English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 801-814 DOI: 10.7536/PC210130 前一篇   后一篇

• 综述 •

大气气溶胶吸湿性及其对环境的影响

钟佳利1,3, 王炜罡1,2,*(), 彭超4, 马楠3,*(), 吴志军5, 葛茂发1,2   

  1. 1 中国科学院化学研究所 中国科学院分子科学科教融合卓越中心 分子动态与稳态结构国家重点实验室 北京分子科学国家研究中心 北京 100190
    2 中国科学院大学 北京 100049
    3 暨南大学环境与气候研究院 广州 511443
    4 中国科学院 广州地球化学研究所 有机地球化学国家重点实验室 广州 510640
    5 北京大学环境科学与工程学院 环境模拟与污染控制国家重点联合实验室 北京 100871
  • 收稿日期:2021-02-01 修回日期:2021-04-14 出版日期:2022-04-24 发布日期:2021-07-29
  • 通讯作者: 王炜罡, 马楠
  • 基金资助:
    国家重点研发计划项目(2017YFC0209500); 国家自然科学基金项目(91844301)

Atmospheric Aerosol Hygroscopicity and Their Influence on Environment

Jiali Zhong1,3, Weigang Wang1,2(), Chao Peng4, Nan Ma3(), Zhijun Wu5, Maofa Ge1,2   

  1. 1 State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    2 University of Chinese Academy of Sciences,Beijing 100049, China
    3 Institute for Environmental and Climate Research, Jinan University,Guangzhou 511443, China
    4 State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,Guangzhou 510640, China
    5 State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University,Beijing 100871, China
  • Received:2021-02-01 Revised:2021-04-14 Online:2022-04-24 Published:2021-07-29
  • Contact: Weigang Wang, Nan Ma
  • Supported by:
    National Key Research and Development Program of China(2017YFC0209500); National Natural Science Foundation of China(91844301)

吸湿性是气溶胶重要的物理化学特性,不仅会影响气溶胶的生命周期和大气行为,还会对大气环境、气候和人体健康产生重要影响。本文简要介绍了气溶胶吸湿参数和热力学模型,对粒径、化学组分以及多组分共存等因素对气溶胶吸湿性的影响进行分析,进一步总结了城市、农村森林和海洋极地等不同区域气溶胶吸湿观测结果。吸湿增长因子g(RH)、散射吸湿增长因子f(RH)和吸湿性参数κ等常用吸湿参数可以衡量气溶胶的吸湿能力;Zdanovskii-Stokes-Robinson(ZSR)混合定律和各种热力学模型能预测不同化学成分气溶胶的吸湿能力,是研究多组分混合气溶胶和气相平衡的重要工具。粒径、化学组分和混合状态影响气溶胶的吸湿性,如气溶胶g(RH)、潮解点或风化点的改变。由于排放源和环境条件的不同,城市、农村、森林、海洋、极地地区气溶胶粒径分布、化学组分和混合状态具有差异,气溶胶吸湿性不同。气溶胶吸湿性直接影响气溶胶含水量和相态,改变气溶胶的大气化学过程、老化过程和大气寿命,还影响环境能见度、辐射效应和在人体内的沉积位置和毒性。通过总结吸湿参数、理论模型、实验室研究、外场观测和环境影响等多方面的最新研究成果,以期为未来的吸湿研究提供参考和借鉴。

Hygroscopicity is one of the aerosol’s most important physicochemical properties, which affects the lifetime and atmospheric behavior of aerosols. It plays a vital role in the environment, climate change, and human health. The hygroscopicity parameters and thermodynamic models are introduced. The effects of aerosol diameter, chemical composition, and multi-component aerosol on hygroscopicity are analyzed in the following section. The relevant observations in the urban, rural area, forest, polar region, and ocean are summarized. Hygroscopicity growth factor (g(RH)), scattering enhancement factors (f(RH)) and hygroscopicity parameter κ are common hygroscopicity parameters which can represent aerosol hygroscopicity. The Zdanovski-Stokes-Robinson (ZSR) mixing rule and many thermodynamic models can predict the aerosol hygroscopicity with different chemical compositions, which are some important tools to study the multi-component aerosol and phase equilibrium. Aerosol diameter, chemical composition and mixed state affect hygroscopicity, for example g(RH), and changes in deliquescence relative humidity or efflorescence relative humidity. Because of different emission sources and environmental conditions, the aerosol particle size distribution, chemical composition and mixed state are different in the urban area, rural area, forest, polar region and ocean, and then aerosol hygroscopicity are different. Hygroscopicity affects aerosol water content and phase state directly, and atmospheric chemical processes, aging process and lifetime of aerosol will be changed. Environmental visibility, radiation effects, and aerosol deposition sites and toxicity in the human body also are influenced by aerosol hygroscopicity. Overall, a comprehensive review of hygroscopicity parameters, theoretical models, laboratory studies, field experiments, and environmental impacts provides a reference for future research.

