English
新闻公告
More
化学进展 2021, Vol. 33 Issue (5): 713-725 DOI: 10.7536/PC210102   后一篇

• 研究论文 •

大气细颗粒物引发的神经毒性和分子机理

张雨竹1,2, 詹菁1, 刘倩1,*(), 周群芳1,2,3, 江桂斌1   

  1. 1 中国科学院生态环境研究中心 环境化学与生态毒理学国家重点实验室 北京 100085
    2 中国科学院大学资源与环境学院 北京 100049
    3 中国科学院大学杭州高等研究院环境学院 杭州 310000
  • 收稿日期:2021-01-07 修回日期:2021-01-31 出版日期:2021-05-20 发布日期:2021-03-04
  • 通讯作者: 刘倩
  • 作者简介:
    * Corresponding author E-mail:
  • 基金资助:
    国家自然科学基金项目(91943301); 国家自然科学基金项目(21806178); 国家自然科学基金项目(21527901)

Neurotoxicity Induced by Atmospheric Fine Particulate Matters and the Underlying Molecular Mechanism

Yuzhu Zhang1,2, Jing Zhan1, Qian S. Liu1,*(), Qunfang Zhou1,2,3, Guibin Jiang1   

  1. 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    3 School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
  • Received:2021-01-07 Revised:2021-01-31 Online:2021-05-20 Published:2021-03-04
  • Contact: Qian Liu
  • Supported by:
    National Natural Science Foundation of China(91943301); National Natural Science Foundation of China(21806178); National Natural Science Foundation of China(21527901)

大气细颗粒物(Atmospheric fine particulate matters,PMs)对人体健康产生的潜在危害已得到广泛关注。越来越多的研究表明,PMs暴露可产生呼吸、心血管系统等损伤影响,然而PMs是否可以进入大脑并产生神经毒性,一直是近年来大气雾霾健康效应的重要研究方向。本文通过梳理现有流行病学研究证据以及体内外实验相关结果,讨论了PMs调控脑神经毒理学效应的潜在途径、不同生理阶段脑神经组织的损伤效应及其内在分子机理。据报道,大气PMs可通过血脑屏障途径和嗅觉神经途径和微生物群肠脑轴等影响神经系统。氧化应激、线粒体损伤、炎症、DNA损伤、表观遗传调节、血液稳态以及几个关键的信号通路被发现与大气PMs暴露引起的神经毒性有关。本文提出了进一步研究PMs神经毒理学效应,特别是针对特殊人群如儿童等神经发育的影响等方面研究的需求。在此基础上,本文指出了今后该领域的研究方向,为大气PMs的神经毒性和公共卫生危害的评价提供了理论依据。

The health effect of atmospheric fine particulate matters(PMs) is now being increasingly concerned, and a growing number of epidemiological studies have reported the adverse impacts of PMs on the respiratory system, cardiovascular system, etc. However, whether PMs can enter the brain and cause neurotoxicities or not remains unknown, which has been an important research direction for the health risk evaluation of atmospheric smog in recent years. Based on the relevant epidemiological studies and experimental evidences in vitro and in vivo, this paper summarizes the potential pathways regulating the neurotoxicity of atmospheric PMs, their detrimental effects on the adult, elderly, and developmental nervous systems, as well as the underlying molecular mechanisms. Atmospheric PMs were reported to affect the nervous system through the blood-brain barrier pathway, the olfactory nerve pathway, the microbiota-gut-brain axis, etc. Herein, oxidative stress, mitochondrial damage, inflammation, DNA damage, epigenetic regulation, hematological homeostasis, and several key signaling pathways were found to be involved in the observed neurotoxicities caused by atmospheric PM exposure. This review aims to reveal the neurotoxicities of atmospheric PMs, especially their neurodevelopmental effects on special populations such as children. On this basis, this article points out the future research directions in this field, providing a theoretical basis for the evaluation of neurotoxicities and public health hazards of atmospheric PMs.

