English
新闻公告
More
化学进展 2021, Vol. 33 Issue (12): 2404-2412 DOI: 10.7536/PC210103 前一篇   

• 综述 •

碘氧化铋光催化剂的合成、改性及净化一氧化氮

周汉强1, 于明飞1, 陈巧珊1,*(), 王建春2,*(), 毕进红1,*()   

  1. 1 福州大学环境与资源学院 福州 350108
    2 福建龙净环保股份有限公司 厦门 361000
  • 收稿日期:2021-01-08 修回日期:2021-03-12 出版日期:2021-12-20 发布日期:2021-07-29
  • 通讯作者: 陈巧珊, 王建春, 毕进红
  • 基金资助:
    国家自然科学基金项目(5167204); 福建省自然科学基金面上项目(2019J01648)

Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide

Hanqiang Zhou1, Mingfei Yu1, Qiaoshan Chen1(), Jianchun Wang2(), Jinhong Bi1()   

  1. 1 College of Environment and Resources, Fuzhou University,Fuzhou 350108, China
    2 Fujian Longking Co. Ltd,Xiamen 361000, China
  • Received:2021-01-08 Revised:2021-03-12 Online:2021-12-20 Published:2021-07-29
  • Contact: Qiaoshan Chen, Jianchun Wang, Jinhong Bi
  • Supported by:
    the National Natural Science Foundation of China(5167204); the Natural Science Foundation of Fujian Province(2019J01648)

光催化技术因其节能、高效、无二次污染等特点,在低浓度一氧化氮(NO)污染治理方面展现出了巨大潜力。在众多半导体材料中,碘氧化铋(BiOI)光催化剂具有窄带隙和独特的层状结构,有利于可见光吸收和电子空穴对分离,展现出了良好的光催化活性和稳定性,近十几年来备受关注。本文综述了BiOI半导体材料光催化净化NO的最新研究进展,阐述了BiOI晶体形貌与晶面调控对其光催化性能的影响;重点介绍了各类改性方法如表面修饰、离子掺杂、异质结构筑等对BiOI光催化活性的提升机制,并提出了该研究方向所面临的挑战与应用前景,旨在为设计高活性BiOI基光催化材料以及高效处理低浓度NO污染提供理论借鉴与技术支撑。

Photocatalytic technology has shown great potential for purification of low-concentration nitric oxide (NO) pollution due to its energy-saving property, high efficiency, and limited secondary pollution. Among various semiconductors, bismuth oxyiodide (BiOI) photocatalyst has drawn considerable attention in recent years due to the superior photocatalytic activity and stability, since its narrow band gap and specific layered structure is in favor of visible light absorption and electron-hole pairs separation. Hence, we overview the latest research progress in the photocatalytic purification of NO by BiOI and introduce the influence of crystalline morphology and facets on its photocatalytic performance. The modification and activity enhancement mechanism of BiOI is emphatically expounded, for example, surface modification, ion doping and heterostructure construction. The future prospects and challenges in this research spot are put forward for the sake of providing theoretical reference and technical support for the design of highly active BiOI and the efficient purification of low concentration NO.

