English
新闻公告
More
化学进展 2022, Vol. 34 Issue (1): 207-226 DOI: 10.7536/PC210205 前一篇   后一篇

• 综述 •

纳米技术在水中病毒灭活中的应用:对新型冠状病毒SARS-CoV-2传播阻断的启示

冀豪栋1, 齐娟娟1,2, 郑茂盛2, 党晨原3, 陈龙1, 黄韬博1, 刘文1,*()   

  1. 1 北京大学环境科学与工程学院 国家环境保护河流全物质通量重点实验室 水沙科学教育部重点实验室 北京 100871
    2 华北电力大学环境科学与工程学院 北京 102206
    3 华中科技大学环境与科学工程学院 武汉 430074
  • 收稿日期:2021-02-04 修回日期:2021-04-01 出版日期:2022-01-20 发布日期:2021-07-29
  • 通讯作者: 刘文
  • 基金资助:
    北京大学新型冠状病毒感染的肺炎防控攻关专项; 国家自然科学基金项目(21906001); 国家自然科学基金项目(51721006); 中国博士后科学基金会项目(2020M670049); 国家重点研发计划(2016YFC0402505)

Application of Nanotechnology for Virus Inactivation in Water:Implications for Transmission-Blocking of the Novel Coronavirus SARS-CoV-2

Haodong Ji1, Juanjuan Qi1,2, Maosheng Zheng2, Chenyuan Dang3, Long Chen1, Taobo Huang1, Wen Liu1()   

  1. 1 State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, The MOE Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University,Beijing 100871, China
    2 College of Environmental Science and Engineering, North China Electric Power University,Beijing 102206, China
    3 School of Environmental Science and Engineering, Huazhong University of Science and Technology,Wuhan 430074, China
  • Received:2021-02-04 Revised:2021-04-01 Online:2022-01-20 Published:2021-07-29
  • Contact: Wen Liu
  • Supported by:
    Peking University Novel Coronavirus Prevention and Control Project; National Natural Science Foundation of China(21906001); National Natural Science Foundation of China(51721006); China Postdoctoral Science Foundation(2020M670049); National Key Research and Development Program of China(2016YFC0402505)

新型冠状病毒肺炎(COVID-19)疫情给人类社会发展和生命健康造成了巨大威胁,由于新型冠状病毒(SARS-CoV-2)在水中的稳定性,城市污水成为该病毒最集中的污染源之一,因此如何杀灭主要水媒介中的病毒也成为了科学领域关注的重要问题。新冠病毒在结构上由具有遗传效应的RNA链和蛋白衣壳组成,可受活性氧物种(ROS)攻击解体而被灭活。生化代谢的阻断和结构的破坏也是新冠病毒灭活的有效方法。纳米材料因其表面和界面效应、独特的微观结构及优异的物化性质,在新冠病毒杀灭中有很好的应用前景。本文在探讨新型冠状病毒结构组成以及其在水环境中的存活及传播特征的基础上,全面综述了纳米材料在光催化、非均相催化高级氧化、离子毒性灭活和结构效应等方面于灭活病毒中的应用,深入探究了病毒灭活行为及机理。基于此,结合新冠病毒的结构组成及传播特征,深入探讨了不同纳米技术的新冠病毒灭活中的潜在应用。该综述可为环境纳米技术应用于水中新冠病毒灭活及其在水媒介中的次生传播阻断提供理论依据和实践参考。

The novel coronavirus pneumonia epidemic (COVID-19) brings a serious threat to the development of human society and the health of human beings. Due to the stability of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in urban sewage, which has become one of the virus pollution sources, it has been a focus how to eliminate the existing virus in water. SARS-CoV-2 structurally consists of RNA chains and protein capsids, and thus can be inactivated via reactive oxygen species (ROS) attack. Moreover, block of biochemical metabolism and destruction of virus structure are also effective inactivation methods for SARS-CoV-2 inactivation. Nanomaterials exhibit surface and interface effects, specific microstructure and excellent physicochemical properties, implying their high application potential in SARS-CoV-2 inactivation. In this study, we overall review application of nanotechnologies for SARS-CoV-2 inactivation, including photocatalysis, heterogeneous catalytic oxidation, ion toxicity induced inactivation, and structural effects inactivation method. Furthermore, based on the structural composition, as well as survival and transmission characteristics of SARS-CoV-2 in water environment, the application potential of various nanotechnologies for SARS-CoV-2 inactivation are deeply discussed. This study can provide a theoretical basis and practical reference for the application of nanotechnology for the SARS-CoV-2 inactivation and the secondary transmission interruption in water.

