English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1440-1452 DOI: 10.7536/PC210846 前一篇   

• 综述与评论 •

低对称性二维ReS2及其异质结的化学气相沉积法制备及性质

张辉, 王珊珊*(), 余金山   

  1. 国防科技大学空天科学学院 新型陶瓷纤维及其复合材料国防科技重点实验室 长沙 410073
  • 收稿日期:2021-08-26 修回日期:2021-09-22 出版日期:2021-12-02 发布日期:2021-12-02
  • 通讯作者: 王珊珊
  • 基金资助:
    国家自然科学基金项目(52172032); 国家自然科学基金项目(21805305); 国防科工局稳定支持项目(WDZC20195500503); 中国博士后科学基金(2020M680231); 国防科技大学项目(ZK18-01-03); 国防科技大学项目(ZZKY-YX-09-01)

Low-Symmetry Two-Dimensional ReS2 and its Heterostructures:Chemical Vapor Deposition Synthesis and Properties

Hui Zhang, Shanshan Wang(), Jinshan Yu   

  1. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology,Changsha 410073, China
  • Received:2021-08-26 Revised:2021-09-22 Online:2021-12-02 Published:2021-12-02
  • Contact: Shanshan Wang
  • Supported by:
    National Natural Science Foundation of China(52172032); National Natural Science Foundation of China(21805305); State Administration of Science, Technology and Industry for National Defense(WDZC20195500503); China Postdoctoral Science Foundation(2020M680231); National University of Defense Technology(ZK18-01-03); National University of Defense Technology(ZZKY-YX-09-01)

二维硫化铼(ReS2)是一种晶格对称元素少,纵向仅有原子级厚度的层状结构功能纳米材料。其晶体结构的低对称性使二维ReS2具有丰富的各向异性理化性质,在微纳光子学、触觉传感器和各向异性电子器件等领域前景广阔。该类材料的应用开发依赖于高质量的合成和对其性质的深刻理解。本文首先从金属含铼前驱体、非金属含硫前驱体以及基底工程三个方面归纳了化学气相沉积法可控制备二维ReS2的各种手段和生长机制。随后,按照合成步骤分“一步法”和“两步法”介绍了ReS2水平和纵向异质结的制备最新进展。最后,综述了ReS2在各向异性光学和电学方面的性质。本文还对二维ReS2合成和性质研究的挑战和机遇提出了展望。

Two-dimensional (2D) rhenium disulfide (ReS2) is a layer-structured functional nanomaterial with atomic thickness and few lattice symmetry elements. The low symmetry of the crystal structure endows 2D ReS2 with rich anisotropic physical and chemical properties, giving it great potential in the fieldsof nanophotonics, tactile sensors, and anisotropic electronic devices. The applications of 2D ReS2 rely on high-quality synthesis and a deep understanding of its properties. This review firstly categorizes the chemical vapor deposition (CVD) methods of ReS2 into three groups based on the types of the metallic and non-metallic precursors applied in the growth, as well as the substrates. Different CVD strategies and the corresponding growth mechanisms are systematically summarized. Subsequently, the recent progress in the preparation of ReS2 in-plane and vertical 2D heterostructures is introduced. Approaches are divided into “one-step method” and “two-step method” based on the number of steps used in the CVD process. Finally, the anisotropic optical and electronic properties of 2D ReS2 are discussed. This review also puts forward an outlook on the challenges and opportunities of the synthesis and property investigation of 2D ReS2.