Contents

1 Introduction

2 Reaction mechanism and pathway of photocatalytic purification of NO

3 Controlled synthesis of bismuth oxyiodide

3.1 Morphological control

3.2 Crystal plane control

4 Surface modification and ion doping of bismuth oxyiodide

5 Construction of bismuth oxyiodide heterojunction

5.1 Bismuth oxyiodide/semiconductor heterojunction

5.2 Bismuth oxyiodide/insulator heterojunction

5.3 Ternary heterojunction

6 Conclusion and outlook

()
图1 近十年来每年发表的关于光催化净化NO的文章数量(资料来源:Web of Science)
Fig.1 Numbers of annually published articles on photocatalytic NO purification in recent ten years (Source: Web of Science)
图2 (a)BiOI的晶体结构及其(b)可见光催化净化NO的机理图
Fig.2 (a)Crystal structure of BiOI and (b) the schematic illustration of photocatalytic purification of NO based upon BiOI under visible light
图3 (a~c)球状和(d~f)片状 BiOI的扫描电镜(SEM)图[37]
Fig.3 (a~c)SEM images of as-synthesized BiOI spheres and (d~f) plates[37]. Copyright 2019, IOP Publishing Ltd
表1 表面修饰及离子掺杂改性BiOI净化NO的效率
Table 1 Removal efficiency of NO by surface modification and ion-doped modification of BiOI
图4 3%Zn-BiOI 在黑暗和可见光照射下光氧化去除NO的机理[42]
Fig.4 Schematic illustration of the photo-oxidative removal of NO by 3%Zn-BiOI in the dark and under visible light irradiation[42]. Copyright 2019, American Chemical Society
图5 Bi2WO6/BiOI垂直异质结构表面NO的光氧化机理示意图[54]
Fig.5 Schematic representation of NO photooxidation mechanism on the surface of Bi2WO6/BiOI vertical heterostructure[54]. Copyright 2019, Wiley
表2 BiOI异质结净化NO的效率
Table 2 Removal efficiency for NO by BiOI heterojunction
图6 (a)BiOI(001)面和BiOIO3(010)面侧视图以及(b)BiOI在BiOIO3 (010)面上的生长示意图[56]
Fig.6 The side view of the (001) plane of BiOI and the (010) plane of BiOIO3 (a) and the schematic diagram of BiOI grown on the (010) facets of BiOIO3 (b)[56]. Copyright 2015, Royal Society of Chemistry
图7 绝缘体-半导体异质结上光生载流子的分离和转移及光催化过程示意图[60]
Fig.7 Schematic diagram for the separation and transfer of photogenerated carriers and the photocatalytic process over the insulator-semiconductor heterojunction[60]. Copyright 2018, Royal Society of Chemistry
[1]
Amoatey P, Omidvarborna H, Baawain M S, Al-Mamun A. Process. Saf. Environ. Prot., 2019, 123: 215.

doi: 10.1016/j.psep.2019.01.014     URL    
[2]
Koolen C D, Rothenberg G. ChemSusChem, 2019, 12(1): 164.

doi: 10.1002/cssc.v12.1     URL    
[3]
U. S.Environmental Protection Agency. EPA History: Clean Air Act Amendments of 1990, (2018-08-08). [2020-11-20].
[4]
UNECE. The Eutrophication and Ground-level Ozone. Document ECE/EB. AIR, United nations Economic Commission for Europe. New York and Geneva, (2001-08-07). [1999 Protocol to Abate Acidification, 2020-11-20].
[5]
The State Council. Circular of the State Council on printing and distributing the "Thirteenth Five-Year Plan" for ecological environmental protection, (2016-12-05). [2020-11-20].
[6]
Li L Z, Fu Z Q, He K B, Tan Y F, Feng Q, Wu J. Strateg. Study CAE, 2019, 21(4): 82.
( 李林子, 傅泽强, 贺克斌, 谭玉菲, 封强, 吴佳. 中国工程科学, 2019, 21(4): 82.)
[7]
Pandey R A, Chandrashekhar B. Crit. Rev. Environ. Sci. Technol., 2014, 44(1): 34.

doi: 10.1080/10643389.2012.710430     URL    
[8]
Gholami F, Tomas M, Gholami Z, Vakili M. Sci. Total. Environ., 2020, 714: 136712.

doi: 10.1016/j.scitotenv.2020.136712     URL    
[9]
Liu Y, Zhao J, Lee J M. ChemCatChem, 2018, 10(7): 1499.

doi: 10.1002/cctc.v10.7     URL    
[10]
Lasek J, Yu Y H, Wu J C S. J. Photochem. Photobiol. C: Photochem. Rev., 2013, 14: 29.

doi: 10.1016/j.jphotochemrev.2012.08.002     URL    
[11]
Nguyen V H, Nguyen B S, Huang C W, Le T T, Nguyen C C, Nhi Le T T, Heo D, Ly Q V, Trinh Q T, Shokouhimehr M, Xia C L, Lam S S, Vo D V N, Kim S Y, Le Q V. J. Clean. Prod., 2020, 270: 121912.