Contents

1 Introduction

2 Epidemiological studies on neurological diseases induced by PM exposure

2.1 Developmental nervous system

2.2 Adult nervous system

2.3 Elderly nervous system

3 Pathways by which PMs affect the nervous system

3.1 The blood-brain barrier pathway

3.2 The olfactory nerve pathway

3.3 Other pathways

4 Experimental findings on neurotoxic effects of PMs

4.1 In vitro experiments

4.2 In vivo experiments

5 Molecular mechanisms underlying the neurotoxicities of PMs

5.1 Oxidative stress and mitochondrial damage

5.2 Inflammation

5.3 Key signaling pathways regulating the neurotoxicities of PMs

5.4 DNA damage and epigenetic regulation

5.5 Effects on hematological homeostasis

6 Prospects and research points

()
表1 大气颗粒物神经生物学效应的流行病学调查结果
Table 1 The epidemiological findings on neurological effects of atmospheric particulate matters
Population Scale Research design Exposure method Exposure estimate Main findings ref
Pregnant women
living in four
residential areas of
Beijing(1988~1991)
74 671 Multiple linear
regression, logistic
regression
Total suspended particles(TSP), SO2 Low birth weight Wang
et al.[46]
Preterm birth records in Pennsylvania(1997~2001) Time-series analysis PM10, SO2 Increase in preterm birth risk Sagiv
et al.[48]
Birth records in Atlanta(1994-2004) 476 489 Time-series analysis, Poisson
generalized linear
models
PM10, PM2.5,
NO, NO2,
SO2, O3
Data collected from air quality monitors Increase in preterm birth risk Darrow
et al.[47]
Urban children 267 Distributed lag
models, intelligence assessment
PM2.5 Spatio-temporally resolved prediction
model
Exposure in specific prenatal windows was associated with poor intellectual functions Chiu
et al.[51]
Representative children in Japan since 2001 33 911 Multilevel logistic
regression analysis
PMs, NO2,
SO2
Stunting Yorifuji
et al.[52]
Newborns of Rome
GASPII project
719 Wechsler Intelligence Scale for Children-Ⅲ, linear
regression model
PM2.5, NO2 Land use regression
models
Cognitive impairment Porta
et al.[53]
Mother-child pairs in
Massachusetts(USA)
1109 Linear regression
models
PM2.5, black
carbon(BC)
Space-time LUR model Partial cognitive
decline
Harris
et al.[54]
NHS II autism spectrum disorder children(USA) 245 Linear regression
models
PM2.5, PM2.5-10 Spatio-temporal prediction model PM2.5 is associated with an increased risk of autism Raanan
et al.[60]
Autism children born in Carolina 979 Multiple regression
analysis
PM10 Statistical interpolation method Third-trimester exposure is associated with an increased risk of autism Kalkbrenner
et al.[58]
Children from 39 schools in Barcelona exposed to traffic-related air
pollution(7~10 y)
2715 Stratified analyses Traffic source
UFP
Linear mixed effects models Higher traffic-related air pollution made children a smaller improvement in cognitive development Sunyer
et al.[63]
Patients with acute
ischemic stroke in
Ontario, Canada
9202 Time-stratified case-crossover design, random-effects meta-analysis techniques Increased risk of
particulate-related ischemic strokes
O’Donnell
et al.[30]
City populations with high-level exposure to air pollution Cognitive and
neurological integrity testing, genome
analysis
Accumulation of COX2 and Aβ42 in nerve cells Lilian
et al.[64]
Healthy adults 27 Serum and plasma were collected and analyzed for inflammatory cytokines Filtered air
(FA) and diesel exhaust(DE)
Cortical stress response Cliff
et al.[74]
Populations in northern Sweden 1806 Cohort analysis PM2.5-10, PM2.5 Spatiotemporal smoothing model Cognitive decline was speed up Oudin
et al.[66]
MS-related hospitalization in
Lombardy region, Italy,(2001~2009)
8287 Poisson regression analysis PM10 Daily concentrations
from 53 monitoring sites
Determining MS
occurrence and relapses
Laura
et al.[65]
Populations(> 65 y) 95 690 Cohort study, Cox proportional hazards model O3, PM2.5 Air data from Taiwan Environmental Protection Agency Long-term exposure
increased the risk of AD
Zhong
et al.[73]
US women(70~81y) 19 409 Cognitive test Exposure to
PM2.5-10 and
PM2.5 in the last month or for a long term of 7~14 years
Geographic information system-based spatiotemporal smoothing models Cognitive decline of old women Weuve
et al.[13]
表2 大气颗粒物神经毒理学效应的实验研究结果
Table 2 Experimental findings on neurotoxic effects of PMs
Experimental model Exposure method Exposure time Main findings ref
In vivo In vitro
/ Primary mouse
hippocampal neurons
PM2.5 24 h PM2.5 elevated COX-2 expression,increased the amplitude of excitatory postsynaptic potentials by ROS-NF-κB pathway Li et al.[38]
/ Rat microglia SiO2NPs, TiO2NPs, HAPNPs, Fe3O4NPs 24 h Microglial activation and the release of proinflammatory factors Xue et al.[89]
/ Human neuroblastoma SH-SY5Y cells Diesel exhaust particle 3, 24 h Gluconeogenesis Ji et al.[90]
/ Human neuroblastoma SH-SY5Y cells PM2.5 and its extracts 72 h Oxidative stress-mediated abnormal DNA hydroxymethylation Wei et al.[91]
/ Mixed glia derived from neonatal rat cerebral cortex. traffic ultrafine
particulate matter
24 h Microglia-derived TNF-α increased Cheng
et al.[33]
/ Primary culture of mouse olfactory bulb and olfactory
epithelial cells
Urban traffic ultrafine particulate matter
(< 200 nm)
5, 20, 45 h inflammation during different time courses Cheng
et al.[79]
/ BV-2 microglia am-PM2.5, pm-PM2.5 24 h Am-PM2.5 had a higher pro-
inflammatory activity than pm-PM2.5
Lovett
et al.[92]
C57BL/6J mice / PM2.5, SO2 and NO2 co-exposure 28 days Impaired spatial learning and memory, mitochondrial dysfunction Ku et al.[40]
Male SD rat / PM2.5 12 weeks Morphological abnormalities of the hippocampus, abnormal expression of neurotransmitters and receptors. Li et al.[93]
Nrf2-/- mice Astrocyte PM2.5 24 weeks NF-κB induced metabolic disorders and neuroinflammation Xu et al.[96]
ApoE-/-mice,
C57BL/6 mice
/ PMs 6 h/day
(30 days)
Disruption of blood-brain barrier and increased inflammatory marker expression Oppenheim et al.[100]
ApoE-/- mice / Low concentrations of PM2.5 6 h/day
(30 days)
PM2.5 altered vasomotor tone, induced vascular inflammation, and potentiated atherosclerosis Sun et al.[99]
ApoE-/- mice / Mixture of gasoline and diesel engine exhaust 6 h/day
(30 days)
Increased levels of oxidative stress in microvascular Lucero et al.[101]
[1]
Van Donkelaar A, Martin R V, Brauer M, Boys B L. Environ. Health Perspect., 2015, 123(2):135.