Contents

1 Introduction

2 Hygroscopicity parameters and models

2.1 Hygroscopicity parameters

2.2 Aerosol hygroscopic models

3 Influence factors of aerosol hygroscopicity

3.1 The influence of particle size

3.2 The influence of chemical composition

3.3 The influence of multi-component mixture

4 Aerosol hygroscopicity in field studies

4.1 Observation in urban area

4.2 Observation in rural and forest areas

4.3 Observation in oceans and polar regions

4.4 Vertically Distributed Aerosol hygroscopicity

5 Effects of aerosol hygroscopicity on atmospheric chemistry, visibility, climate and human health

5.1 Effects of aerosol hygroscopicity on atmospheric chemistry

5.2 Effects of aerosol hygroscopicity on visibility

5.3 Effects of aerosol hygroscopicity on climate

5.4 Effects of aerosol hygroscopicity on human health

6 Conclusion and outlook

()
图1 吸湿增长因子g(RH)和散射吸湿增长因子f(RH)随RH的变化曲线。黑圆点为实验室H-TDMA测得(NH4)2SO4在潮解实验中的g(RH)(100 nm, 室温)。三角形为(NH4)2SO4风化实验的g(RH)[36],黑色虚线是E-AIM模型预测的(NH4)2SO4在风化实验中g(RH)曲线[36];黑色实线是E-AIM模型预测的(NH4)2SO4在潮解实验中g(RH)曲线;g(RH)紫色虚线、绿色实线以及黄色虚线是由公式(5)由不同κ值(0.1、0.5、1.0)计算得到;红线为经验公式 f ( R H ) = 35.1 ( 100 - R H ) - 0.86拟合(NH4)2SO4的f(RH)曲线[3]
Fig. 1 Hygroscopic growth factor (g(RH)) and scattering enhancement factors (f(RH)) as a function of relative humidity. Black dot: measured values g(RH) of 100 nm (NH4)2SO4 in deliquescence experiment at 298.15K. Triangle mark: measured values g(RH) of 100 nm (NH4)2SO4 in efflorescence experiment at 298.15K[36], black dashed line: The predicted g(RH) from the E-AIM model in deliquescence experiment and efflorescence experiment are indicated by black solid and dashed line[36], respectively. The calculated g(RH) by equation(3) for different κ(0.1,0.5,1.5)are indicated by purple dashed line, green solid line and yellow dashed line, respectively. Red line: the f(RH) of (NH4)2SO4 is calculated by empirical equation( f ( R H ) = 35.1 ( 100 - R H ) - 0.86)[3]
表1 气溶胶吸湿的测量仪器的基本原理以及测量参数
[1]
Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. John Wiley & Sons, 2016.
[2]
Tang M J, Whitehead J, Davidson N M, Pope F D, Alfarra M R, McFiggans G, Kalberer M. Phys. Chem. Chem. Phys., 2015, 17(48): 32194.

doi: 10.1039/c5cp03795f     pmid: 26578034
[3]
Kreidenweis S M, Asa-Awuku A. Aerosol Hygroscopicity: Particle Water Content and Its Role in Atmospheric Processes. In Treatise on Geochemistry, 2014: 331.
[4]
Liu D, Allan J, Whitehead J, Young D, Flynn M, Coe H, McFiggans G, Fleming Z L, Bandy B. Atmos. Chem. Phys., 2013, 13(4): 2015.

doi: 10.5194/acp-13-2015-2013     URL    
[5]
Henning S, Ziese M, Kiselev A, Saathoff H, Möhler O, Mentel T F, Buchholz A, Spindler C, Michaud V, Monier M, Sellegri K, Stratmann F. Atmos. Chem. Phys., 2012, 12(10): 4525.

doi: 10.5194/acp-12-4525-2012     URL    
[6]
Marcolli C, Luo B P, Peter T. J. Phys. Chem. A, 2004, 108(12): 2216.

doi: 10.1021/jp036080l     URL    
[7]
Kim N, Park M, Yum S S, Park J S, Shin H J, Ahn J Y. Atmos. Environ., 2018, 185: 221.

doi: 10.1016/j.atmosenv.2018.05.019     URL    
[8]
Wu Z J, Zheng J, Wang Y, Shang D J, Du Z F, Zhang Y H, Hu M. Sci. Total. Environ., 2017, 579: 1260.

doi: 10.1016/j.scitotenv.2016.11.112     URL    
[9]
Xia C, Sun J Y, Qi X F, Shen X J, Zhong J T, Zhang X Y, Wang Y Q, Zhang Y M, Hu X Y. Sci. Total. Environ., 2019, 685: 239.

doi: 10.1016/j.scitotenv.2019.05.283     URL    
[10]
Nguyen T K V, Petters M D, Suda S R, Guo H, Weber R J, Carlton A G. Atmos. Chem. Phys., 2014, 14(20): 10911.

doi: 10.5194/acp-14-10911-2014     URL    
[11]
Pajunoja A, Hu W W, Leong Y J, Taylor N F, Miettinen P, Palm B B, Mikkonen S, Collins D R, Jimenez J L, Virtanen A. Atmos. Chem. Phys., 2016, 16(17): 11163.