doi: 10.1016/j.jclepro.2020.121912     URL    
[12]
Hu Z, Li K N, Wu X F, Wang N, Li X F, Li Q, Li L, Lv K. Appl. Catal. B: Environ., 2019, 256: 117860.

doi: 10.1016/j.apcatb.2019.117860     URL    
[13]
Shang H, Li M Q, Li H, Huang S, Mao C L, Ai Z H, Zhang L Z. Environ. Sci. Technol., 2019, 53(11): 6444.

doi: 10.1021/acs.est.8b07322     pmid: 31050293
[14]
Dong G H, Yang L P, Wang F, Zang L, Wang C Y. ACS Catal., 2016, 6(10): 6511.

doi: 10.1021/acscatal.6b01657     URL    
[15]
Ai Z H, Lee S, Huang Y, Ho W, Zhang L Z. J. Hazard. Mater., 2010, 179(1/3): 141.

doi: 10.1016/j.jhazmat.2010.02.071     URL    
[16]
Chen M J, Huang Y, Lee S C. Chin. J. Catal., 2017, 38(2): 348.
[17]
Ding X, Ho W, Shang J, Zhang L Z. Appl. Catal. B: Environ., 2016, 182: 316.

doi: 10.1016/j.apcatb.2015.09.046     URL    
[18]
Ai Z H, Ho W, Lee S, Zhang L Z. Environ. Sci. Technol., 2009, 43(11): 4143.

doi: 10.1021/es9004366     URL    
[19]
Dong G H, Ho W, Zhang L Z. Appl. Catal. B: Environ., 2015, 168/169: 490.

doi: 10.1016/j.apcatb.2015.01.014     URL    
[20]
Cheng H F, Huang B B, Dai Y. Nanoscale, 2014, 6(4): 2009.

doi: 10.1039/c3nr05529a     URL    
[21]
He R A, Cao S W, Yu J G. Mater. China, 2017, 36(1): 17.
( 赫荣安, 曹少文, 余家国. 中国材料进展, 2017, 36(1): 17.)
[22]
Yang Y, Zhang C, Lai C, Zeng G M, Huang D L, Cheng M, Wang J J, Chen F, Zhou C Y, Xiong W P. Adv. Colloid Interface Sci., 2018, 254: 76.

doi: 10.1016/j.cis.2018.03.004     URL    
[23]
Guo Y, Shi W X, Zhu Y F, Xu Y P, Cui F Y. Appl. Catal. B: Environ., 2020, 262: 118262..

doi: 10.1016/j.apcatb.2019.118262     URL    
[24]
Mera A C, Martínez-de la Cruz A, PÉrez-Tijerina E, MelÉndrez M F, ValdÉs H. Mater. Sci. Semicond. Process., 2018, 88: 20.

doi: 10.1016/j.mssp.2018.04.045     URL    
[25]
Reyna-Cavazos K A, Cruz A M D, Longoria Rodríguez F E, LÓpez-Cuellar E. Res. Chem. Intermed., 2020, 46(1): 923.

doi: 10.1007/s11164-019-03998-8     URL    
[26]
Nosaka Y, Nosaka A Y. Chem. Rev., 2017, 117(17): 11302.

doi: 10.1021/acs.chemrev.7b00161     URL    
[27]
Wang H, Sun Y J, Jiang G M, Zhang Y X, Huang H W, Wu Z B, Lee S C, Dong F. Environ. Sci. Technol., 2018, 52(3): 1479.

doi: 10.1021/acs.est.7b05457     URL    
[28]
Shi X, Wang P Q, Li W, Bai Y, Xie H Q, Zhou Y, Ye L Q. Appl. Catal. B: Environ., 2019, 243: 322.

doi: 10.1016/j.apcatb.2018.10.037     URL    
[29]
Cao F, Lv X, Ren J, Miao L Q, Wang J M, Li S, Qin G W. Aust. J. Chem., 2016, 69(2): 212.

doi: 10.1071/CH15176     URL    
[30]
Lin H L, Zhou C C, Cao J, Chen S F. Chin. Sci. Bull., 2014, 59(27): 3420.