Contents

1 Introduction

2 CVD growth of 2D ReS2 and its heterostructures

2.1 CVD growth of 2D ReS2

2.2 CVD growth of ReS2-based heterostructures

3 Properties of 2D ReS2

3.1 Vibrational and optical properties

3.2 Electrical properties

4 Summary and Prospect

()
图1 (a)单层ReS2的晶体结构示意图[13] ;(b)单层ReS2的1T’相晶格畸变配位结构及其Re原子价电子的轨道填充示意图[14]
Fig. 1 (a)Schematic illustration showing the crystal structure of mono-layer Re S 2 [13], Copyright 2016, American Chemical Society. (b)Schematic illustration showing the distorted coordination manner of 1T’-ReS2 and the valence electron structure of the Re element[14], Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图2 典型CVD过程的基本步骤示意图[26]
Fig. 2 Schematic diagram of the basic steps in a typical CVD process[26], Copyright 2021, Springer Nature
图3 (a)NH4ReO4为Re源前驱体时CVD制备ReS2装置示意图;(b, c)单层ReS2材料SEM图像及原子序数衬度像[17];(d)Re粉为Re源前驱体时CVD制备ReS2装置示意图;(e)ReS2光镜图像(Optical microscope, OM);(f)ReS2材料HRTEM图像;(g)ReS2晶体结构示意图及相应仿真模型(右侧)[31];(h)Te辅助CVD生长ReS2装置示意图;(i)转移至SiO2/Si基底上ReS2的OM图像;(j, k)ReS2材料SAED及HRTEM图像[32];(l)ReO3为Re源前驱体时CVD制备ReS2装置示意图;(m, n)云母基底上生长ReS2材料的OM及AFM图[16]
Fig. 3 (a)Schematic showing the CVD growth of monolayer ReS2 using NH4ReO4 as the rhenium mental precursor;(b, c)SEM and Z-contrast STEM image of Re S 2 [17], Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.(d)Schematic for the CVD growth of monolayer ReS2 when Re is applied as the rhenium mental precursor;(e)Optical microscopy image of ReS2;(f)HRTEM image of ReS2;(g)Crystal structure diagram and the corresponding simulation model of Re S 2 [31], Copyright 2015, John Wiley and Sons.(h)Schematic diagram of Te-assisted CVD growth of ReS2;(i)OM image of ReS2 transferred to the SiO2/Si substrate;(j, k)SAED and HRTEM images of Re S 2 [32], Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.(l)Schematic for the CVD growth of monolayer ReS2 using ReO3 as the rhenium mental precursor;(m, n)OM and AFM images of 2D ReS2 grown on the mica substrate[16], Copyright 2016, Royal Society of Chemistry
图4 (a)CVD制备ReS2装置示意图;(b)柔性玻璃基底上生长ReS2薄膜图像;(c)ReS2薄膜上7个不同位置对应拉曼图像[40]
Fig. 4 (a)Schematic illustration of the CVD setup;(b)images of ReS2 films grown on the flexible glass;(c)Raman spectra of ReS2 detected at seven different locations corresponding to the labels of the inset[40]. Copyright 2017, IOP Publishing
图5 (a)CVD制备过程示意图;(b)ReS2薄膜的显微图像,比例尺为200 μm,插图为其光学图像;(c)ReS2薄膜的AFM图像,比例尺为0.5 μm[44];(d,e)截断三角形及六边形ReS2晶粒的OM图像;(f,g)截断三角形及六边形ReS2晶粒的AFM图像[13];(h,i)不同晶面Au基底上生长的单层ReS2的SEM图像;(j)Au和SiO2/Si基底上生长的ReS2的拉曼光谱[45]
Fig. 5 (a)Schematic diagram of CVD preparation process;(b)Microscopic image of ReS2 film, scale bar is 200 μm, the inset is an optical image;(c)AFM image of ReS2 film, scale bar is 0.5 μm[44], Copyright 2019, IOP Publishing;(d,e)OM images of truncated triangle and hexagonal ReS2 grains;(f,g)AFM images of truncated triangular and hexagonal ReS2 grains[13], Copyright 2016, American Chemical Society.(h,i)SEM images of single-layer ReS2 grown on Au with different crystal faces;(j)Raman spectra of ReS2 grown on Au and SiO2/Si substrates[45], Copyright 2021, Wiley-VCH GmbH