doi: 10.5194/acp-16-11163-2016     URL    
[12]
Li W J, Liu L, Xu L, Zhang J, Yuan Q, Ding X K, Hu W, Fu P Q, Zhang D Z. Sci. Total. Environ., 2020, 719: 137520.

doi: 10.1016/j.scitotenv.2020.137520     URL    
[13]
Boreddy S K R, Kawamura K. Sci. Total. Environ., 2016, 557-558: 285.
[14]
Qu W J, Wang J, Zhang X Y, Wang D, Sheng L F. Atmos. Res., 2015, 153: 500.

doi: 10.1016/j.atmosres.2014.10.009     URL    
[15]
Lee J W L, CarrascÓn V, Gallimore P J, Fuller S J, Björkegren A, Spring D R, Pope F D, Kalberer M. Phys. Chem. Chem. Phys., 2012, 14(22): 8023.

doi: 10.1039/c2cp24094g     URL    
[16]
Liu Q, Liu D T, Gao Q, Tian P, Wang F, Zhao D L, Bi K, Wu Y Z, Ding S, Hu K, Zhang J L, Ding D P, Zhao C S. Atmos. Chem. Phys., 2020, 20(6): 3931.

doi: 10.5194/acp-20-3931-2020     URL    
[17]
Wang K, Zhang Y, Yahya K, Wu S Y, Grell G. Atmos. Environ., 2015, 115: 716.

doi: 10.1016/j.atmosenv.2014.12.007     URL    
[18]
Titos G, Cazorla A, Zieger P, Andrews E, Lyamani H, Granados-Muñoz M J, Olmo F J, Alados-Arboledas L. Atmos. Environ., 2018, 179: 331.

doi: 10.1016/j.atmosenv.2018.02.030    
[19]
Vu T V, Delgado-Saborit J M, Harrison R M. Air Qual. Atmos. Heal., 2015, 8(5): 429.
[20]
Mikhailov E, Vlasenko S, Martin S T, Koop T, Pöschl U. Atmos. Chem. Phys., 2009, 9(24): 9491.

doi: 10.5194/acp-9-9491-2009     URL    
[21]
Tang M J, Chan C K, Li Y J, Su H, Ma Q X, Wu Z J, Zhang G H, Wang Z, Ge M F, Hu M, He H, Wang X M. Atmos. Chem. Phys., 2019, 19(19): 12631.

doi: 10.5194/acp-19-12631-2019     URL    
[22]
Khvorostyanov V I, Curry J A. J. Geophys. Res., 2007, 112(D5): D05206.
[23]
Kreidenweis S M, Koehler K, DeMott P J, Prenni A J, Carrico C, Ervens B. Atmos. Chem. Phys., 2005, 5(5): 1357.

doi: 10.5194/acp-5-1357-2005     URL    
[24]
Rissler J, Vestin A, Swietlicki E, Fisch G, Zhou J, Artaxo P, Andreae M O. Atmos. Chem. Phys., 2006, 6(2): 471.

doi: 10.5194/acp-6-471-2006     URL    
[25]
Zhao C S, Yu Y L, Kuang Y, Tao J C, Zhao G. Adv. Atmos. Sci., 2019, 36(9): 1015.

doi: 10.1007/s00376-019-8248-1     URL    
[26]
Chan M N, Choi M Y, Ng N L, Chan C K. Environ. Sci. Technol., 2005, 39(6): 1555.

pmid: 15819209
[27]
Wills J B, Knox K J, Reid J P. Chem. Phys. Lett., 2009, 481(4/6): 153.

doi: 10.1016/j.cplett.2009.09.020     URL    
[28]
Lü X, Zhang Y H. Acta Chim. Sinica, 2020, 78(4): 326.

doi: 10.6023/A19100369     URL    
[29]
Jing B, Tong S R, Liu Q F, Li K, Wang W G, Zhang Y H, Ge M F. Atmos. Chem. Phys., 2016, 16(6): 4101.

doi: 10.5194/acp-16-4101-2016     URL    
[30]
Parsons M T, Knopf D A, Bertram A K. J. Phys. Chem. A, 2004, 108(52): 11600.

doi: 10.1021/jp0462862     URL    
[31]
Bai Z P, Ji Y, Pi Y Q, Yang K X, Wang L, Zhang Y Q, Zhai Y D, Yan Z G, Han X D. Atmos. Environ., 2018, 172: 149.

doi: 10.1016/j.atmosenv.2017.10.031     URL    
[32]
Ray K K, Lee H D, Gutierrez M A, Chang F J, Tivanski A V. Anal. Chem., 2019, 91(12): 7621.

doi: 10.1021/acs.analchem.9b00333    
[33]
Chu Y X, Sauerwein M, Chan C K. Phys. Chem. Chem. Phys., 2015, 17(30): 19789.

doi: 10.1039/C5CP02404H     URL    
[34]
Choi M Y, Chan C K, Zhang Y H. J. Phys. Chem. A, 2004, 108(7): 1133.

doi: 10.1021/jp0355049     URL    
[35]
Petters M D, Kreidenweis S M. Atmos. Chem. Phys., 2007, 7(8): 1961.