Contents

1 Introduction

2 SARS-CoV-2 and water disinfection techniques

2.1 Structure and composition of SARS-CoV-2

2.2 Survival and transmission characteristics of SARS-CoV-2 in water

2.3 Techniques for SARS-CoV-2 disinfection in water

2.4 Evaluation methods on SARS-CoV-2 inactivation

3 Application of nanotechnology on virus inactivation and its feasibility analysis on SARS-CoV-2 inactivation

3.1 Nanomaterials enhanced advanced oxidation technologies (AOTs) based on radical attack for virus inactivation

3.2 Disinfection technologies based on released ions from nanomaterials

3.3 Disinfection technologies based on structure effect of nanomaterials

4 Conclusion and outlook

()
图1 纳米技术杀灭病毒的三种主要机制
Fig. 1 Three primary mechanisms for inactivating SARS-CoV-2 using nanotechnology
图2 SARS-CoV-2病毒的(a)透射电镜照片[27]、(b)二维结构示意图[23] 、(c)冷冻电镜断层图像[33]及(d)精确三维结构解析示意图[33]
Fig. 2 (a) Transmission electron microscopic image[27], (b) two-dimensional structure[23], (c) cryo-electron tomographic image[33], and (d) three-dimensional reconstructed authentic schematic illustration[33] of SARS-CoV-2.
图3 SARS-CoV-2病毒的S蛋白与人体中ACE2酶结合(a)三维示意图(Kateryna Kon绘制)及(b)精细位点图[8]
Fig. 3 (a) Three-dimensional schematic illustration by Kateryna Kon and (b) detailed binding site of spike protein of SARS-CoV-2 with human ACE2[8]
图4 紫外照射对SARS-CoV-2病毒的灭活效果:(a)灭活动力学、(b)灭活效率、(c)UVA辐照强度和(d)UVC辐照强度[53]
Fig. 4 UV irradiation for SARS-CoV-2 inactivation: (a) Inactivation kinetic, (b) inactivation efficiency, (c) UVA irradiation intensity, and (d) UVC irradiation intensity[53]
表1 不同自由基及氧化剂的氧化电位对比
Table 1 Comparison on oxidation potentials of various radicals and oxidants
图5 紫外照射下纳米TiO2颗粒在对新冠病毒灭活的影响[48]
Fig. 5 Effect of TiO2 under UV irradiation on SARS-CoV-2 inactivation[48]
图6 典型可见光光催化纳米材料(g-C3N4)杀灭病毒的机理(a)和三种灭杀方式(b)[70,82]
Fig. 6 (a) Schematic illustration on inactivation mechanism of virus by typical visible-light-driven photocatalyst (g-C3N4) and (b) three major virus inactivation ways[70,82]
图7 (a)MOFilter纳米晶膜材料的杀毒机制和(b)三层MOFilter面罩[85]
Fig. 7 (a) Schematic illustration on inactivation mechanism by metal-organic framework (MOF)-based filter and (b) trilaminar MOFilter mask[85]
图8 (a)臭氧或者活性氧物种攻击新冠病毒的潜在位点[31]和(b)臭氧分子抑制SARS-CoV-2病毒与人体肺细胞结合的机理示意图[118]
Fig. 8 (a) Schematic illustration on SARS-CoV-2 inactivation mechanism by ozone or ROS[31] and (b) schematic illustration on the inhabitation effect by ozone between SARS-CoV-2 and ACE2[118]
表2 不同臭氧氧化技术对病毒灭杀的对比
Table 2 Comparison on virus inactivation by different ozonation technologies
图9 病毒感染真核细胞和金属纳米粒子抗病毒的机制示意图[128]
Fig. 9 Schematic illustration of virus infecting on eukaryotic cell and antiviral mechanism of metal nanoparticles[128]
图10 利用纳米金颗粒实现裸眼检测SARS-CoV-2病毒RNA的示意图[132]
Fig. 10 Schematic illustration on naked-eye detection of SARS-CoV-2 RNA by designed Au nanoparticles[132]
图11 病毒被氧化石墨烯捕获、吸附和灭活的过程示意图[155]
Fig. 11 Schematic representation of the capture, adsorption, and inactivation of virus by GO[155]
[1]
(a) Johns Hopkins University & Medicine Coronavirus Resource Center, [2022-01-20]https://coronavirus.jhu.edu/.;

URL     pmid: 32294574
(b) Morawska L, Cao J J. Environ. Int. 2020,139: 105730.

doi: S0160-4120(20)31254-X     pmid: 32294574
[2]
van Doremalen N, Bushmaker T, Morris D H, Holbrook M G, Gamble A, Williamson B N, Tamin A, Harcourt J L, Thornburg N J, Gerber S I, Lloyd-Smith J O, de Wit E, Munster V J. N. Engl. J. Med., 2020,382: 1564.

doi: 10.1056/NEJMc2004973     URL    
[3]
Ong S W X, Tan Y K, Chia P Y, Lee T H, Ng O T, Wong M S Y, Marimuthu K. JAMA, 2020,323(16): 1610.

doi: 10.1001/jama.2020.3227     URL    
[4]
National Health Commission of the People’s Republic of China. Novel Coronavirus pneumonia Diagnosis and Treatment Plan. http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989/files/ce3e6945832a438eaae415350a8ce964.pdf, 2020.
(中华人民共和国国家卫生健康委员会, 新型冠状病毒肺炎诊疗方案, http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989/files/ce3e6945832a438eaae415350a8ce964.pdf, 2020.)
[5]
García de Abajo F J, Hernández R J, Kaminer I, Meyerhans A, Rosell-Llompart J, Sanchez-Elsner T. ACS Nano, 2020,14(7): 7704.

doi: 10.1021/acsnano.0c04596     URL    
[6]
Foladori P, Cutrupi F, Segata N, Manara S, Pinto F, Malpei F, Bruni L, La Rosa G. Sci. Total. Environ., 2020,743: 140444.

doi: 10.1016/j.scitotenv.2020.140444     URL    
[7]
Bivins A, Greaves J, Fischer R, Yinda K C, Ahmed W, Kitajima M, Munster V J, Bibby K. Environ. Sci. Technol. Lett., 2020,7(12): 937.

doi: 10.1021/acs.estlett.0c00730     URL    
[8]
Wang Q H, Zhang Y F, Wu L L, Niu S, Song C L, Zhang Z Y, Lu G W, Qiao C P, Hu Y, Yuen K Y, Wang Q S, Zhou H, Yan J H, Qi J X. Cell, 2020,181(4): 894.

doi: 10.1016/j.cell.2020.03.045     URL    
[9]
Yan R H, Zhang Y Y, Li Y N, Xia L, Guo Y Y, Zhou Q. Science, 2020,367(6485): 1444.

doi: 10.1126/science.abb2762     URL    
[10]
Cui J, Li F, Shi Z L. Nat. Rev. Microbiol., 2019,17(3): 181.

doi: 10.1038/s41579-018-0118-9     URL    
[11]
Hu B, Guo H, Zhou P, Shi Z L. Nat. Rev. Microbiol., 2021,19(3): 141.