图6 (a)ReS2/WS2垂直异质结生长示意图;(b,c)ReS2/WS2垂直异质结SEM及OM图像,比例尺为40 μm(b),5 μm(c);(d,e)对应ReS2和WS2的E2g峰的拉曼映射图像[60];(f)一锅CVD法合成2H-WS2/1T’-ReS2水平异质结的示意图和生长过程的原子模型;(g,h)WS2-ReS2水平异质结SEM及HRTEM图像[61]
Fig. 6 (a)Schematic diagram of ReS2/WS2 vertical heterostructures;(b,c)SEM and OM images of ReS2/WS2 vertical heterostructures. Scale bar: 40 μm (b), 5 μm (c);(d,e)Raman mapping images corresponding to the E2g peaks of ReS2 and WS 2 [60], Copyright 2016, Springer Nature;(f)Schematic diagram of 2H-WS2/1T’-ReS2 lateral heterostructures synthesized by one-pot CVD method and the atomic model of the growth process;(g,h)SEM and HRTEM images of WS2/ReS2 lateral heterostructures[61] Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图7 (a)两步法合成1T’ReS2-ReSe2水平异质结的示意图;(b~d)ReS2-ReSe2异质结OM、SEM、AFM图像[62];(e)ReS2/WS2垂直异质结的两步CVD生长示意图;(f)ReS2/WS2异质结构OM图像;(g)对应WS2在 358 cm-1及ReS2在163 cm-1峰位置的拉曼积分图,比例尺:10 μm[63];(h)石墨烯/ReS2垂直异质结合成过程示意图;(i,j)石墨烯/ReS2垂直异质结SEM及AFM图像[64]
Fig. 7 (a)Schematic diagram of two-step synthesis of 1T'-ReS2-ReSe2 in-plane heterostructures;(b-d)OM, SEM, AFM images of ReS2-ReSe2 in-plane heterostructures[62], Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.(e)Schematic diagram of two-step CVD growth of ReS2/WS2 vertical heterostructures;(f)Optical image of as-grown ReS2/WS2 vertical heterostructures;(g)Raman mappings showing the integration of the WS2 signal at 358 cm-1 and the ReS2 signal at 163 cm-1, respectively. Scale bar: 10 μm[63],Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.(h)Schematic illustration of the synthesis process for the graphene/ReS2 vertical heterostructure;(i-j)SEM and AFM images of graphene/ReS2 vertical heterostructure[64],Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图8 (a)不同厚度ReS2材料拉曼光谱图[65];(b)单层ReS2的偏振拉曼光谱图像;(c)少层ReS2振动模式Ⅲ(绿色)和Ⅴ(紫色)的角分辨拉曼强度极坐标图[19];(d)DFT计算块体及单层ReS2的电子能带结构图;(e)MoS2与ReS2层间耦合能图[72];(f)沿多层ReS2的a、b轴对应电阻随应变的变化图,插图为器件的OM图像[73];(g)沿少层ReS2的a、b轴传输曲线图,插图为器件的OM图像;(h)沿多层ReS2不同晶向载流子迁移率统计图,插图为器件的OM图像[74]
Fig. 8 (a)Raman spectra of ReS2 with different thicknesses[65], Copyright 2015, American Chemical Society;(b)polarized Raman spectra of monolayer ReS2;(c)angle-resolved Raman intensities of modes Ⅲ (green) and Ⅴ (purple) presented in a polar plot[19], Copyright 2015 American Chemical Society.(d)DFT calculated electronic band structure of bulk (orange solid curves) and monolayer (purple dashed curves) ReS2;(e)Diagram of MoS2 and ReS2 interlayer coupling energy[72], Copyright 2014, Springer Nature.(f)Relative resistance changes of the device along two axes as a function of strain。Inset is the OM image of the device[73], Copyright 2019, American Chemical Society;(g)transfer curves of anisotropic ReS2 FETs along two axes. Inset is the OM image of the device;(h)normalized field-effect mobility along the different crystal orientations of ReS2, the inset is the OM image of the device[74], Copyright 2015,Springer Nature
[1]
Avsar A, Ochoa H, Guinea F, Özyilmaz B, van Wees B J, Vera-Marun I J. Rev. Mod. Phys., 2020, 92(2): 021003.