doi: 10.5194/acp-7-1961-2007     URL    
[36]
Lei T, Zuend A, Cheng Y F, Su H, Wang W G, Ge M F. Atmos. Chem. Phys., 2018, 18(2): 1045.

doi: 10.5194/acp-18-1045-2018     URL    
[37]
Gysel M, Crosier J, Topping D O, Whitehead J D, Bower K N, Cubison M J, Williams P I, Flynn M J, McFiggans G B, Coe H. Atmos. Chem. Phys., 2007, 7(24): 6131.

doi: 10.5194/acp-7-6131-2007     URL    
[38]
Clegg S L, Seinfeld J H. J. Phys. Chem. A, 2004, 108(6): 1008.

doi: 10.1021/jp030827q     URL    
[39]
a. Nenes A, Pandis S N, Pilinis C. Aquatic Geochemistry, 1998, 4(1): 123;

doi: 10.1023/A:1009604003981     URL    
b. Semeniuk K, Dastoor A. Atmosphere, 2020, 11(2): 156.
[40]
a. Nenes A, Pandis S N, Pilinis C. Atmospheric Environment, 1999, 33(10): 1553;

doi: 10.1016/S1352-2310(98)00352-5     URL    
b. Fountoukis C, Nenes A. Atmospheric Chemistry and Physics, 2007, 7(17):4639.
[41]
a. Wexler A S, Clegg S L. Journal of Geophysical Research: Atmospheres, 2002, 107(D14): ACH14-1-ACH14-14;

pmid: 21504090
b. Friese E, Ebel A. J. Phys. Chem. A, 2010, 114(43): 11595.

pmid: 21504090
[42]
Zuend A, Marcolli C, Luo B P, Peter T. Atmos. Chem. Phys., 2008, 8(16): 4559.

doi: 10.5194/acp-8-4559-2008     URL    
[43]
Zuend A, Marcolli C, Booth A M, Lienhard D M, Soonsin V, Krieger U K, Topping D O, McFiggans G, Peter T, Seinfeld J H. Atmos. Chem. Phys., 2011, 11(17): 9155.

doi: 10.5194/acp-11-9155-2011     URL    
[44]
Ganbavale G, Zuend A, Marcolli C, Peter T. Atmos. Chem. Phys., 2015, 15(1): 447.

doi: 10.5194/acp-15-447-2015     URL    
[45]
Capps S L, Henze D K, Hakami A, Russell A G, Nenes A. Atmos. Chem. Phys., 2012, 12(1): 527.

doi: 10.5194/acp-12-527-2012     URL    
[46]
Wang G H, Zhang F, Peng J F, Duan L, Ji Y M, Marrero-Ortiz W, Wang J Y, Li J J, Wu C, Cao C, Wang Y, Zheng J, Secrest J, Li Y X, Wang Y Y, Li H, Li N, Zhang R Y. Atmos. Chem. Phys., 2018, 18(14): 10123.

doi: 10.5194/acp-18-10123-2018     URL    
[47]
Gysel M, Weingartner E, Baltensperger U. Environ. Sci. Technol., 2002, 36(1): 63.

pmid: 11811491
[48]
Biskos G, Russell L M, Buseck P R, Martin S T. Geophys. Res. Lett., 2006, 33(7): L07801.
[49]
Giamarelou M, Smith M, Papapanagiotou E, Martin S T, Biskos G. Aerosol Sci. Technol., 2018, 52(5): 536.

doi: 10.1080/02786826.2018.1432848     URL    
[50]
Zieger P, Väisänen O, Corbin J C, Partridge D G, Bastelberger S, Mousavi-Fard M, Rosati B, Gysel M, Krieger U K, Leck C, Nenes A, Riipinen I, Virtanen A, Salter M E. Nat. Commun., 2017, 8: 15883.

doi: 10.1038/ncomms15883     pmid: 28671188
[51]
Biskos G, Malinowski A, Russell L M, Buseck P R, Martin S T. Aerosol Sci. Technol., 2006, 40(2): 97.

doi: 10.1080/02786820500484396     URL    
[52]
Lei T, Ma N, Hong J, Tuch T, Wang X, Wang Z B, Pöhlker M, Ge M F, Wang W G, Mikhailov E, Hoffmann T, Pöschl U, Su H, Wiedensohler A, Cheng Y F. Atmos. Meas. Tech., 2020, 13(10): 5551.

doi: 10.5194/amt-13-5551-2020     URL    
[53]
Estillore A D, Morris H S, Or V W, Lee H D, Alves M R, Marciano M A, Laskina O, Qin Z, Tivanski A V, Grassian V H. Phys. Chem. Chem. Phys., 2017, 19(31): 21101.

doi: 10.1039/c7cp04051b     pmid: 28749508
[54]
Jing B, Peng C, Wang Y D, Liu Q F, Tong S R, Zhang Y H, Ge M F. Sci. Rep., 2017, 7: 43572.