doi: 10.1038/s41579-020-00459-7     URL    
[12]
National Health Commission of the People’s Republic of China, Standards for drinking water quality, http://www.nhc.gov.cn/cmsresources/zwgkzt/wsbz/new/20070628143525.pdf, 2006.
(中华人民共和国国家卫生健康委员会, 生活饮用水标准, http://www.nhc.gov.cn/cmsresources/zwgkzt/wsbz/new/20070628143525.pdf, 2006.).
[13]
Ministry of Ecology and Environment of the People’s Republic of China, Discharge standard of pollutants for municipal waste, http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/swrwpfbz/200307/W020061027518964575034.pdf.
(中华人民共和国生态环境部, 城镇污水处理厂污染物排放标准, http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/swrwpfbz/200307/W020061027518964575034.pdf.).
[14]
Mazhar M A, Khan N A, Ahmed S, Khan A H, Hussain A, Rahisuddin, Changani F, Yousefi M, Ahmadi S, Vambol V. J. Clean. Prod., 2020,273: 123159.

doi: 10.1016/j.jclepro.2020.123159     URL    
[15]
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M. Nanoscience and Technology. Co-Published with Macmillan Publishers Ltd, UK, 2009. 337.
[16]
Guo M T, Hu H Y. Environment Science & Technology, 2009,32: 77.
( 郭美婷, 胡洪营. 环境科学与技术, 2009,32: 77.)
[17]
Ji H D, Du P H, Zhao D Y, Li S, Sun F B, Duin E C, Liu W. Appl. Catal. B: Environ., 2020,263: 118357.

doi: 10.1016/j.apcatb.2019.118357     URL    
[18]
Ji H D, Gong Y Y, Duan J, Zhao D Y, Liu W. Mar. Pollut. Bull., 2018,135: 427.

doi: 10.1016/j.marpolbul.2018.07.047     URL    
[19]
Dodd M C, Buffle M O, von Gunten U. Environ. Sci. Technol., 2006,40(6): 1969.

doi: 10.1021/es051369x     URL    
[20]
Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava J A, Pasquali M, Scott J A, Vitale F, Unal M A, Mattevi C, Bedognetti D, Merkoçi A, Tasciotti E, Yilmazer A, Gogotsi Y, Stellacci F, Delogu L G. ACS Nano, 2020,14(6): 6383.

doi: 10.1021/acsnano.0c03697     URL    
[21]
Talebian S, Wallace G G, Schroeder A, Stellacci F, Conde J. Nat. Nanotechnol., 2020,15(8): 618.

doi: 10.1038/s41565-020-0751-0     pmid: 32728083
[22]
Krammer F. Nature, 2020,586(7830): 516.

doi: 10.1038/s41586-020-2798-3     URL    
[23]
Kim D, Lee J Y, Yang J S, Kim J W, Kim V N, Chang H. Cell, 2020,181(4): 914.

doi: 10.1016/j.cell.2020.04.011     URL    
[24]
Andersen K G, Rambaut A, Lipkin W I, Holmes E C, Garry R F. Nat. Med., 2020,26(4): 450.

doi: 10.1038/s41591-020-0820-9     URL    
[25]
WHO. Naming the Coronavirus disease (COVID-19) and the virus that causes it, [2021-02-01]https://www.Who.Int/emergencies/diseases/novel-Coronavirus-2019/technical-Guidance/naming-the-Coronavirus-Disease-(covid-2019)-and-the-Virus-That-Causes-It., 2020.
[26]
Lu R J, Zhao X, Li J, Niu P H, Yang B, Wu H L, Wang W L, Song H, Huang B Y, Zhu N, Bi Y H, Ma X J, Zhan F X, Wang L, Hu T, Zhou H, Hu Z H, Zhou W M, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J Y, Xie Z H, Ma J M, Liu W J, Wang D Y, Xu W B, Holmes E C, Gao G F, Wu G Z, Chen W J, Shi W F, Tan W J. Lancet, 2020,395(10224): 565.

doi: 10.1016/S0140-6736(20)30251-8     URL    
[27]
Zhu N, Zhang D Y, Wang W L, Li X W, Yang B, Song J D, Zhao X, Huang B Y, Shi W F, Lu R J, Niu P H, Zhan F X, Ma X J, Wang D Y, Xu W B, Wu G Z, Gao G F, Tan W J. N Engl J. Med., 2020,382(8): 727.

doi: 10.1056/NEJMoa2001017     URL    
[28]
Kerry R G, Malik S, Redda Y T, Sahoo S, Patra J K, Majhi S J N N. Biology & Medicine, 2019,18: 196.
[29]
Yang J, Petitjean S J L, Koehler M, Zhang Q R, Dumitru A C, Chen W Z, Derclaye S, Vincent S P, Soumillion P, Alsteens D. Nat. Commun., 2020,11(1): 1.

doi: 10.1038/s41467-019-13993-7     URL    
[30]
Xu X T, Chen P, Wang J F, Feng J N, Zhou H, Li X, Zhong W, Hao P. Sci. China Life Sci., 2020,63(3): 457.

doi: 10.1007/s11427-020-1637-5     URL    
[31]
Tizaoui C. Ozone: Sci. Eng., 2020,42(5): 378.

doi: 10.1080/01919512.2020.1795614     URL    
[32]
Wrapp D, Wang N S, Corbett K S, Goldsmith J A, Hsieh C L, Abiona O, Graham B S, McLellan J S. Science, 2020,367(6483): 1260.

doi: 10.1126/science.abb2507     URL    
[33]
Yao H P, Song Y T, Chen Y, Wu N P, Xu J L, Sun C J, Zhang J X, Weng T H, Zhang Z Y, Wu Z G, Cheng L F, Shi D R, Lu X Y, Lei J L, Crispin M, Shi Y G, Li L J, Li S. Cell, 2020,183(3): 730.