doi: 10.1103/RevModPhys.92.021003     URL    
[2]
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. Rev. Mod. Phys., 2009, 81(1): 109.

doi: 10.1103/RevModPhys.81.109     URL    
[3]
Kotov V N, Uchoa B, Pereira V M, Guinea F, Castro Neto A H. Rev. Mod. Phys., 2012, 84(3): 1067.

doi: 10.1103/RevModPhys.84.1067     URL    
[4]
Wang H T, Yuan H T, Sae Hong S, Li Y B, Cui Y. Chem. Soc. Rev., 2015, 44(9): 2664.

doi: 10.1039/C4CS00287C     URL    
[5]
Tedstone A A, Lewis D J, O’Brien P. Chem. Mater., 2016, 28(7): 1965.

doi: 10.1021/acs.chemmater.6b00430     URL    
[6]
Duan X D, Wang C, Pan A L, Yu R Q, Duan X F. Chem. Soc. Rev., 2015, 44(24): 8859.

doi: 10.1039/C5CS00507H     URL    
[7]
Cai Z Y, Liu B L, Zou X L, Cheng H M. Chem. Rev., 2018, 118(13): 6091.

doi: 10.1021/acs.chemrev.7b00536     URL    
[8]
Ji Q Q, Zhang Y, Zhang Y F, Liu Z F. Chem. Soc. Rev., 2015, 44(9): 2587.

doi: 10.1039/C4CS00258J     URL    
[9]
Li H N, Li Y, Aljarb A, Shi Y M, Li L J. Chem. Rev., 2018, 118(13): 6134.

doi: 10.1021/acs.chemrev.7b00212     URL    
[10]
Gong C H, Zhang Y X, Chen W, Chu J W, Lei T Y, Pu J R, Dai L P, Wu C Y, Cheng Y H, Zhai T Y, Li L, Xiong J. Adv. Sci., 2017, 4(12): 1700231.

doi: 10.1002/advs.201700231     URL    
[11]
Li X B, Chen C, Yang Y, Lei Z B, Xu H. Adv. Sci., 2020, 7(23): 2002320.

doi: 10.1002/advs.202002320     URL    
[12]
Zhang Q, Fu L. Chem, 2019, 5(3): 505.

doi: 10.1016/j.chempr.2018.11.004    
[13]
Wu K D, Chen B, Yang S J, Wang G, Kong W, Cai H, Aoki T, Soignard E, Marie X, Yano A, Suslu A, Urbaszek B, Tongay S. Nano Lett., 2016, 16(9): 5888.

doi: 10.1021/acs.nanolett.6b02766     URL    
[14]
Li X B, Wang X, Hong J H, Liu D Y, Feng Q L, Lei Z B, Liu K H, Ding F, Xu H. Adv. Funct. Mater., 2019, 29(49): 1970335.

doi: 10.1002/adfm.201970335     URL    
[15]
Lin Y C, Komsa H P, Yeh C H, Björkman T, Liang Z Y, Ho C H, Huang Y S, Chiu P W, Krasheninnikov A V, Suenaga K. ACS Nano, 2015, 9(11): 11249.

doi: 10.1021/acsnano.5b04851     URL    
[16]
Li X B, Cui F F, Feng Q L, Wang G, Xu X S, Wu J X, Mao N N, Liang X, Zhang Z Y, Zhang J, Xu H. Nanoscale, 2016, 8(45): 18956.

doi: 10.1039/C6NR07233J     URL    
[17]
Keyshar K, Gong Y J, Ye G L, Brunetto G, Zhou W, Cole D P, Hackenberg K, He Y M, Machado L, Kabbani M, Hart A H C, Li B, Galvao D S, George A, Vajtai R, Tiwary C S, Ajayan P M. Adv. Mater., 2015, 27(31): 4640.

doi: 10.1002/adma.201501795     URL    
[18]
Arora A, Noky J, Drüppel M, Jariwala B, Deilmann T, Schneider R, Schmidt R, del Pozo-Zamudio O, Stiehm T, Bhattacharya A, Krüger P, Michaelis de Vasconcellos S, Rohlfing M, Bratschitsch R. Nano Lett., 2017, 17(5): 3202.

doi: 10.1021/acs.nanolett.7b00765     URL    
[19]
Chenet D A, Aslan O B, Huang P Y, Fan C, van der Zande A M, Heinz T F, Hone J C. Nano Lett., 2015, 15(9): 5667.

doi: 10.1021/acs.nanolett.5b00910     URL    
[20]
Sim S, Lee D, Trifonov A V, Kim T, Cha S, Sung J H, Cho S, Shim W, Jo M H, Choi H. Nat. Commun., 2018, 9: 351.