doi: 10.1038/srep43572     pmid: 28240258
[55]
Peng C, Jing B, Guo Y C, Zhang Y H, Ge M F. J. Phys. Chem. A, 2016, 120(7): 1029.

doi: 10.1021/acs.jpca.5b09373     URL    
[56]
Darr J P, Gottuso S, Alfarra M, Birge D, Ferris K, Woods D, Morales P, Grove M, Mitts W K, Mendoza-Lopez E, Johnson A. J. Phys. Chem. A, 2018, 122(40): 8062.

doi: 10.1021/acs.jpca.8b07119     URL    
[57]
Luo Q W, Hong J, Xu H B, Han S, Tan H B, Wang Q Q, Tao J C, Ma N, Cheng Y F, Su H. Sci. Total. Environ., 2020, 734: 139318.

doi: 10.1016/j.scitotenv.2020.139318     URL    
[58]
Hatch C D, Gierlus K M, Zahardis J, Schuttlefield J, Grassian V H. Environ. Chem., 2009, 6(5): 380.

doi: 10.1071/EN09083     URL    
[59]
Estillore A D, Hettiyadura A P S, Qin Z, Leckrone E, Wombacher B, Humphry T, Stone E A, Grassian V H. Environ. Sci. Technol., 2016, 50(8): 4259.

doi: 10.1021/acs.est.5b05014     pmid: 26967467
[60]
Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Feichter H, Fillmore D, Ghan S, Ginoux P, Gong S, Grini A, Hendricks J, Horowitz L, Huang P, Isaksen I, Iversen I, Kloster S, Koch D, Kirkevåg A, Kristjansson J E, Krol M, Lauer A, Lamarque J F, Liu X, Montanaro V, Myhre G, Penner J, Pitari G, Reddy S, Seland Stier P, Takemura T, Tie X. Atmos. Chem. Phys., 2006, 6(7): 1777.

doi: 10.5194/acp-6-1777-2006     URL    
[61]
Ginoux P, Prospero J M, Gill T E, Hsu N C, Zhao M. Rev. Geophys., 2012, 50(3): RG3005.
[62]
Gibson E R, Hudson P K, Grassian V H. Geophys. Res. Lett., 2006, 33(13): L13811.

doi: 10.1029/2006GL026386     URL    
[63]
Hatch C D, Greenaway A L, Christie M J, Baltrusaitis J. Atmos. Environ., 2014, 87: 26.

doi: 10.1016/j.atmosenv.2013.12.040     URL    
[64]
DesprÉs V, Huffman J A, Burrows S M, Hoose C, Safatov A, Buryak G, Fröhlich-Nowoisky J, Elbert W, Andreae M, Pöschl U, Jaenicke R. Tellus B Chem. Phys. Meteorol., 2012, 64(1): 15598.

doi: 10.3402/tellusb.v64i0.15598     URL    
[65]
Pope F D. Environ. Res. Lett., 2010, 5(4): 044015.

doi: 10.1088/1748-9326/5/4/044015     URL    
[66]
Chen L, Chen Y Z, Chen L L, Gu W J, Peng C, Luo S X, Song W, Wang Z, Tang M J. ACS Earth Space Chem., 2019, 3(12): 2678.

doi: 10.1021/acsearthspacechem.9b00268     URL    
[67]
Lee B U, Kim S H, Kim S S. J. Aerosol Sci., 2002, 33(12): 1721.

doi: 10.1016/S0021-8502(02)00114-3     URL    
[68]
Cruz C N, Pandis S N. Environ. Sci. Technol., 2000, 34(20): 4313.

doi: 10.1021/es9907109     URL    
[69]
Zelenyuk A, Imre D, Cuadra-Rodriguez L A, Ellison B. J. Aerosol Sci., 2007, 38(9): 903.

doi: 10.1016/j.jaerosci.2007.06.006     URL    
[70]
Alshawa A, Dopfer O, Harmon C W, Nizkorodov S A, Underwood J S. J. Phys. Chem. A., 2009, 113(26): 7678.

doi: 10.1021/jp809869r     pmid: 19298069
[71]
Wang W G, Lei T, Zuend A, Su H, Cheng Y F, Shi Y J, Ge M F, Liu M Y. Atmos. Chem. Phys., 2021, 21(3): 2179.

doi: 10.5194/acp-21-2179-2021     URL    
[72]
Dennis-Smither B J, Hanford K L, Kwamena N O A, Miles R E H, Reid J P. J. Phys. Chem. A, 2012, 116(24): 6159.

doi: 10.1021/jp211429f     pmid: 22236112
[73]
Slade J H, Thalman R, Wang J, Knopf D A. Atmos. Chem. Phys., 2015, 15(17): 10183.

doi: 10.5194/acp-15-10183-2015     URL    
[74]
Schwier A N, Sareen N, Lathem T L, Nenes A, McNeill V F. J. Geophys. Res., 2011, 116(D16): D16202.
[75]
Cheung H H Y, Yeung M C, Li Y J, Lee B P, Chan C K. Aerosol Sci. Technol., 2015, 49(8): 643.