doi: 10.1289/ehp.1408646     URL    
[2]
Xu X H, Ha S U, Basnet R. Front Public Health, 2016, 4:157.
[3]
江桂斌(Jiang G B ), 王春霞(Wang C X ), 张爱茜(Zhang A Q). 大气细颗粒物的毒理与健康效应(Toxicology and Health Effects of Atmospheric Fine Particles). 北京:科学出版社 (Beijing: Science Press), 2020.1.
[4]
World Health Organization. Public Health Environ., 2014.
[5]
Tao Y, Liu Y, Mi S, Guo Y. Acta Sci. Circum. 2014, 34(3):592.
[6]
Huang X, Han X, Li S, Yang H, Huang C, Huang T. Res. Environ. Sci., 2017, 30(7):1001.
[7]
Peters A, Veronesi B, Calderón-Garcidueñas L, Gehr P, Chen L C, Geiser M, Reed W, Rothen-Rutishauser B, Schürch S, Schulz H. Part. Fibre Toxicol., 2006, 3(1):1.

doi: 10.1186/1743-8977-3-1     URL    
[8]
Tian Y Z, Chen G, Wang H T, Huang-Fu Y Q, Shi G L, Han B, Feng Y C. Chemosphere, 2016, 147:256.

doi: 10.1016/j.chemosphere.2015.12.132     URL    
[9]
Tonne C, Elbaz A, Beevers S, Singh-Manoux A. Epidemiology, 2014, 25(5):674.

doi: 10.1097/EDE.0000000000000144     URL    
[10]
Ranft U, Schikowski T, Sugiri D, Krutmann J, Krämer U. Environ. Res., 2009, 109(8):1004.

doi: 10.1016/j.envres.2009.08.003     URL    
[11]
Gatto N M, Henderson V W, Hodis H N, St John J A, Lurmann F, Chen J C, Mack W J. NeuroToxicology, 2014, 40:1.

doi: 10.1016/j.neuro.2013.09.004     URL    
[12]
Chen J C, Schwartz J. NeuroToxicology, 2009, 30(2):231.

doi: 10.1016/j.neuro.2008.12.011     URL    
[13]
Weuve J, Puett R C, Schwartz J, Yanosky J D, Laden F, Grodstein F. Arch Intern Med, 2012, 172(3):219.

doi: 10.1001/archinternmed.2011.683     URL    
[14]
Ailshire J A, Crimmins E M. Am. J. Epidemiol., 2014, 180(4):359.

doi: 10.1093/aje/kwu155     URL    
[15]
Ku T T, Chen M J, Li B, Yun Y, Li G K, Sang N. Toxicol. Res., 2017, 6(1):7.

doi: 10.1039/C6TX00314A     URL    
[16]
Pardo M, Qiu X H, Zimmermann R, Rudich Y. Chem. Res. Toxicol. 2020, 33(5):1110.

doi: 10.1021/acs.chemrestox.0c00007     URL    
[17]
Calderón-Garcidueñas L, Calderón-Garcidueñas A, Torres-Jardón R, Avila-Ramírez J, Kulesza R J, Angiulli A D. Prim. Heal. Care Res. Dev., 2015, 16(4):329.
[18]
Bernstein J A, Alexis N, Barnes C, Bernstein I L, Nel A, Peden D, Diaz-Sanchez D, Tarlo S M, Williams P B, Bernstein J A. J. Allergy Clin. Immunol., 2004, 114(5):1116.

doi: 10.1016/j.jaci.2004.08.030     URL    
[19]
Dockery D W, Pope C A, Xu X P, Spengler J D, Ware J H, Fay M E, Ferris B G, Speizer F E. N Engl J. Med., 1993, 329(24):1753.