doi: 10.1038/s41467-017-02802-8     URL    
[21]
Li H, Wu J, Yin Z Y, Zhang H. Acc. Chem. Res., 2014, 47(4): 1067.

doi: 10.1021/ar4002312     URL    
[22]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

pmid: 15499015
[23]
Huo C X, Yan Z, Song X F, Zeng H B. Sci. Bull., 2015, 60(23): 1994.

doi: 10.1007/s11434-015-0936-3     URL    
[24]
Shi Y M, Li H N, Li L J. Chem. Soc. Rev., 2015, 44(9): 2744.

doi: 10.1039/C4CS00256C     URL    
[25]
Tong X, Liu K L, Zeng M Q, Fu L. InfoMat, 2019, 1(4): 460.

doi: 10.1002/inf2.12038     URL    
[26]
Sun L Z, Yuan G W, Gao L B, Yang J, Chhowalla M, Gharahcheshmeh M H, Gleason K K, Choi Y S, Hong B H, Liu Z F. Nat. Rev. Methods Primers, 2021, 1: 5.

doi: 10.1038/s43586-020-00005-y     URL    
[27]
Wu M H, Zhang Z B, Xu X Z, Zhang Z H, Duan Y R, Dong J C, Qiao R X, You S F, Wang L, Qi J J, Zou D X, Shang N Z, Yang Y B, Li H, Zhu L, Sun J L, Yu H J, Gao P, Bai X D, Jiang Y, Wang Z J, Ding F, Yu D P, Wang E G, Liu K H. Nature, 2020, 581(7809): 406.

doi: 10.1038/s41586-020-2298-5     URL    
[28]
Ling X, Lee Y H, Lin Y X, Fang W J, Yu L L, Dresselhaus M S, Kong J. Nano Lett., 2014, 14(2): 464.

doi: 10.1021/nl4033704     pmid: 24475747
[29]
Yu Y F, Li C, Liu Y, Su L Q, Zhang Y, Cao L Y. Sci. Rep., 2013, 3: 1866.

doi: 10.1038/srep01866     URL    
[30]
Elías A L, Perea-López N, Castro-Beltrán A, Berkdemir A, Lv R, Feng S, Long A D, Hayashi T, Kim Y A, Endo M. ACS Nano, 2013, 7: 5235.

doi: 10.1021/nn400971k     URL    
[31]
He X X, Liu F C, Hu P, Fu W, Wang X L, Zeng Q S, Zhao W, Liu Z. Small, 2015, 11(40): 5423.

doi: 10.1002/smll.201501488     URL    
[32]
Cui F F, Wang C, Li X B, Wang G, Liu K Q, Yang Z, Feng Q L, Liang X, Zhang Z Y, Liu S Z, Lei Z B, Liu Z H, Xu H, Zhang J. Adv. Mater., 2016, 28(25): 5018.

doi: 10.1002/adma.201670175     URL    
[33]
Guo Z L, Wei A X, Zhao Y, Tao L L, Yang Y B, Zheng Z Q, Luo D X, Liu J, Li J B. Appl. Phys. Lett., 2019, 114(15): 153102.

doi: 10.1063/1.5087456     URL    
[34]
Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C, Wu D, Liu F C, Fu Q D, Zeng Q S, Hsu C H, Yang C L, Lu L, Yu T, Shen Z X, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G T, Liu Z. Nature, 2018, 556(7701): 355.

doi: 10.1038/s41586-018-0008-3     URL    
[35]
Zhou Y, Song E H, Zhou J D, Lin J H, Ma R G, Wang Y W, Qiu W J, Shen R X, Suenaga K, Liu Q, Wang J C, Liu Z, Liu J J. ACS Nano, 2018, 12: 4486.

doi: 10.1021/acsnano.8b00693     pmid: 29697961
[36]
Chen X Y, Lei B, Zhu Y, Zhou J D, Liu Z, Ji W, Zhou W. Nanoscale, 2020, 12(32): 17005.

doi: 10.1039/D0NR03530K     URL    
[37]
Wang S S, Yu Y, Zhang S Q, Zhang S S, Xu H, Zou X L, Zhang J. Matter, 2020, 3(6): 2108.