doi: 10.1080/02786826.2015.1058482     URL    
[76]
Chen J, Zhao C S, Ma N, Yan P. Atmos. Chem. Phys., 2014, 14(15): 8105.

doi: 10.5194/acp-14-8105-2014     URL    
[77]
Ma Y, Li S Z, Zheng J, Khalizov A, Wang X, Wang Z, Zhou Y Y. J. Geophys. Res. Atmos., 2017, 122(17): 9430.

doi: 10.1002/2017JD026583     URL    
[78]
Titos G, Lyamani H, Cazorla A, Sorribas M, Foyo-Moreno I, Wiedensohler A, Alados-Arboledas L. Tellus B Chem. Phys. Meteorol., 2014, 66(1): 24536.

doi: 10.3402/tellusb.v66.24536     URL    
[79]
Thalman R, Palm B B, Barbosa H M J, Pöhlker M L, Alexander M L, Brito J, Carbone S, Castillo P, Day D A, Kuang chongai, Manzi A, Ng N L, Sedlacek A J, Souza R, Springston S, Watson T, Pöhlker C, Pöschl U, Andreae M O, Artaxo P, Jimenez J L, Martin S T, Wang J. Atmos. Chem. Phys., 2017, 17(19): 11779.

doi: 10.5194/acp-17-11779-2017     URL    
[80]
Zhang F, Li Z Q, Li Y N, Sun Y L, Wang Z Z, Li P, Sun L, Wang P C, Cribb M, Zhao C F, Fan T Y, Yang X, Wang Q Q. Atmos. Chem. Phys., 2016, 16(8): 5413.

doi: 10.5194/acp-16-5413-2016     URL    
[81]
Wu Y F, Wang X J, Yan P, Zhang L M, Tao J, Liu X Y, Tian P, Han Z W, Zhang R J. Sci. Total. Environ., 2017, 599-600: 76.
[82]
Kuang Y, He Y, Xu W Y, Zhao P S, Cheng Y F, Zhao G, Tao J C, Ma N, Su H, Zhang Y Y, Sun J Y, Cheng P, Yang W D, Zhang S B, Wu C, Sun Y L, Zhao C S. Atmos. Chem. Phys., 2020, 20(2): 865.

doi: 10.5194/acp-20-865-2020     URL    
[83]
Yeung M C, Lee B P, Li Y J, Chan C K. J. Geophys. Res. Atmos., 2014, 119(16): 9864.

doi: 10.1002/2013JD021146     URL    
[84]
Liu J Y, Zhang F, Xu W Q, Sun Y L, Chen L, Li S Z, Ren J Y, Hu B, Wu H, Zhang R Y. Geophys. Res. Lett., 2021, 48(4): e2020GL091683.
[85]
Hong J, Xu H B, Tan H B, Yin C Q, Hao L Q, Li F, Cai M F, Deng X J, Wang N, Su H, Cheng Y F, Wang L, Petäjä T, Kerminen V M. Atmos. Chem. Phys., 2018, 18(19): 14079.

doi: 10.5194/acp-18-14079-2018     URL    
[86]
Atwood S A, Kreidenweis S M, DeMott P J, Petters M D, Cornwell G C, Martin A C, Moore K A. Atmos. Chem. Phys., 2019, 19(10): 6931.

doi: 10.5194/acp-19-6931-2019     URL    
[87]
Phillips B N, Royalty T M, Dawson K W, Reed R, Petters M D, Meskhidze N. J. Geophys. Res. Atmos., 2018, 123(3): 1826.

doi: 10.1002/2017JD027702     URL    
[88]
Kim G, Cho H J, Seo A, Kim D, Gim Y, Lee B Y, Yoon Y J, Park K. Environ. Sci. Technol., 2015, 49(20): 12024.

doi: 10.1021/acs.est.5b01505     URL    
[89]
Ovadnevaite J, Ceburnis D, Canagaratna M, Berresheim H, Bialek J, Martucci G, Worsnop D R, O'Dowd C. J. Geophys. Res., 2012, 117(D16): D16201.
[90]
Herenz P, Wex H, Henning S, Kristensen T B, Rubach F, Roth A, Borrmann S, Bozem H, Schulz H, Stratmann F. Atmos. Chem. Phys., 2018, 18(7): 4477.

doi: 10.5194/acp-18-4477-2018     URL    
[91]
Lange R, Dall'Osto M, Wex H, Skov H, Massling A. Geophys. Res. Lett., 2019, 46(20): 11500.

doi: 10.1029/2019GL084142     URL    
[92]
Burkart J, Hodshire A L, Mungall E L, Pierce J R, Collins D B, Ladino L A, Lee A K Y, Irish V, Wentzell J J B, Liggio J, Papakyriakou T, Murphy J, Abbatt J. Geophys. Res. Lett., 2017, 44(20): 10725.

doi: 10.1002/2017GL075671     URL    
[93]
Kim J, Yoon Y J, Gim Y, Kang H J, Choi J H, Park K T, Lee B Y. Atmos. Chem. Phys., 2017, 17(21): 12985.