doi: 10.1056/NEJM199312093292401     URL    
[20]
Dockery D W. Environ. Health Perspect., 2001, 109:483.
[21]
Dockery D W, Pope C A. Annu. Rev. Public Heal., 1994, 15(1):107.
[22]
Møller P, Jacobsen N R, Folkmann J K, Danielsen P H, Mikkelsen L, Hemmingsen J G, Vesterdal L K, Forchhammer L, Wallin H, Loft S. Free. Radic. Res., 2010, 44(1):1.

doi: 10.3109/10715760903300691     URL    
[23]
Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Inhal. Toxicol., 2004, 16(6/7):437.

doi: 10.1080/08958370490439597     URL    
[24]
Wu Y C, Lin Y C, Yu H L, Chen J H, Chen T F, Sun Y, Wen L L, Yip P K, Chu Y M, Chen Y C. Alzheimer’s Dement.: Diagn. Assess. Dis. Monit., 2015, 1(2):220.
[25]
Mutlu E A, Comba I Y, Cho T, Engen P A, Yazıcı C, Soberanes S, Hamanaka R B, Niğdelioğlu R, Meliton A Y, Ghio A J, Budinger G R S, Mutlu G M. Environ. Pollut., 2018, 240:817.

doi: 10.1016/j.envpol.2018.04.130     URL    
[26]
Lombardi V C, de Meirleir K L, Subramanian K, Nourani S M, Dagda R K, Delaney S L, Palotás A. J. Nutr. Biochem., 2018, 61:1.

doi: 10.1016/j.jnutbio.2018.04.004     URL    
[27]
Shou Y K, Huang Y L, Zhu X Z, Liu C Q, Hu Y, Wang H H. Ecotoxicol. Environ. Saf., 2019, 174:344.

doi: 10.1016/j.ecoenv.2019.02.086     URL    
[28]
Malek A M, Barchowsky A, Bowser R, Heiman-Patterson T, Lacomis D, Rana S, Youk A, Talbott E O. Environ. Pollut., 2015, 197:181.

doi: 10.1016/j.envpol.2014.12.010     URL    
[29]
Calderón-Garcidueñas L, Avila-Ramírez J, Calderón-Garcidueñas A, González-Heredia T, Acuña-Ayala H, Chao C K, Thompson C, Ruiz-Ramos R, Cortés-González V, Martínez-Martínez L, García-Pérez M A, Reis J, Mukherjee P S, Torres-Jardón R, Lachmann I. J. Alzheimer’s Dis., 2016, 54(2):597.
[30]
O’donnell M J, Fang J, Mittleman M A, Kapral M K, Wellenius G A, Epidemiology, 2011, 22(3):422.

doi: 10.1097/EDE.0b013e3182126580     URL    
[31]
Lim Y H, Kim H, Kim J H, Bae S, Park H Y, Hong Y C. Environ. Heal. Perspect., 2012, 120(7):1023.

doi: 10.1289/ehp.1104100     URL    
[32]
Lampron A, ElAli A, Rivest S. Neuron, 2013, 78(2):214.

doi: 10.1016/j.neuron.2013.04.005     URL    
[33]
Cheng H, Davis D A, Hasheminassab S, Sioutas C, Morgan T E, Finch C E. J. Neuroinflammation, 2016, 13(1):1.

doi: 10.1186/s12974-015-0467-5     URL    
[34]
Hogan M K, Kovalycsik T, Sun Q H, Rajagopalan S, Nelson R J. Behav. Brain Res., 2015, 294:81.

doi: 10.1016/j.bbr.2015.07.033     URL    
[35]
Verma V, Fang T, Xu L, Peltier R E, Russell A G, Ng N L, Weber R J. Environ. Sci. Technol., 2015, 49(7):4646.

doi: 10.1021/es505577w     URL    
[36]
Berson A, Nativio R, Berger S L, Bonini N M. Trends Neurosci., 2018, 41(9):587.

doi: 10.1016/j.tins.2018.05.005     URL    
[37]
Gondalia R, Baldassari A, Holliday K M, Justice A E, Méndez-Giráldez R, Stewart J D, Liao D P, Yanosky J D, Brennan K J M, Engel S M, Jordahl K M, Kennedy E, Ward-Caviness C K, Wolf K, Waldenberger M, Cyrys J, Peters A, Bhatti P, Whitsel E A. Environ. Int., 2019, 132:104723.

doi: S0160-4120(18)32932-5     pmid: 31208937
[38]
Li B, Guo L, Ku T T, Chen M J, Li G K, Sang N. Chemosphere, 2018, 190:124.

doi: 10.1016/j.chemosphere.2017.09.098     URL    
[39]
Acaz-Fonseca E, Ortiz-Rodriguez A, Azcoitia I, Garcia-Segura L M, Arevalo M A. Cell Death Discov., 2019, 5(1):1.
[40]
Ku T T, Ji X T, Zhang Y Y, Li G K, Sang N. Chemosphere, 2016, 163:27.

doi: 10.1016/j.chemosphere.2016.08.009     URL    
[41]
Calderón-Garcidueñas L, Engle R, Mora-Tiscareño A, Styner M, Gómez-Garza G, Zhu H T, Jewells V, Torres-Jardón R, Romero L, Monroy-Acosta M E, Bryant C, González-González L O, Medina-Cortina H, D’Angiulli A. Brain Cogn., 2011, 77(3):345.