doi: 10.1016/j.cell.2020.09.018     URL    
[34]
Wang J Y, Zhao X L, Liang W G, Niu L, Wang X, Wang X L. Research of Environment Science, 2020,33: 1596.
( 王珺瑜, 赵晓丽, 梁为纲, 牛琳, 汪霞, 王晓蕾. 环境科学研究, 2020,33: 1596.)
[35]
Ma L L, Mao G N, Liu J, Yu H, Gao G H, Wang Y Y. Water Sci. Technol., 2013,68(8): 1763.

doi: 10.2166/wst.2013.426     URL    
[36]
Xiong Z Q, Liu W, Cao J Z, Liu Y, Zhang H, Jiang Y N, Yang J F, Lai B. Journal of Civil and Environmental Engineering, 2020,6: 134.
( 熊兆锟, 刘文, 曹剑钊, 刘杨, 张恒, 江燕妮, 杨冀峰, 赖波. 土木与环境工程学报, 2020,6: 134.)
[37]
WHO. Guidelines for Drinking-Water Quality, https://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf;jsessionid=A261F078087D5EF82D5E9C47FBDC452A?sequence=1, 2011, Fourth Edition.
[38]
Xie Y F, Ma J. Water and Wastewater Engineering, 2020,56(3):1.
( 解跃峰, 马军. 给水排水, 2020,56(3):1.)
[39]
Li C Y, Ji F, Wang L, Wang L P, Hao J G, Dai M J, Liu Y, Pan X C, Fu J J, Li L, Yang G D, Yang J Y, Yan X B, Gu B. Emerg. Infect. Dis., 2020,26(7): 1626.

doi: 10.3201/eid2607.200718     URL    
[40]
Chen Y F, Chen L J, Deng Q L, Zhang G Q, Wu K S, Ni L, Yang Y B, Liu B, Wang W, Wei C J, Yang J, Ye G M, Cheng Z S. J. Med. Virol., 2020,92(7): 833.

doi: 10.1002/jmv.v92.7     URL    
[41]
Matson M J, Yinda C K, Seifert S N, Bushmaker T, Fischer R J, van Doremalen N, Lloyd-Smith J O, Munster V J. Emerg. Infect. Dis., 2020,26(9):2276.

doi: 10.3201/eid2609.202267     URL    
[42]
Huang Y Y, Zhang S H, Zhou J, Zhu W T, Huang Q N, Yang J, Xu J G. Disease Surveillance, 2020, 1.
( 黄虞远, 张思慧, 周娟, 朱文涛, 黄倩妮, 杨晶, 徐建国. 疾病监测, 2020, 1.).
[43]
(a) McKinney K R, Yu Yang G, Lewis T G. J. Environ. Health, 2006,68: 26;

pmid: 16696450
(b) Guan W J, Ni Z Y, Hu Y, Liang W H, Ou C Q, He J X, Liu L, Shan H, Lei C L, Hui D S, Du B. N. Engl. J. Med., 2020,382: 1708.

doi: 10.1056/NEJMoa2002032     URL     pmid: 16696450
[44]
Zhan J, Liu Q, Zhang Y Z, Hao F, Liang Y, Qu G B, Hu L G, Zhou Q F, Jiang G. Environmental Chemistry, 2020, 283.
( 詹菁, 刘倩, 张雨竹, 郝放, 梁勇, 曲广波, 胡立刚, 周群芳, 江桂斌. 环境化学, 2020, 283.).
[45]
Casanova L, Rutala W A, Weber D J, Sobsey M D. Water Res., 2009,43(7): 1893.

doi: 10.1016/j.watres.2009.02.002     pmid: 19246070
[46]
Lee J E, Ko G. Water Res., 2013,47(15): 5607.

doi: 10.1016/j.watres.2013.06.035     URL    
[47]
Gu N T, Gong T Y, Qiao Y X, Lyu W Z. China Water Wastewater, 2018,34(9): 96.
( 顾霓涛, 龚天翼, 乔宇祥, 吕文洲. 中国给水排水, 2018,34(9): 96.)
[48]
Khaiboullina S, Uppal T, Dhabarde N, Subramanian V R, Verma S C. Viruses, 2020,13(1): 19.

doi: 10.3390/v13010019     URL    
[49]
Huang Y, Liu G D, Zhang X J. Progress in Chemistry, 2020,32: 1241.

doi: 10.7536/PC200522    
( 黄炎, 刘国东, 张学记. 化学进展, 2020,32: 1241.)
[50]
Sportelli M C, Izzi M, Kukushkina E A, Hossain S I, Picca R A, Ditaranto N, Cioffi N. Nanomaterials, 2020,10(4): 802.

doi: 10.3390/nano10040802     URL    
[51]
Reshi M L, Su Y C, Hong J R. Int. J. Cell Biol., 2014,2014: 467452.
[52]
Yu H T, Chen S, Quan X, Zhang Z H. Progress in Chemistry, 2017,29: 1030.
( 于洪涛, 陈硕, 全燮, 张振华. 化学进展, 2017,29: 1030.)
[53]
Heilingloh C S, Aufderhorst U W, Schipper L, Dittmer U, Witzke O, Yang D L, Zheng X, Sutter K, Trilling M, Alt M, Steinmann E, Krawczyk A. Am. J. Infect. Control., 2020,48(10): 1273.

doi: 10.1016/j.ajic.2020.07.031     URL    
[54]
Simmons S E, Carrion R, Alfson K J, Staples H M, Jinadatha C, Jarvis W R, Sampathkumar P, Chemaly R F, Khawaja F, Povroznik M, Jackson S, Kaye K S, Rodriguez R M, Stibich M A. Infect. Control Hosp. Epidemiol., 2021,42(2): 127.

doi: 10.1017/ice.2020.399     URL    
[55]
Wang H B, Cui Y Q, Li Y Y, Yu X D. Journal of Shandong Jianzhu University, 2012, 105.
( 王洪波, 崔娅琴, 李莹莹, 于小迪. 山东建筑大学学报, 2012, 105.).
[56]
Liu X N, Ji H D, Li S, Liu W. Chemosphere, 2019,233: 198.