doi: 10.1016/j.matt.2020.09.015     URL    
[38]
Qin J K, Shao W Z, Li Y, Xu C Y, Ren D D, Song X G, Zhen L. RSC Adv., 2017, 7(39): 24188.

doi: 10.1039/C7RA01748K     URL    
[39]
Hafeez M, Gan L, Li H Q, Ma Y, Zhai T Y. Adv. Funct. Mater., 2016, 26(25): 4551.

doi: 10.1002/adfm.201601019     URL    
[40]
Kim Y, Kang B, Choi Y, Cho J H, Lee C G. 2D Mater., 2017, 4(2): 025057.
[41]
Kang K, Xie S E, Huang L J, Han Y M, Huang P Y, Mak K F, Kim C J, Muller D, Park J. Nature, 2015, 520(7549): 656.

doi: 10.1038/nature14417     URL    
[42]
Dathbun A, Kim Y, Kim S, Yoo Y, Kang M S, Lee C G, Cho J H. Nano Lett., 2017, 17(5): 2999.

doi: 10.1021/acs.nanolett.7b00315     URL    
[43]
Song I, Park C, Choi H C. RSC Adv., 2015, 5(10): 7495.

doi: 10.1039/C4RA11852A     URL    
[44]
Lim J, Jeon D, Lee S, Yu J S, Lee S,. Nanotechnology, 2020, 31(11): 115603.

doi: 10.1088/1361-6528/ab5b39     URL    
[45]
Li X B, Dai X Y, Tang D Q, Wang X, Hong J H, Chen C, Yang Y, Lu J B, Zhu J G, Lei Z B, Suenaga K, Ding F, Xu H. Adv. Funct. Mater., 2021, 31(28): 2102138.

doi: 10.1002/adfm.202102138     URL    
[46]
Lv J, Yang J J, Jiao S L, Huang P, Ma K J, Wang J Q, Xu X X, Liu L. ACS Appl. Mater. Interfaces, 2020, 12(38): 43311.

doi: 10.1021/acsami.0c12729     URL    
[47]
Schneider G F, Calado V E, Zandbergen H, Vandersypen L M K, Dekker C. Nano Lett., 2010, 10(5): 1912.

doi: 10.1021/nl1008037     pmid: 20402493
[48]
Park H J, Ryu G H, Lee Z. Appl. Microsc., 2015, 45(3): 107.

doi: 10.9729/AM.2015.45.3.107     URL    
[49]
Song Y X, Zhang C R, Li B, Ding G Q, Jiang D, Wang H M, Xie X M. Nanoscale Res. Lett., 2014, 9: 367.

doi: 10.1186/1556-276X-9-367     URL    
[50]
Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y, Duan X F. Nat. Rev. Mater., 2016, 1(9): 16042.

doi: 10.1038/natrevmats.2016.42     URL    
[51]
Withers F, del Pozo-Zamudio O, Mishchenko A, Rooney A P, Gholinia A, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Tartakovskii A I, Novoselov K S. Nat. Mater., 2015, 14(3): 301.

doi: 10.1038/nmat4205     pmid: 25643033
[52]
Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H. Science, 2016, 353(6298): 461.
[53]
Henck H, Ben Aziza Z, Pierucci D, Laourine F, Reale F, Palczynski P, Chaste J, Silly M G, Bertran F, Le Fèvre P, Lhuillier E, Wakamura T, Mattevi C, Rault J E, Calandra M, Ouerghi A. Phys. Rev. B, 2018, 97(15): 155421.

doi: 10.1103/PhysRevB.97.155421     URL    
[54]
Susarla S, Hachtel J A, Yang X T, Kutana A, Apte A, Jin Z H, Vajtai R, Idrobo J C, Lou J, Yakobson B I, Tiwary C S, Ajayan P M. Adv. Mater., 2018, 30(45): 1870344.

doi: 10.1002/adma.201870344     URL    
[55]
Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M. Nat. Mater., 2014, 13(12): 1135.

doi: 10.1038/nmat4091     URL    
[56]
Fu Q D, Wang X W, Zhou J D, Xia J, Zeng Q S, Lv D H, Zhu C, Wang X L, Shen Y, Li X M, Hua Y N, Liu F C, Shen Z X, Jin C H, Liu Z. Chem. Mater., 2018, 30(12): 4001.