doi: 10.1016/j.bandc.2011.09.006     pmid: 22032805
[42]
Brown R C, Lockwood A H, Sonawane B R. Environ. Heal. Perspect., 2005, 113(9):1250.

doi: 10.1289/ehp.7567     URL    
[43]
Guxens M, Sunyer J. Swiss Med Wkly, 2012, 141:w13322.
[44]
Fox M A, Tran N L, Groopman J D, Burke T A. Regul. Toxicol. Pharmacol., 2004, 40(3):305.

doi: 10.1016/j.yrtph.2004.07.008     URL    
[45]
Landrigan P J, Sonawane B, Butler R N, Trasande L, Callan R, Droller D. Environ. Heal. Perspect., 2005, 113(9):1230.

doi: 10.1289/ehp.7571     URL    
[46]
Wang X, Ding H, Ryan L, Xu X. Environ. Heal. Perspect., 1997, 105(5):514.

doi: 10.1289/ehp.97105514     URL    
[47]
Darrow L A, Klein M, Flanders W D, Waller L A, Correa A, Marcus M, Mulholland J A, Russell A G, Tolbert P E. Epidemiology, 2009, 20(5):689.

doi: 10.1097/EDE.0b013e3181a7128f     URL    
[48]
Sagiv S K, Mendola P, Loomis D, Herring A H, Neas L M, Savitz D A, Poole C. Environ. Heal. Perspect., 2005, 113(5):602.

doi: 10.1289/ehp.7646     URL    
[49]
Choi H, Rauh V, Garfinkel R, Tu Y, Perera F P. Environ. Heal. Perspect., 2008, 116(5):658.

doi: 10.1289/ehp.10958     URL    
[50]
Marshall E G, Harris G, Wartenberg D. Birth Defects Res. Part A: Clin. Mol. Teratol., 2010, 88(4):205.

doi: 10.1002/bdra.v88:4     URL    
[51]
Chiu Y H M, Hsu H H L, Coull B A, Bellinger D C, Kloog I, Schwartz J, Wright R O, Wright R J. Environ. Int., 2016, 87:56.

doi: 10.1016/j.envint.2015.11.010     URL    
[52]
Yorifuji T, Kashima S, Diez M H, Kado Y, Sanada S, Doi H. Epidemiology, 2016, 27(1):57.

doi: 10.1097/EDE.0000000000000361     pmid: 26247490
[53]
Porta D, Narduzzi S, Badaloni C, Bucci S, Cesaroni G, Colelli V, Davoli M, Sunyer J, Zirro E, Schwartz J, Forastiere F. Epidemiology, 2015:1.
[54]
Harris M H, Gold D R, Rifas-Shiman S L, Melly S J, Zanobetti A, Coull B A, Schwartz J D, Gryparis A, Kloog I, Koutrakis P, Bellinger D C, White R F, Sagiv S K, Oken E. Environ. Heal. Perspect., 2015, 123(10):1072.

doi: 10.1289/ehp.1408803     URL    
[55]
Liu J H, Lewis G. J Environ Health, 2014, 76(6):130.
[56]
Zanchi A C T, Fagundes L S, Barbosa F, Bernardi R, Rhoden C R, Saldiva P H N, do Valle A C,. Inhal. Toxicol., 2010, 22(11):910.

doi: 10.3109/08958378.2010.494313     pmid: 20569119
[57]
Genc S, Zadeoglulari Z, Fuss S H, Genc K. J. Toxicol., 2012, 2012:1.
[58]
Kalkbrenner A E, Windham G C, Serre M L, Akita Y, Wang X X, Hoffman K, Thayer B P, Daniels J L. Epidemiology, 2015, 26(1):30.

doi: 10.1097/EDE.0000000000000173     pmid: 25286049
[59]
Talbott E O, Arena V C, Rager J R, Clougherty J E, Michanowicz D R, Sharma R K, Stacy S L. Environ. Res., 2015, 140:414.

doi: 10.1016/j.envres.2015.04.021     URL    
[60]
Raz R, Roberts A L, Lyall K, Hart J E, Just A C, Laden F, Weisskopf M G. Environ. Health Perspect., 2015, 123(3):264.

doi: 10.1289/ehp.1408133     URL    
[61]
Polanczyk G, de Lima M S, Horta B L, Biederman J, Rohde L A. Am. J. Psychiatry, 2007, 164(6):942.

doi: 10.1176/ajp.2007.164.6.942     URL    
[62]
Donzelli G, Llopis-Gonzalez A, Llopis-Morales A, Cioni L, Morales-Suárez-varela M. Int. J. Environ. Res. Public Heal., 2019, 17(1):67.
[63]
Sunyer J, Esnaola M, Alvarez-Pedrerol M, Forns J, Rivas I, López-Vicente M, Suades-González E, Foraster M, Garcia-Esteban R, Basagaña X, Viana M, Cirach M, Moreno T, Alastuey A, Sebastian-Galles N, Nieuwenhuijsen M, Querol X. PLoS Med., 2015, 12(3):e1001792.