doi: 10.1007/s11434-014-0433-0     URL    
[31]
Long Y, Tan S Y, Han Q, Ai Y J, Sheng Y Q, Wang Y, Wang H B, Xie Y L, Liang Q L, Ding M Y. CrystEngComm, 2020, 22(10): 1754.

doi: 10.1039/C9CE01835B     URL    
[32]
Mera A C, Moreno Y, Pivan J Y, Peña O, Mansilla H D. J. Photochem. Photobiol. A: Chem., 2014, 289: 7.

doi: 10.1016/j.jphotochem.2014.05.015     URL    
[33]
Mi Y, Zhou M, Wen L Y, Zhao H P, Lei Y. Dalton Trans., 2014, 43(25): 9549.

doi: 10.1039/C4DT00798K     URL    
[34]
Wang X J, Li F T, Li D Y, Liu R H, Liu S. J. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2015, 193: 112.
[35]
Ren K X, Zhang K, Liu J, Luo H D, Huang Y B, Yu X B. CrystEngComm, 2012, 14(13): 4384.

doi: 10.1039/c2ce25087j     URL    
[36]
Nava Núñez M Y, Martínez-de la Cruz A, LÓpez-CuÉllar E. Res. Chem. Intermed., 2019, 45(3): 1475.

doi: 10.1007/s11164-018-3684-6     URL    
[37]
Yusoff M A M, Imam S S, Shah I, Adnan R. Mater. Res. Express, 2019, 6(8): 0850g5.

doi: 10.1088/2053-1591/ab2918     URL    
[38]
Xia J X, Yin S, Li H M, Xu H, Yan Y S, Zhang Q. Langmuir, 2011, 27(3): 1200.

doi: 10.1021/la104054r     URL    
[39]
Di J, Xia J X, Ge Y P, Xu L, Xu H, He M Q, Zhang Q, Li H M. J. Mater. Chem. A, 2014, 2(38): 15864.

doi: 10.1039/C4TA02400A     URL    
[40]
Jiang Z Y, Liang X Z, Liu Y Y, Jing T, Wang Z Y, Zhang X Y, Qin X Y, Dai Y, Huang B B. Appl. Catal. B: Environ., 2017, 211: 252.

doi: 10.1016/j.apcatb.2017.03.072     URL    
[41]
Dai W W, Zhao Z Y. Mater. Chem. Phys., 2017, 193: 164.

doi: 10.1016/j.matchemphys.2017.02.017     URL    
[42]
Rao F, Zhu G Q, Hojamberdiev M, Zhang W B, Li S P, Gao J Z, Zhang F C, Huang Y H, Huang Y. J. Phys. Chem. C, 2019, 123(26): 16268.

doi: 10.1021/acs.jpcc.9b03961     URL    
[43]
Pan M L, Zhang H J, Gao G D, Liu L, Chen W. Environ. Sci. Technol., 2015, 49(10): 6240.

doi: 10.1021/acs.est.5b00626     URL    
[44]
Sun X M, Wu J, Liu Q Z, Tian F G. Appl. Surf. Sci., 2018, 455: 864.

doi: 10.1016/j.apsusc.2018.06.049     URL    
[45]
Di J, Xia J X, Li H M, Guo S J, Dai S. Nano Energy, 2017, 41: 172.

doi: 10.1016/j.nanoen.2017.09.008     URL    
[46]
Yu C L, Cao F F, Shu Q, Bao Y L, Xie Z P, Yu J, Yang K. Acta Phys. Chimica Sin., 2012, 28(3): 647.
( 余长林, 操芳芳, 舒庆, 包玉龙, 谢志鹏, 杨凯. 物理化学学报, 2012, 28(3): 647.)
[47]
Sun M L, Zhang W D, Sun Y J, Zhang Y X, Dong F. Chin. J. Catal., 2019, 40(6): 826.

doi: 10.1016/S1872-2067(18)63195-X     URL    
[48]
Xing X B, Wang X Y, Xu C C, Dong F. J. Civ. Environ. Eng., 2019, 41(6): 181.
( 幸小卜, 王鑫雅, 徐长长, 董帆. 土木与环境工程学报, 2019, 41(6): 181.)
[49]
Li Q, Gao S, Hu J, Wang H Q, Wu Z B. Catal. Sci. Technol., 2018, 8(20): 5270.