doi: 10.1016/j.chemosphere.2019.05.229     URL    
[57]
Armstrong D A, Huie R E, Koppenol W H, Lymar S V, MerÉnyi G, Neta P, Ruscic B, Stanbury D M, Steenken S, Wardman P. Pure Appl. Chem., 2015,87(11/12): 1139.

doi: 10.1515/pac-2014-0502     URL    
[58]
Brown J M, Wilson W R. Nat. Rev. Cancer, 2004,4(6): 437.

doi: 10.1038/nrc1367     URL    
[59]
Giorgio M, Trinei M, Migliaccio E, Pelicci P G. Nat. Rev. Mol. Cell Biol., 2007,8(9): 722.

doi: 10.1038/nrm2240     URL    
[60]
Krumova K, Cosa G.. Comprehensive Series in Photochemical & Photobiological Sciences. Cambridge: Royal Society of Chemistry, 2016,1:1.
[61]
Nosaka Y, Nosaka A Y. Chem. Rev., 2017,117(17): 11302.

doi: 10.1021/acs.chemrev.7b00161     URL    
[62]
Ghanbari F, Moradi M. Chem. Eng. J., 2017,310: 41.

doi: 10.1016/j.cej.2016.10.064     URL    
[63]
Chen L, Ji H D, Qi J J, Huang T B, Wang C C, Liu W. Chem. Eng. J., 2021,406: 126877.

doi: 10.1016/j.cej.2020.126877     URL    
[64]
Neta P, Huie R E, Ross A B. J. Phys. Chem. Ref. Data, 1988,17(3): 1027.

doi: 10.1063/1.555808     URL    
[65]
Dang C Y, Sun F B, Jiang H, Huang T B, Liu W, Chen X M, Ji H D. J. Hazard. Mater., 2020,400: 123225.

doi: 10.1016/j.jhazmat.2020.123225     URL    
[66]
Foster H A, Ditta I B, Varghese S, Steele A. Appl. Microbiol. Biotechnol., 2011,90(6): 1847.

doi: 10.1007/s00253-011-3213-7     URL    
[67]
Vatansever F, de Melo W C M A, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto N A, Yin R, Tegos G P, Hamblin M R. FEMS Microbiol. Rev., 2013,37(6): 955.

doi: 10.1111/1574-6976.12026     pmid: 23802986
[68]
Habibi-Yangjeh A, Asadzadeh-Khaneghah S, Feizpoor S, Rouhi A. J. Colloid Interface Sci., 2020,580: 503.

doi: 10.1016/j.jcis.2020.07.047     URL    
[69]
Li R, Cui L, Chen M J, Huang Y. Aerosol Sci. Eng., 2021,5(1): 1.

doi: 10.1007/s41810-020-00080-4     URL    
[70]
Zhang C, Li Y, Shuai D M, Shen Y, Wang D W. Chem. Eng. J., 2019,355: 399.

doi: 10.1016/j.cej.2018.08.158    
[71]
Southwest Hospital of the Third Military Medical University, Military Medical News, 2003,24: 653.
(第三军医大学西南医院, 军队医学要闻, 2003,24: 653.)
[72]
Planas O, Macia N, Agut M, Nonell S, Heyne B. J. Am. Chem. Soc., 2016,138(8): 2762.

doi: 10.1021/jacs.5b12704     pmid: 26867005
[73]
Huang Z F, Song J J, Pan L, Zhang X W, Wang L, Zou J J. Adv. Mater., 2015,27(36): 5309.

doi: 10.1002/adma.201501217     URL    
[74]
Zhang Z, Wang L, Liu W, Yan Z, Zhu Y, Zhou S, Guan S, Nat. Sci. Rev., 2021,8(5): 155.
[75]
Li J, Sui M, Sheng L, Yang J, Xu M, Technol. Water Treat., 2015,41: 9.
[76]
Thomas N, Dionysiou D D, Pillai S C. J. Hazard. Mater., 2021,404: 124082.

doi: 10.1016/j.jhazmat.2020.124082     URL    
[77]
Matsunaga T, Tomoda R, Nakajima T, Wake H. FEMS Microbiol. Lett., 1985,29(1/2): 211.

doi: 10.1111/fml.1985.29.issue-1-2     URL    
[78]
Yu X, Wang H, Qi L, Cui Y. Environ. Sci. Manag., 2013.
[79]
Lee J, Zoh K, Ko G. Appl. Environ. Microbiol., 2008,74(7): 2111.

doi: 10.1128/AEM.02442-07     URL    
[80]
Kashige N, Kakita Y, Nakashima Y, Miake F, Watanabe K. Curr. Microbiol., 2001,42(3): 184.

pmid: 11270652
[81]
Liga M V, Bryant E L, Colvin V L, Li Q L. Water Res., 2011,45(2): 535.

doi: 10.1016/j.watres.2010.09.012     URL    
[82]
Li Y, Zhang C, Shuai D M, Naraginti S, Wang D W, Zhang W L. Water Res., 2016,106: 249.

doi: 10.1016/j.watres.2016.10.009     URL    
[83]
Uema M, Yonemitsu K, Momose Y, Ishii Y, Tateda K, Inoue T, Asakura H. bioRxiv, 2020, DOI: 10.1101/2020.11.01.364364.

doi: 10.1101/2020.11.01.364364    
[84]
Giannakis S, Liu S T, Carratalà A, Rtimi S, Talebi Amiri M, Bensimon M, Pulgarin C. J. Hazard. Mater., 2017,339: 223.

doi: S0304-3894(17)30458-2     pmid: 28662403
[85]
Li P, Li J Z, Feng X, Li J, Hao Y C, Zhang J W, Wang H, Yin A X, Zhou J W, Ma X J, Wang B. Nat. Commun., 2019,10(1): 2177.

doi: 10.1038/s41467-019-10218-9     URL    
[86]
Ornstein J, Ozdemir R O K, Boehme A, Nouar F, Serre C, Ackerman D N, Herrera V L, Santarpia J L. medRxiv, 2020, DOI: 2020.2010.2001.20204214.