doi: 10.1371/journal.pmed.1001792     URL    
[64]
Calderón-Garcidueñas L, Reed W, Maronpot R R, Henriquez-Roldán C, Delgado-Chavez R, Calderón-Garcidueñas A, Dragustinovis I, Franco-Lira M, Aragón-Flores M, Solt A C, Altenburg M, Torres-Jardón R, Swenberg J A. Toxicol. Pathol., 2004, 32(6):650.

pmid: 15513908
[65]
Angelici L, Piola M, Cavalleri T, Randi G, Cortini F, Bergamaschi R, Baccarelli A A, Bertazzi P A, Pesatori A C, Bollati V. Environ. Res., 2016, 145:68.

doi: 10.1016/j.envres.2015.11.017     URL    
[66]
Oudin A, Forsberg B, Adolfsson A N, Lind N, Modig L, Nordin M, Nordin S, Adolfsson R, Nilsson L G. Environ. Heal. Perspect., 2016, 124(3):306.

doi: 10.1289/ehp.1408322     URL    
[67]
Anderson H R, Atkinson R W, Bremner S A, Marston L. Eur. Respir. J., 2003, 21:39.
[68]
Goldberg M S, Burnett R T, Bailar J C, Tamblyn R, Ernst P, Flegel K, Brook J, Bonvalot Y, Singh R, Valois M F, Vincent R. Environ. Heal. Perspect., 2001, 109:487.
[69]
Calderón-Garcidueñas L, Kavanaugh M, Block M, D’Angiulli A, Delgado-Chávez R, Torres-Jardón R, González-Maciel A, Reynoso-Robles R, Osnaya N, Villarreal-Calderon R, Guo R X, Hua Z W, Zhu H T, Perry G, Diaz P. J. Alzheimer’s Dis., 2012, 28(1):93.
[70]
Levesque S, Surace M J, McDonald J, Block M L. J. Neuroinflammation, 2011, 8(1):1.

doi: 10.1186/1742-2094-8-1     URL    
[71]
Calderón-Garcidueñas L, Mora-Tiscareño A, Ontiveros E, Gómez-Garza G, Barragán-Mejía G, Broadway J, Chapman S, Valencia-Salazar G, Jewells V, Maronpot R R, Henríquez-Roldán C, Pérez-Guillé B, Torres-Jardón R, Herrit L, Brooks D, Osnaya-Brizuela N, Monroy M E, González-Maciel A, Engle R W. Brain Cogn., 2008, 68(2):117.

doi: 10.1016/j.bandc.2008.04.008     pmid: 18550243
[72]
Inserra S G, Phifer B L, Anger W K, Lewin M, Hilsdon R, White M C. Environ. Res., 2004, 95(1):53.

pmid: 15068930
[73]
Jung C R, Lin Y T, Hwang B F. J. Alzheimers Dis., 2015, 44(2):573.

doi: 10.3233/JAD-140855     URL    
[74]
Cliff R, Curran J, Hirota J A, Brauer M, Feldman H, Carlsten C. Inhal. Toxicol., 2016, 28(3):145.

doi: 10.3109/08958378.2016.1145770     URL    
[75]
Chen R, Hu B, Liu Y, Xu J X, Yang G S, Xu D D, Chen C Y. Biochim. et Biophys. Acta BBA-Gen. Subj., 2016, 1860(12):2844.
[76]
Miller D S, Bauer B, Hartz A M. Pharmacol. Rev., 2008, 60(2):196.

doi: 10.1124/pr.107.07109     URL    
[77]
Block M L, Elder A, Auten R L, Bilbo S D, Chen H L, Chen J C, Cory-Slechta D A, Costa D, Diaz-Sanchez D, Dorman D C, Gold D R, Gray K, Jeng H A, Kaufman J D, Kleinman M T, Kirshner A, Lawler C, Miller D S, Wright R J. Neuro Toxicology, 2012, 33(5):972.
[78]
Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G. Environ. Heal. Perspect., 2006, 114(8):1172.

doi: 10.1289/ehp.9030     URL    
[79]
Cheng H, Saffari A, Sioutas C, Forman H J, Morgan T E, Finch C E. Environ. Health Perspect., 2016, 124(10):1537.

doi: 10.1289/EHP134     URL    
[80]
Beattie E C, Stellwagen D, Morishita W, Bresnahan J C, Ha B K, Von Zastrow M, Beattie M S, Malenka R C. Science, 2002, 295(5563):2282.

doi: 10.1126/science.1067859     URL    
[81]
Sender R, Fuchs S, Milo R. PLoS Biol, 2016, 14(8):e1002533.