doi: 10.1039/C8CY01466C     URL    
[50]
Hojamberdiev M, Zhu G Q, Li S P, Zhang Y F, Gao J Z, Zhu R L, Zhang F C. Mater. Res. Bull., 2020, 123: 110701.

doi: 10.1016/j.materresbull.2019.110701     URL    
[51]
Zhang J Y, Zhu G Q, Li S P, Rao F, Hassan Q U, Gao J Z, Huang Y, Hojamberdiev M. ACS Appl. Mater. Interfaces, 2019, 11(41): 37822.

doi: 10.1021/acsami.9b14300     URL    
[52]
Li H Q, Cui Y M, Wu X C, Hua L, Hong W S. Acta Phys. Chim. Sin., 2012, 28: 1985.

doi: 10.3866/PKU.WHXB201205161     URL    
( 李慧泉, 崔玉民, 吴兴才, 华林, 洪文珊. 物理化学学报, 2012, 28: 1985.)
[53]
Dong F, Sun Y J, Fu M, Wu Z B, Lee S C. J. Hazard. Mater., 2012, 219/220: 26.

doi: 10.1016/j.jhazmat.2012.03.015     URL    
[54]
Wang L, Xu K, Cui W, Lv D, Wang L, Ren L, Xu X, Dong F, Dou S X, Hao W C, Du Y. Adv. Funct. Mater., 2019, 29(15): 1970100.

doi: 10.1002/adfm.v29.15     URL    
[55]
Ou M Y, Dong F, Zhang W, Wu Z B. Chem. Eng. J., 2014, 255: 650.

doi: 10.1016/j.cej.2014.06.086     URL    
[56]
Dong F, Xiong T, Sun Y J, Zhang Y X, Zhou Y. Chem. Commun., 2015, 51(39): 8249.

doi: 10.1039/C5CC01993A     URL    
[57]
Sun Y J, Xiao X, Dong X A, Dong F, Zhang W. Chin. J. Catal., 2017, 38(2): 217.

doi: 10.1016/S1872-2067(17)62753-0     URL    
[58]
Chen R M, Wang H, Wu H Z, Sheng J P, Li J Y, Cui W, Dong F. Chin. J. Catal., 2020, 41(4): 710.

doi: 10.1016/S1872-2067(19)63472-8     URL    
[59]
Gong S W, Zhu G Q, Bello I A, Rao F, Li S P, Gao J Z, Zubairu S M, Peng J H, Hojamberdiev M. J. Chem. Technol. Biotechnol., 2020, 95(6): 1705.
[60]
Wang H, Sun Y J, He W J, Zhou Y, Lee S C, Dong F. Nanoscale, 2018, 10(33): 15513.

doi: 10.1039/C8NR03845G     URL    
[61]
Wang H, Cui W, Dong X A, Li J Y, Chen Q S, Wang Z M, Sun Y J, Sheng J P, Zhou Y, Zhang Y X, Dong F. Chem. Eng. J., 2020, 390: 124609.

doi: 10.1016/j.cej.2020.124609     URL    
[62]
Shi X, Wang P Q, Wu Y J, Xing X, Bai Y. J. Mater. Sci. Mater. Electron., 2019, 30(21): 19154.

doi: 10.1007/s10854-019-02272-2     URL    
[63]
Sun Y J, Liao J Z, Dong F, Wu S J, Sun L D. Chin. J. Catal., 2019, 40(3): 362.

doi: 10.1016/S1872-2067(18)63187-0     URL    
[64]
Zhu G Q, Hojamberdiev M, Zhang S L, Din S T U, Yang W. Appl. Surf. Sci., 2019, 467/468: 968.

doi: 10.1016/j.apsusc.2018.10.246     URL    
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[9] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[10] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[11] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[12] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[13] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[14] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[15] 毕洪飞, 刘劲松, 吴正颖, 索赫, 吕学良, 付云龙. 硫化铟锌的改性合成及光催化特性[J]. 化学进展, 2021, 33(12): 2334-2347.