doi: 2020.2010.2001.20204214    
[87]
Ma M F, Chen L, Zhao J Z, Liu W, Ji H D. Chin. Chem. Lett., 2019,30(12): 2191.

doi: 10.1016/j.cclet.2019.09.031     URL    
[88]
Ghanbari F, Moradi M, Gohari F. J. Water Process. Eng., 2016,9: 22.

doi: 10.1016/j.jwpe.2015.11.011     URL    
[89]
Devi P, Das U, Dalai A K. Sci. Total. Environ., 2016,571: 643.

doi: 10.1016/j.scitotenv.2016.07.032     URL    
[90]
Xiao R Y, Liu K, Bai L, Minakata D, Seo Y, Kaya Gökta 塂 R, Dionysiou D D, Tang C J, Wei Z S, Spinney R,. Chem. Eng. J., 2019,371: 222.

doi: 10.1016/j.cej.2019.03.296     URL    
[91]
Dewil R, Mantzavinos D, Poulios I, Rodrigo M A. J. Environ. Manag., 2017,195: 93.

doi: 10.1016/j.jenvman.2017.04.010     URL    
[92]
Boczkaj G, Fernandes A. Chem. Eng. J., 2017,320: 608.

doi: 10.1016/j.cej.2017.03.084     URL    
[93]
Xiao R Y, Luo Z H, Wei Z S, Luo S, Spinney R, Yang W C, Dionysiou D D. Curr. Opin. Chem. Eng., 2018,19: 51.

doi: 10.1016/j.coche.2017.12.005     URL    
[94]
Oh W D, Dong Z L, Lim T T. Appl. Catal. B: Environ., 2016,194: 169.

doi: 10.1016/j.apcatb.2016.04.003     URL    
[95]
Qi J, Liu J, Sun F, Huang T, Duan J, Liu W. Chin. Chem. Lett., 2021,32(5): 1814.

doi: 10.1016/j.cclet.2020.11.026     URL    
[96]
Shi P H, Dai X F, Zheng H, Li D X, Yao W F, Hu C Y. Chem. Eng. J., 2014,240: 264.

doi: 10.1016/j.cej.2013.11.089     URL    
[97]
Yang Q J, Choi H, Dionysiou D D. Appl. Catal. B: Environ., 2007,74(1/2): 170.

doi: 10.1016/j.apcatb.2007.02.001     URL    
[98]
Tan X L, Fang M, Tan L Q, Liu H N, Ye X S, Hayat T, Wang X K. Environ. Sci.: Nano, 2018,5(5): 1140.

doi: 10.1021/es60058a007     URL    
[99]
Wang J L, Wang S Z. Chem. Eng. J., 2018,334: 1502.

doi: 10.1016/j.cej.2017.11.059     URL    
[100]
Zhao Q X, Mao Q M, Zhou Y Y, Wei J H, Liu X C, Yang J Y, Luo L, Zhang J C, Chen H, Chen H B, Tang L. Chemosphere, 2017,189: 224.

doi: 10.1016/j.chemosphere.2017.09.042     URL    
[101]
Marjanovic M, Giannakis S, Grandjean D, de Alencastro L F, Pulgarin C. Water Res., 2018,140: 220.

doi: S0043-1354(18)30348-8     pmid: 29715646
[102]
Kim H E, Lee H J, Kim M S, Choi J Y, Lee C, Membr. Water Treat., 2019,10: 231.
[103]
Sun P Z, Tyree C, Huang C H. Environ. Sci. Technol., 2016,50(8): 4448.

doi: 10.1021/acs.est.5b06097     URL    
[104]
Joonaki E, Hassanpouryouzband A, Heldt C L, Areo O. Chem, 2020,6(9): 2135.

doi: 10.1016/j.chempr.2020.08.001     pmid: 32838053
[105]
Rattanakul S, Oguma K. Environ. Sci. Technol., 2017,51(1): 455.

doi: 10.1021/acs.est.6b03394     pmid: 27997138
[106]
Lai H T T, Nguyen L H, Kranjc A, Nguyen T T, Nguyen-Manh D. bioRxiv, 2020, DOI: 2020.2004.2021.053009.

doi: 2020.2004.2021.053009    
[107]
Wordofa D N, Walker S L, Liu H Z. Environ. Sci. Technol. Lett., 2017,4(4): 154.

doi: 10.1021/acs.estlett.7b00035     URL    
[108]
Zhang C, Li Y, Wang C, Zheng X Y. Sci. Total. Environ., 2021,755: 142588.

doi: 10.1016/j.scitotenv.2020.142588     URL    
[109]
von Gunten U. Water Res., 2003,37(7): 1443.

pmid: 12600374
[110]
von Gunten U. Water Res., 2003,37(7): 1469.

pmid: 12600375
[111]
Ding W Q, Jin W B, Cao S, Zhou X, Wang C P, Jiang Q J, Huang H, Tu R J, Han S F, Wang Q L. Water Res., 2019,160: 339.

doi: 10.1016/j.watres.2019.05.014     URL    
[112]
Alimohammadi M, Naderi M. Ozone: Sci. Eng., 2021,43(1): 21.

doi: 10.1080/01919512.2020.1822149     URL    
[113]
Hong B, Wang P H, Ji Y G, Xiong X Y, Wang X Y, Zhang L B. Periodical of Ocean University of China, 2003, 861.
( 洪波, 王品虹, 纪义国, 熊祥云, 汪笑宇, 张立斌. 中国海洋大学学报, 2003, 861.).
[114]
Tang Y P, Fan W, Shen L L. Chinese Journal of Disinfection, 2020,37: 420.
( 唐燕萍, 范伟, 沈丽利. 中国消毒学杂志, 2020,37: 420.)
[115]
National Health Commission of the People’s Republic of China, Regulation for Cleaning and Disinfection Management of Environmental Surface in Healthcare.
(中华人民共和国国家卫生健康委员会, 医疗机构环境表面清洁与消毒管理规范, [2021-02-01]http://www.nhc.gov.cn/ewebeditor/uploadfile/2017/01/20170119150706183.pdf, 2016.).
[116]
Clavo B, CÓrdoba-Lanús E, Rodríguez-EsparragÓn F, Cazorla-Rivero S E, García-PÉrez O, Piñero J E, Villar J, Blanco A, Torres-AscensiÓn C, Martín-Barrasa J L, González-Martin J M, Serrano-Aguilar P, Lorenzo-Morales J. Antioxidants, 2020,9(12): 1222.