doi: 10.1371/journal.pbio.1002533     URL    
[82]
Sanmarco L M, Wheeler M A, Gutiérrez-Vázquez C, Polonio C M, Linnerbauer M, Pinho-Ribeiro F A, Li Z R, Giovannoni F, Batterman K V, Scalisi G, Zandee S E J, Heck E S, Alsuwailm M, Rosene D L, Becher B, Chiu I M, Prat A, Quintana F J. Nature, 2021, 590(7846):473.

doi: 10.1038/s41586-020-03116-4     URL    
[83]
Ning Y Y, Imrich A, Goldsmith C A, Qin C Z, Kobzik L. J. Toxic. Environ. Health A., 2000, 59(3):165.

doi: 10.1080/009841000156952     URL    
[84]
Biesmans S, Meert T F, Bouwknecht J A, Acton P D, Davoodi N, de Haes P, Kuijlaars J, Langlois X, Matthews L J R, Ver Donck L, Hellings N, Nuydens R. Mediat. Inflamm., 2013, 2013:1.
[85]
Mutlu E A, Engen P A, Soberanes S, Urich D, Forsyth C B, Nigdelioglu R, Chiarella S E, Radigan K A, Gonzalez A, Jakate S, Keshavarzian A, Budinger G S, Mutlu G M. Part. Fibre Toxicol., 2011, 8(1):1.

doi: 10.1186/1743-8977-8-1     URL    
[86]
Nemmar A, Holme J A, Rosas I, Schwarze P E, Alfaro-Moreno E. Biomed Res. Int., 2013, 2013:1.
[87]
Silva R F M, Falcão A S, Fernandes A, Gordo A C, Brito M A, Brites D. Toxicol. Lett., 2006, 163(1):1.

pmid: 16257146
[88]
Lu M, Yan X F, Si Y, Chen X Z. Inflammation, 2019, 42(5):1693.

doi: 10.1007/s10753-019-01029-7     URL    
[89]
Xue Y, Wu J, Sun J. Toxicol. Lett., 2012, 214(2):91.

doi: 10.1016/j.toxlet.2012.08.009     URL    
[90]
Ji Y, Stone C, Guan L F, Peng C Y, Han W. Neurol. Res., 2019, 41(8):742.

doi: 10.1080/01616412.2019.1609170     URL    
[91]
Wei H Y, Feng Y, Liang F, Cheng W, Wu X M, Zhou R, Wang Y. Toxicology, 2017, 380:94.

doi: 10.1016/j.tox.2017.01.017     URL    
[92]
Lovett C, Cacciottolo M, Shirmohammadi F, Haghani A, Morgan T E, Sioutas C, Finch C E. F1000 Research, 2018, 7:596.
[93]
Li Q Z, Zheng J L, Xu S, Zhang J S, Cao Y H, Qin Z L, Liu X Q, Jiang C Y. Toxicol Res., 2018, 7(6):1144.

doi: 10.1039/C8TX00093J     URL    
[94]
Tian X Y, Yun S F, Guo L Q, Dong M, Xu L X, Zhao Z G. Chin. J. Comp. Med., 2009, 19(2):50.
( 田小芸, 恽时锋, 郭联庆, 董敏, 许龙祥, 赵志刚. 中国比较医学杂志, 2009, 19(2):50.).
[95]
Li J, Stein T D, Johnson J A. Physiol. Genom., 2004, 18(3):261.

doi: 10.1152/physiolgenomics.00209.2003     URL    
[96]
Xu M X, Zhu Y F, Chang H F, Liang Y. Free. Radic. Biol. Med., 2016, 99:259.

doi: 10.1016/j.freeradbiomed.2016.08.021     URL    
[97]
Mahley R W, Nathan B P, Pitas R E. New York Acad. Sciences, 1996.139.
[98]
Yang X L, Zhang W G. Chin. J. Geront., 2006, 26(7):999.
[99]
Sun Q H, Wang A X, Jin X M, Natanzon A, Duquaine D, Brook R D, Aguinaldo J G, Fayad Z A, Fuster V, Lippmann M, Chen L C, Rajagopalan S. JAMA, 2005, 294(23):3003.

doi: 10.1001/jama.294.23.3003     URL    
[100]
Calderón-Garcidueñas L, Solt A C, Henríquez-Roldán C, Torres-Jardón R, Nuse B, Herritt L, Villarreal-Calderón R, Osnaya N, Stone I, García R, Brooks D M, González-Maciel A, Reynoso-Robles R, Delgado-Chávez R, Reed W. Toxicol. Pathol., 2008, 36(2):289.

doi: 10.1177/0192623307313011     pmid: 18349428
[101]
Lucero J, Suwannasual U, Herbert L M, McDonald J D, Lund A K. Inhal. Toxicol., 2017, 29(6):266.

doi: 10.1080/08958378.2017.1357774     pmid: 28816559
[102]
Lodovici M, Bigagli E. J. Toxicol., 2011, 2011:1.
[103]
Sarma S N, Blais J M, Chan H M. J. Toxicol. Environ. Heal. Part A, 2017, 80(5):285.
[104]
Wang Y, Zhang M, Li Z P, Yue J W, Xu M, Zhang Y H, Yung K K L, Li R J. Chemosphere, 2019, 218:577.

