金属复合材料的制备及催化应用[J]. 化学进展, 2015, 27(8): 1042-1056.
[3] 刘蕾, 袁忠勇. 软模板合成有序介孔碳材料[J]. 化学进展, 2014, 26(05): 756-771.
[4] 汪洋,颜志鹏,陈丰秋,詹晓力. 多相催化中的纳米技术*[J]. 化学进展, 2008, 20(09): 1263-1269.
阅读次数
全文


摘要

微乳液法制备介孔碳材料