doi: 10.1021/acs.chemmater.7b05117     URL    
[57]
Kobayashi Y, Yoshida S, Maruyama M, Mogi H, Murase K, Maniwa Y, Takeuchi O, Okada S, Shigekawa H, Miyata Y. ACS Nano, 2019, 13(7): 7527.

doi: 10.1021/acsnano.8b07991     pmid: 31149797
[58]
Bogaert K, Liu S, Chesin J, Titow D, Gradečak S, Garaj S. Nano Lett., 2016, 16(8): 5129.

doi: 10.1021/acs.nanolett.6b02057     pmid: 27438807
[59]
Zhang Y, Yin L, Chu J W, Shifa T A, Xia J, Wang F, Wen Y, Zhan X Y, Wang Z X, He J. Adv. Mater., 2018, 30(40): 1803665.

doi: 10.1002/adma.201803665     URL    
[60]
Zhang T, Jiang B, Xu Z, Mendes R G, Xiao Y, Chen L F, Fang L W, Gemming T, Chen S L, Rümmeli M H, Fu L. Nat. Commun., 2016, 7: 13911.

doi: 10.1038/ncomms13911     pmid: 27996005
[61]
Liu D Y, Hong J H, Li X B, Zhou X, Jin B, Cui Q N, Chen J P, Feng Q L, Xu C X, Zhai T Y, Suenaga K, Xu H. Adv. Funct. Mater., 2020, 30(16): 1910169.

doi: 10.1002/adfm.201910169     URL    
[62]
Liu D Y, Hong J H, Wang X, Li X B, Feng Q L, Tan C W, Zhai T Y, Ding F, Peng H L, Xu H. Adv. Funct. Mater., 2018, 28(47): 1804696.

doi: 10.1002/adfm.201804696     URL    
[63]
Chen B, Wu K D, Suslu A, Yang S J, Cai H, Yano A, Soignard E, Aoki T, March K, Shen Y X, Tongay S. Adv. Mater., 2017, 29(34): 1701201.

doi: 10.1002/adma.201701201     URL    
[64]
Seo J, Lee J, Jeong G, Park H. Small, 2018: 1804133.
[65]
Feng Y Q, Zhou W, Wang Y J, Zhou J, Liu E F, Fu Y J, Ni Z H, Wu X L, Yuan H T, Miao F, Wang B G, Wan X G, Xing D Y. Phys. Rev. B, 2015, 92(5): 054110.

doi: 10.1103/PhysRevB.92.054110     URL    
[66]
Liu F C, Zheng S J, He X X, Chaturvedi A, He J F, Chow W L, Mion T R, Wang X L, Zhou J D, Fu Q D, Fan H J, Tay B K, Song L, He R H, Kloc C, Ajayan P M, Liu Z. Adv. Funct. Mater., 2016, 26(8): 1169.

doi: 10.1002/adfm.201504546     URL    
[67]
Meng X H, Zhou Y J, Chen K, Roberts R H, Wu W Z, Lin J F, Chen R T, Xu X C, Wang Y G. Adv. Opt. Mater., 2018, 6(14): 1800137.

doi: 10.1002/adom.201800137     URL    
[68]
Ho C H, Liao P C, Huang Y S, Yang T R, Tiong K K. J. Appl. Phys., 1997, 81(9): 6380.

doi: 10.1063/1.365357     URL    
[69]
Aslan O B, Chenet D A, van der Zande A M, Hone J C, Heinz T F. ACS Photonics, 2016, 3(1): 96.

doi: 10.1021/acsphotonics.5b00486     URL    
[70]
Liu F, Zhao X, Yan X Q, Xie J F, Hui W W, Xin X F, Liu Z B, Tian J G. J. Appl. Phys., 2019, 125(17): 173105.

doi: 10.1063/1.5093757     URL    
[71]
Wu J X, Mao N N, Xie L M, Xu H, Zhang J. Angew. Chem. Int. Ed., 2015, 54(8): 2366.

doi: 10.1002/anie.201410108     URL    
[72]
Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang Y S, Ho C H, Yan J Y, Ogletree D F, Aloni S, Ji J, Li S S, Li J B, Peeters F M, Wu J Q. Nat. Commun., 2014, 5: 3252.