doi: 10.5194/acp-17-12985-2017     URL    
[94]
Chen H H, Hodshire A L, Ortega J, Greenberg J, McMurry P H, Carlton A G, Pierce J R, Hanson D R, Smith J N. Atmos. Chem. Phys., 2018, 18(1): 311.

doi: 10.5194/acp-18-311-2018     URL    
[95]
Shingler T, Crosbie E, Ortega A, Shiraiwa M, Zuend A, Beyersdorf A, Ziemba L, Anderson B, Thornhill L, Perring A E, Schwarz J P, Campazano-Jost P, Day D A, Jimenez J L, Hair J W, Mikoviny T, Wisthaler A, Sorooshian A. J. Geophys. Res. Atmos., 2016, 121(8): 4188.

doi: 10.1002/2015JD024498     URL    
[96]
Kecorius S, Ma N, Teich M, van Pinxteren D, Zhang S L, Gröβ J, Spindler G, Müller K, Iinuma Y, Hu M, Herrmann H, Wiedensohler A. Atmos. Environ., 2017, 164: 259.

doi: 10.1016/j.atmosenv.2017.05.023     URL    
[97]
Brock C A, Wagner N L, Anderson B E, Attwood A R, Beyersdorf A, Campuzano-Jost P, Carlton A G, Day D A, Diskin G S, Gordon T D, Jimenez J L, Lack D A, Liao J, Markovic M Z, Middlebrook A M, Ng N L, Perring A E, Richardson M S, Schwarz J P, Washenfelder R A, Welti A, Xu L, Ziemba L D, Murphy D M. Atmos. Chem. Phys., 2016, 16(8): 4987.

doi: 10.5194/acp-16-4987-2016     URL    
[98]
O'Shea S J, Choularton T W, Flynn M, Bower K N, Gallagher M, Crosier J, Williams P, Crawford I, Fleming Z L, Listowski C, Kirchgaessner A, Ladkin R S, Lachlan-Cope T. Atmos. Chem. Phys., 2017, 17(21): 13049.

doi: 10.5194/acp-17-13049-2017     URL    
[99]
Tang M J, Cziczo D J, Grassian V H. Chem. Rev., 2016, 116(7): 4205.

doi: 10.1021/acs.chemrev.5b00529     URL    
[100]
Wang X N, Ye X N, Chen H, Chen J M, Yang X, Gross D S. Atmos. Environ., 2014, 95: 318.

doi: 10.1016/j.atmosenv.2014.06.051     URL    
[101]
Wang Y Y, Li Z Q, Zhang Y J, Du W, Zhang F, Tan H B, Xu H B, Fan T Y, Jin X A, Fan X X, Dong Z P, Wang Q Y, Sun Y L. Atmos. Chem. Phys., 2018, 18(16): 11739.

doi: 10.5194/acp-18-11739-2018     URL    
[102]
Li K N, Ye X N, Pang H W, Lu X H, Chen H, Wang X F, Yang X, Chen J M, Chen Y J. Atmos. Chem. Phys., 2018, 18(20): 15201.

doi: 10.5194/acp-18-15201-2018     URL    
[103]
Finlayson-Pitts B J. Chem. Rev., 2003, 103(12): 4801.

pmid: 14664634
[104]
Bertram T H, Thornton J A. Atmos. Chem. Phys., 2009, 9(21): 8351.

doi: 10.5194/acp-9-8351-2009     URL    
[105]
Trainic M, Abo Riziq A, Lavi A, Flores J M, Rudich Y. Atmos. Chem. Phys., 2011, 11(18): 9697.

doi: 10.5194/acp-11-9697-2011     URL    
[106]
Zhang R Y, Khalizov A F, Pagels J, Zhang D, Xue H X, McMurry P H. PNAS, 2008, 105(30): 10291.

doi: 10.1073/pnas.0804860105     URL    
[107]
Chen J, Zhao C S, Ma N, Liu P F, Göbel T, Hallbauer E, Deng Z Z, Ran L, Xu W Y, Liang Z, Liu H J, Yan P, Zhou X J, Wiedensohler A. Atmos. Chem. Phys., 2012, 12(11): 4935.

doi: 10.5194/acp-12-4935-2012     URL    
[108]
Liu X G, Gu J W, Li Y P, Cheng Y F, Qu Y, Han T T, Wang J L, Tian H Z, Chen J, Zhang Y H. Atmos. Res., 2013, 132-133: 91.
[109]
Deng H, Tan H B, Li F, Cai M F, Chan P W, Xu H B, Huang X Y, Wu D. Sci. Total. Environ., 2016, 569-570: 1149.
[110]
Stocker T F, Qin D, Plattner G K, Tignor M M B, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M. Climate Change 2013: the Physical Science BASIS. 2014, 1.
[111]
Shrivastava M, Cappa C D, Fan J W, Goldstein A H, Guenther A B, Jimenez J L, Kuang chongai, Laskin A, Martin S T, Ng N L, Petaja T, Pierce J R, Rasch P J, Roldin P, Seinfeld J H, Shilling J, Smith J N, Thornton J A, Volkamer R, Wang J, Worsnop D R, Zaveri R A, Zelenyuk A, Zhang Q. Rev. Geophys., 2017, 55(2): 509.