doi: 10.1016/j.chemosphere.2018.11.149     URL    
[105]
Knaapen A M, Schins R P F, Polat D, Becker A, Borm P J A. Mol. Cell. Biochem., 2002, 234(1):143.
[106]
Islam M T. Neurol. Res., 2017, 39(1):73.

doi: 10.1080/01616412.2016.1251711     URL    
[107]
Zhang Q, Li Q Z, Ma J C, Zhao Y P. Environ. Pollut., 2018, 242:994.

doi: 10.1016/j.envpol.2018.07.031     URL    
[108]
Saijo K, Winner B, Carson C T, Collier J G, Boyer L, Rosenfeld M G, Gage F H, Glass C K. Cell, 2009, 137(1):47.

doi: 10.1016/j.cell.2009.01.038     URL    
[109]
Glass C K, Saijo K, Winner B, Marchetto M C, Gage F H. Cell, 2010, 140(6):918.

doi: 10.1016/j.cell.2010.02.016     URL    
[110]
Crumrine R C, Thomas A L, Morgan P F. J. Cereb. Blood Flow Metab., 1994, 14(6):887.

doi: 10.1038/jcbfm.1994.119     URL    
[111]
Campbell A, Araujo J A, Li H H, Sioutas C, Kleinman M. J. Nanosci. Nanotechnol., 2009, 9(8):5099.

doi: 10.1166/jnn.2009.GR07     URL    
[112]
Chen X Y, Liu S, Zhang W, Wu C Y, Liu H C, Zhang F, Lu Z B, Ding W J. Biochem. Biophys. Res. Commun., 2018, 505(4):1154.

doi: 10.1016/j.bbrc.2018.10.057     URL    
[113]
Gualtieri M, Øvrevik J, Mollerup S, Asare N, Longhin E, Dahlman H J, Camatini M, Holme J A. Mutat. Res. Mol. Mech. Mutagen., 2011, 713(1/2):18.
[114]
Gualtieri M, Øvrevik J, Holme J A, Perrone M G, Bolzacchini E, Schwarze P E, Camatini M. Toxicol. Vitro, 2010, 24(1):29.

doi: 10.1016/j.tiv.2009.09.013     URL    
[115]
Oh S M, Kim H R, Park Y J, Lee S Y, Chung K H. Mutat. Res. Toxicol. Environ. Mutagen., 2011, 723(2):142.

doi: 10.1016/j.mrgentox.2011.04.003     URL    
[116]
Wang T, Pan Q, Lin L, Szulwach K E, Song C X, He C, Wu H, Warren S T, Jin P, Duan R H, Li X K. Hum. Mol. Genet., 2012, 21(26):5500.

doi: 10.1093/hmg/dds394     URL    
[117]
Liang J, Yang F, Zhao L, Bi C W, Cai B Z. Oncotarget, 2016, 7(30):48813.

doi: 10.18632/oncotarget.9281     pmid: 27183914
[118]
Wei H Y, Liang F, Meng G, Nie Z Q, Zhou R, Cheng W, Wu X M, Feng Y, Wang Y. Sci. Rep., 2016, 6(1):1.

doi: 10.1038/s41598-016-0001-8     URL    
[119]
Lu D W, Luo Q, Chen R, Zhuansun Y X, Jiang J, Wang W C, Yang X Z, Zhang L Y, Liu X L, Li F, Liu Q, Jiang G B. Nat. Commun., 2020, 11(1):1.

doi: 10.1038/s41467-019-13993-7     URL    
[120]
Jin X T, Ma Q C, Sun Z D, Yang X Z, Zhou Q F, Qu G B, Liu Q, Liao C Y, Li Z Y, Jiang G B. Environ. Sci. Technol., 2019, 53(5):2840.

doi: 10.1021/acs.est.8b05817     URL    
[121]
Gofrit S G, Shavit-Stein E. Neural Regen Res, 2019, 14(12):2043.

doi: 10.4103/1673-5374.262568     pmid: 31397331
[122]
Kaplan L, Chow B W, Gu C H. Nat. Rev. Neurosci., 2020, 21(8):416.

doi: 10.1038/s41583-020-0322-2     URL    
[123]
Maher B A, Ahmed I A M, Karloukovski V, MacLaren D A, Foulds P G, Allsop D, Mann D M A, Torres-Jardón R, Calderon-Garciduenas L. PNAS, 2016, 113(39):10797.

doi: 10.1073/pnas.1605941113     URL    
[1] 张冰洁, 刘倩, 周群芳, 张建清, 江桂斌. 纳米银的神经毒理学效应[J]. 化学进展, 2018, 30(9): 1392-1402.
[2] 王云海,罗云敬,钟儒刚. 过氧亚硝酸根对蛋白质损伤的研究进展*[J]. 化学进展, 2007, 19(06): 893-901.
[3] 许后效,徐晓白. 尿中烷化核酸碱基的研究进展[J]. 化学进展, 1994, 6(02): 151-.