doi: 10.1038/ncomms4252     URL    
[73]
An C H, Xu Z H, Shen W F, Zhang R J, Sun Z Y, Tang S J, Xiao Y F, Zhang D H, Sun D, Hu X D, Hu C G, Yang L, Liu J. ACS Nano, 2019, 13(3): 3310.

doi: 10.1021/acsnano.8b09161     URL    
[74]
Liu E F, Fu Y J, Wang Y J, Feng Y Q, Liu H M, Wan X G, Zhou W, Wang B G, Shao L B, Ho C H, Huang Y S, Cao Z Y, Wang L G, Li A D, Zeng J W, Song F Q, Wang X R, Shi Y, Yuan H T, Hwang H Y, Cui Y, Miao F, Xing D Y. Nat. Commun., 2015, 6: 6991.

doi: 10.1038/ncomms7991     URL    
[75]
Xiong Y, Chen H W, Zhang D W, Zhou P. Phys. Status Solidi RRL, 2019, 13(6): 1800658.

doi: 10.1002/pssr.201800658     URL    
[1] 邹丹青, 王琮, 肖斐, 魏宇琛, 耿林, 王磊. Janus 粒子在环境检测领域中的应用[J]. 化学进展, 2021, 33(11): 2056-2068.
[2] 薛銮栾, 李会增, 李安, 赵志鹏, 宋延林. 基于各向异性表面的液滴驱动[J]. 化学进展, 2021, 33(1): 78-86.
[3] 曹秀军, 张雷, 朱元鑫, 张鑫, 吕超南, 侯长民. 软铋矿基微纳米材料的设计合成及其在光催化中的应用[J]. 化学进展, 2020, 32(2/3): 262-273.
[4] 沈赵琪, 程敬招, 张小凤, 黄微雅, 温和瑞, 刘诗咏. P3HT/非富勒烯受体异质结有机太阳电池[J]. 化学进展, 2019, 31(9): 1221-1237.
[5] 陈磊, 赵文, 易刚吉, 周建军, 袁爱华. 3d过渡金属单离子磁体[J]. 化学进展, 2019, 31(2/3): 337-350.
[6] 李春雪, 乔宇, 林雪, 车广波. 量子点@金属有机骨架材料的制备及在光催化降解领域的应用[J]. 化学进展, 2018, 30(9): 1308-1316.
[7] 刘迪, 刘骞, 王永刚, 朱永法. Bi2SiO5半导体光催化剂[J]. 化学进展, 2018, 30(6): 703-709.
[8] 周婉蓉, 孙巍*, 杨平辉. Janus粒子的制备及功能化应用[J]. 化学进展, 2018, 30(11): 1601-1614.
[9] 何晓燕*, 刘利琴, 王萌, 张彩芸, 张云雷, 王敏慧. 各向异性水凝胶的制备方法及性质研究[J]. 化学进展, 2017, 29(6): 649-658.
[10] 康建喜, 王世荣, 孙孟娜, 刘红丽, 李祥高. 体异质结型聚合物太阳能电池中的微观形貌调控方法[J]. 化学进展, 2017, 29(4): 400-411.
[11] 朱文杰, 台国安, 王旭峰, 古其林, 伍增辉, 朱孔军. 二维原子晶体材料的制备与应变传感特性研究[J]. 化学进展, 2017, 29(11): 1285-1296.
[12] 翟文中, 何玉凤, 王斌, 熊玉兵, 宋鹏飞, 王荣民. 聚合物Janus微粒材料的制备与应用[J]. 化学进展, 2017, 29(1): 127-136.
[13] 曾甜, 尤运城, 王旭峰, 胡廷松, 台国安. 二维硫化钼基原子晶体材料的化学气相沉积法制备及其器件[J]. 化学进展, 2016, 28(4): 459-470.
[14] 周丽, 邓慧萍, 张为. 可见光响应的银系光催化材料[J]. 化学进展, 2015, 27(4): 349-360.
[15] 宋成杰, 王二静, 董兵海, 王世敏. 非富勒烯类有机小分子受体材料[J]. 化学进展, 2015, 27(12): 1754-1763.