doi: 10.1002/2016RG000540     URL    
[112]
Randles C A. Geophys. Res. Lett., 2004, 31(16): L16108.

doi: 10.1029/2004GL020628     URL    
[113]
Zeng C, Liu C, Li J N, Zhu B, Yin Y, Wang Y. J. Geophys. Res. Atmos., 2019, 124(8): 4620.

doi: 10.1029/2018JD029809     URL    
[114]
Liu X H, Wang J. Environ. Res. Lett., 2010, 5(4): 044010.

doi: 10.1088/1748-9326/5/4/044010     URL    
[115]
Rastak N, Pajunoja A, Acosta Navarro J C, Ma J, Song M, Partridge D G, Kirkevåg A, Leong Y, Hu W W, Taylor N F, Lambe A, Cerully K, Bougiatioti A, Liu P, Krejci R, Petäjä T, Percival C, Davidovits P, Worsnop D R, Ekman A M L, Nenes A, Martin S, Jimenez J L, Collins D R, Topping D O, Bertram A K, Zuend A, Virtanen A, Riipinen I. Geophys. Res. Lett., 2017, 44(10): 5167.

doi: 10.1002/2017GL073056     pmid: 28781391
[116]
Pun V C, Kazemiparkouhi F, Manjourides J, Suh H H. Am. J. Epidemiol., 2017, 186(8): 961.

doi: 10.1093/aje/kwx166     URL    
[117]
Pope C A III, Ezzati M, Dockery D W. N. Engl. J. Med., 2009, 360(4): 376.

doi: 10.1056/NEJMsa0805646     URL    
[118]
Chen J M, Li C L, Ristovski Z, Milic A, Gu Y T, Islam M S, Wang S X, Hao J M, Zhang H F, He C R, Guo H, Fu H B, Miljevic B, Morawska L, Thai P, Lam Y F, Pereira G, Ding A J, Dumka U C. Sci. Total. Environ., 2017, 579: 1000.

doi: 10.1016/j.scitotenv.2016.11.025     URL    
[119]
Löndahl J, Möller W, Pagels J H, Kreyling W G, Swietlicki E, Schmid O. J. Aerosol. Med. Pulm. Drug Deliv., 2014, 27(4): 229.

doi: 10.1089/jamp.2013.1044     URL    
[120]
Lu D W, Luo Q, Chen R, Zhuansun Y X, Jiang J, Wang W C, Yang X Z, Zhang L Y, Liu X L, Li F, Liu Q, Jiang G B. Nat. Commun., 2020, 11: 2567.

doi: 10.1038/s41467-020-16427-x     URL    
[121]
Winkler-Heil R, Ferron G, Hofmann W. Inhal. Toxicol., 2014, 26(3): 193.

doi: 10.3109/08958378.2013.876468     pmid: 24517842
[1] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[2] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[3] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[4] 宋欢, 邹琦, 陆克定. HO2非均相摄取系数的测量与参数化[J]. 化学进展, 2021, 33(7): 1175-1187.
[5] 程淑敏, 杜林, 张秀辉, 葛茂发. Langmuir单分子膜在海洋飞沫气溶胶表面特性研究中的应用[J]. 化学进展, 2021, 33(10): 1721-1730.
[6] 唐荣志, 王辉, 刘莹, 郭松. 大气半/中等挥发性有机物的组成及其对有机气溶胶贡献[J]. 化学进展, 2019, 31(1): 180-190.
[7] 顾芳婷, 胡敏*, 郑竞, 郭松. 大气颗粒物中有机硝酸酯的研究进展[J]. 化学进展, 2017, 29(9): 962-969.
[8] 魏晨辉, 付翯云, 瞿晓磊, 朱东强. 溶解态黑碳的环境过程研究[J]. 化学进展, 2017, 29(9): 1042-1052.
[9] 王艳龙, 林道辉*. 纳米零价铁与土壤组分的相互作用及其环境效应[J]. 化学进展, 2017, 29(9): 1072-1081.
[10] 王海潮, 陆克定. 五氧化二氮(N2O5)非均相摄取系数的定量和参数化[J]. 化学进展, 2016, 28(6): 917-933.
[11] 祁骞, 周学华, 王文兴. 二次有机气溶胶的水相形成研究[J]. 化学进展, 2014, 26(0203): 458-466.
[12] 马烨, 陈建民, 王琳. 大气有机硫酸酯化合物的特征及形成机制[J]. 化学进展, 2012, 24(11): 2277-2286.
[13] 谢绍东 田晓雪. 挥发性和半挥发性有机物向二次有机气溶胶转化的机制*[J]. 化学进展, 2010, 22(04): 727-733.
[14] 叶兴南,陈建民. 大气二次细颗粒物形成机理的前沿研究*[J]. 化学进展, 2009, 21(0203): 288-296.
[15] 王振亚,郝立庆,张为俊. 二次有机气溶胶的气体/粒子分配理论*[J]. 化学进展, 2007, 19(01): 93-100.