doi: 10.3390/antiox9121222     URL    
[117]
Criscuolo E, Diotti R A, Ferrarese R, Alippi C, Viscardi G, Signorelli C, Mancini N, Clementi M, Clementi N. Emerg. Microbes Infect., 2021,10(1): 206.

doi: 10.1080/22221751.2021.1872354     URL    
[118]
Fernández-Cuadros M E, Albaladejo-Florín M J, Peña-Lora D, Álava-Rabasa S, PÉrez-Moro O S. SN Compr. Clin. Med., 2020,2(8): 1094.

doi: 10.1007/s42399-020-00328-7     URL    
[119]
Rekhate C V, Srivastava J K. Chem. Eng. J. Adv., 2020,3: 100031.

doi: 10.1016/j.ceja.2020.100031     URL    
[120]
Mecha A C, Onyango M S, Ochieng A, Fourie C J S, Momba M N B. J. Catal., 2016,341: 116.

doi: 10.1016/j.jcat.2016.06.015     URL    
[121]
Mecha A C, Onyango M S, Ochieng A, Momba M N B. Sci. Total. Environ., 2017,601/602: 626.

doi: 10.1016/j.scitotenv.2017.05.204     URL    
[122]
Moreira N F F, Sousa J M, Macedo G, Ribeiro A R, Barreiros L, Pedrosa M, Faria J L, Pereira M F R, Castro-Silva S, Segundo M A, Manaia C M, Nunes O C, Silva A M T. Water Res., 2016,94: 10.

doi: S0043-1354(16)30063-X     pmid: 26921709
[123]
Gomes J, Frasson D, Quinta-Ferreira R, Matos A, Martins R. Water, 2019,11(1): 127.

doi: 10.3390/w11010127     URL    
[124]
Sadu R B, Chen D H, Kucknoor A S, Guo Z H, Gomes A J. BioNanoScience, 2014,4(2): 136.

doi: 10.1007/s12668-014-0125-x     URL    
[125]
Lu L, Sun R, Chen R, Hui C K, Ho C M, Luk J M, Lau G. Antivir Ther., 2008,13: 253.
[126]
Elechiguerra J L, Burt J L, Morones J R, Camacho-Bragado A, Gao X X, Lara H H, Yacaman M J. J. Nanobiotechnology, 2005,3(1): 6.

doi: 10.1186/1477-3155-3-6     URL    
[127]
Lara H H, Ayala-Nuñez N V, Ixtepan-Turrent L, Rodriguez-Padilla C. J. Nanobiotechnology, 2010,8(1): 1.

doi: 10.1186/1477-3155-8-1     URL    
[128]
Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Molecules, 2011,16(10): 8894.

doi: 10.3390/molecules16108894     URL    
[129]
Joe Y H, Woo K, Hwang J. J. Hazard. Mater., 2014,280: 356.

doi: 10.1016/j.jhazmat.2014.08.013     URL    
[130]
Han J, Chen L, Duan S M, Yang Q X, Yang M, Gao C, Zhang B Y, He H, Dong X P. Biomed. Environ. Sci., 2005,18: 176.
[131]
Rafiei S, Rezatofighi S E, Ardakani M R, Rastegarzadeh S. IEEE Trans. Nanobioscience, 2016,15(1): 34.

doi: 10.1109/TNB.2015.2508718     URL    
[132]
Moitra P, Alafeef M, Dighe K, Frieman M B, Pan D. ACS Nano, 2020,14(6): 7617.

doi: 10.1021/acsnano.0c03822     URL    
[133]
Iyigundogdu Z U, Demir O, Asutay A B, Sahin F. Appl. Biochem. Biotechnol., 2017,181(3): 1155.

doi: 10.1007/s12010-016-2275-5     pmid: 27734286
[134]
Ungur G, Hr?za J. RSC Adv., 2017,7(78): 49177.

doi: 10.1039/C7RA06317B     URL    
[135]
Sportelli M C, Longano D, Bonerba E, Tantillo G, Torsi L, Sabbatini L, Cioffi N, Ditaranto N. Molecules, 2019,25(1): 49.

doi: 10.3390/molecules25010049     URL    
[136]
Copptech, Successful tests against SARS-CoV-2, https://extenda.pl/wp-content/uploads/2020/10/COPPTECH_SARS-CoV-2-tests-Communication-23_10_2020.pdf, 2020.
[137]
Hemeg H. Int. J. Nanomed., 2017,12: 8211.

doi: 10.2147/IJN     URL    
[138]
Wu F, You Y Q, Zhang X Y, Zhang H Y, Chen W X, Yang Y, Werner D, Tao S, Wang X L. Environ. Sci. Technol., 2019,53(10): 5707.

doi: 10.1021/acs.est.8b06909     URL    
[139]
Perreault F, de Faria A F, Nejati S, Elimelech M. ACS Nano, 2015,9(7): 7226.

doi: 10.1021/acsnano.5b02067     pmid: 26091689
[140]
Kang S, Pinault M, Pfefferle L D, Elimelech M. Langmuir, 2007,23(17): 8670.

doi: 10.1021/la701067r     URL    
[141]
Jastrzębska A M, Vasilchenko A S. ACS Sustainable Chem. Eng., 2021,9(2): 601.

doi: 10.1021/acssuschemeng.0c06565     URL    
[142]
Kang S, Herzberg M, Rodrigues D F, Elimelech M. Langmuir, 2008,24(13): 6409.

doi: 10.1021/la800951v     URL    
[143]
Liu W, Wang T, Borthwick A G L, Wang Y Q, Yin X C, Li X Z, Ni J R. Sci. Total. Environ., 2013, 456-457: 171.
[144]
Chen Q K, Chen L, Qi J J, Tong Y Q, Lv Y, Xu C K, Ni J R, Liu W. Chin. Chem. Lett., 2019,30(6): 1214.

doi: 10.1016/j.cclet.2019.03.002     URL    
[145]
Ji H D, Wang T, Huang T B, Lai B, Liu W. J. Clean. Prod., 2021,278: 123924.

doi: 10.1016/j.jclepro.2020.123924     URL    
[146]
Mao H Y, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran A A, Mahmoudi M. Chem. Rev., 2013,113(5): 3407.

doi: 10.1021/cr300335p     URL    
[147]
Liu S B, Zeng T H, Hofmann M, Burcombe E, Wei J, Jiang R R, Kong J, Chen Y. ACS Nano, 2011,5(9): 6971.

doi: 10.1021/nn202451x     URL    
[148]
Zou X F, Zhang L, Wang Z J, Luo Y. J. Am. Chem. Soc., 2016,138(7): 2064.

doi: 10.1021/jacs.5b11411     URL    
[149]
Chen J N, Peng H, Wang X P, Shao F, Yuan Z D, Han H Y. Nanoscale, 2014,6(3): 1879.

doi: 10.1039/C3NR04941H     URL    
[150]
Chen J N, Wang X P, Han H Y. J. Nanoparticle Res., 2013,15(5): 1658.

doi: 10.1007/s11051-013-1658-6     URL    
[151]
Ye S Y, Shao K, Li Z H, Guo N, Zuo Y P, Li Q, Lu Z C, Chen L, He Q G, Han H Y. ACS Appl. Mater. Interfaces, 2015,7(38): 21571.

doi: 10.1021/acsami.5b06876     URL    
[152]
Liu S B, Hu M, Zeng T H, Wu R, Jiang R R, Wei J, Wang L, Kong J, Chen Y. Langmuir, 2012,28(33): 12364.

doi: 10.1021/la3023908     URL    
[153]
Wang S Y, Yu D S, Dai L M, Chang D W, Baek J B. ACS Nano, 2011,5(8): 6202.

doi: 10.1021/nn200879h     URL    
[154]
Mangadlao J D, Santos C M, Felipe M J L, de Leon A C C, Rodrigues D F, Advincula R C. Chem. Commun., 2015,51(14): 2886.

doi: 10.1039/C4CC07836E     URL    
[155]
Song Z Y, Wang X Y, Zhu G X, Nian Q G, Zhou H Y, Yang D, Qin C F, Tang R K. Small, 2015,11(9/10): 1171.

doi: 10.1002/smll.v11.9-10     URL    
[156]
Kim S N, Kuang Z F, Slocik J M, Jones S E, Cui Y, Farmer B L, McAlpine M C, Naik R R. J. Am. Chem. Soc., 2011,133(37): 14480.

doi: 10.1021/ja2042832     URL    
[157]
Zhang M, Yin B C, Wang X F, Ye B C. Chem. Commun., 2011,47(8): 2399.

doi: 10.1039/C0CC04887A     URL    
[158]
Zhang M, Mao X B, Wang C X, Zeng W F, Zhang C L, Li Z J, Fang Y, Yang Y L, Liang W, Wang C. Biomaterials, 2013,34(4): 1383.

doi: 10.1016/j.biomaterials.2012.10.067     pmid: 23153418
[159]
Palmieri V, Papi M. Nano Today, 2020,33: 100883.

doi: 10.1016/j.nantod.2020.100883     pmid: 32382315
[1] 刘文杰, 刘凯会, 张彦伟, 王良, 张梦裔, 李静. 糖基化在新型冠状病毒侵染中的机制及药物研发中的应用[J]. 化学进展, 2021, 33(4): 524-532.
[2] 黄炎, 刘国东, 张学记. 新型冠状病毒(COVID-19)的检测和诊断[J]. 化学进展, 2020, 32(9): 1241-1251.
[3] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[4] 于洪涛, 陈硕, 全燮*, 张振华. 光催化水处理消毒的原理、材料和反应器[J]. 化学进展, 2017, 29(9): 1030-1041.
[5] 石伟群, 赵宇亮, 柴之芳. 纳米材料与纳米技术在先进核能系统中的应用前瞻[J]. 化学进展, 2011, 23(7): 1478-1484.
[6] 黄仁亮, 齐崴, 姜楠, 苏荣欣, 何志敏. 肽基纳米材料及其应用[J]. 化学进展, 2010, 22(12): 2328-2337.
[7] 张金超 刘丹丹 周国强 申世刚. 纳米材料在组织工程中的应用*[J]. 化学进展, 2010, 22(11): 2232-2237.
[8] 李伟 王锐 刘守新. 纳米微晶纤维素制备*[J]. 化学进展, 2010, 22(10): 2060-2070.
[9] 蔡苗 王强斌. 结构DNA纳米技术[J]. 化学进展, 2010, 22(05): 975-982.
[10] 吕维华,王荣民,何玉凤,张慧芳. 智能涂料制备方法探索与应用*[J]. 化学进展, 2008, 20(0203): 351-361.
[11] 蒋晓华,刘伟强,陈建军,林祥钦. DNA纳米技术的研究及应用*[J]. 化学进展, 2007, 19(04): 608-613.
[12] 陈振玲,陈令新,刘建娣,罗国安. 纳米药物分析*[J]. 化学进展, 2006, 18(0708): 1014-1018.
[13] 孙继红,张晔,范文浩,吴东,孙予罕. Sol-Gel技术与纳米材料的化学剪裁*[J]. 化学进展, 1999, 11(01): 80-.