English
新闻公告
More
化学进展 2021, Vol. 33 Issue (11): 2128-2137 DOI: 10.7536/PC200859 前一篇   后一篇

• 综述 •

化学催化葡萄糖异构化果糖

刘毅强1, 裘依梅1, 唐兴1,2,*(), 孙勇1,2, 曾宪海1,2, 林鹿1,2   

  1. 1 厦门市生物质清洁高值化利用重点实验室 厦门大学能源学院 厦门 361102
    2 福建省生物质清洁高值化技术工程研究中心 厦门 361102
  • 收稿日期:2020-08-24 修回日期:2020-09-27 出版日期:2021-11-20 发布日期:2020-12-28
  • 通讯作者: 唐兴
  • 基金资助:
    国家重点研发计划项目(2019YFB1503903); 广东省重点领域研发计划项目(2020B0101070001); 国家自然科学基金项目(21706223); 国家自然科学基金项目(21506177); 厦门大学校长基金(20720190014)

Glucose Isomerization into Fructose by Chemocatalytic Route

Yiqiang Liu1, Yimei Qiu1, Xing Tang1,2(), Yong Sun1,2, Xianhai Zeng1,2, Lu Lin1,2   

  1. 1 Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, College of Energy, Xiamen University,Xiamen 361102, China
    2 Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass,Xiamen 361102, China
  • Received:2020-08-24 Revised:2020-09-27 Online:2021-11-20 Published:2020-12-28
  • Contact: Xing Tang
  • Supported by:
    National Key R&D Program of China(2019YFB1503903); Key-Area Research and Development Program of Guangdong Province(2020B0101070001); National Natural Science Foundation of China(21706223); National Natural Science Foundation of China(21506177); Fundamental Research Funds for the Central Universities(20720190014)

基于糖平台的生物炼制可以制备各种碳基化学品、材料和燃料。相较于葡萄糖和纤维素,果糖更容易高选择性地催化转化制备5-羟甲基糠醛等重要的生物质基平台分子,因此葡萄糖异构化果糖已经成为生物炼制过程中的重要反应步骤之一。本文详细介绍了葡萄糖经化学催化异构化果糖的反应机理,并基于异构化催化剂全面总结了近年来化学催化葡萄糖异构化果糖的研究进展。此外,本文在分析各种葡萄糖异构化催化剂及其催化作用的基础上,进一步对化学催化葡萄糖异构化果糖的未来研究方向进行了展望。

The biorefinery based on sugar platform can produce various carbon-based chemicals, materials, and fuels. Compared with glucose and cellulose, a facile conversion of fructose into versatile biomass-based platform molecules such as 5-hydroxymethylfurfural with desirable selectivity can be expected, thus the isomerization of glucose into fructose has become one of the vital reactions for biorefinery. In this review, an in-depth discussion on the reaction mechanism of glucose isomerization by chemocatalytic route is provided, and the recent research progress on glucose isomerization into fructose in the view of isomerization catalysts is comprehensively summarized. Based on the discussion on the catalysts for glucose isomerization and their catalysis, the ongoing research on the chemocatalytic isomerization of glucose into fructose is envisaged.

Contents

1 Introduction

2 Mechanism of glucose isomerization into fructose

2.1 Isomerization mechanism over basic catalysts

2.2 Isomerization mechanism over acidic catalysts

3 Homogeneous catalysts

3.1 Base catalysts

3.2 Acid catalysts

4 Heterogeneous catalysts

4.1 Hydrotalcites

4.2 Metal oxides and insoluble salts

4.3 Zeolites

4.4 Alkaline resins

4.5 Metal organic frameworks

5 Conclusion and outlook

()
图1 碱催化葡萄糖异构化果糖的质子转移机理
Fig. 1 Mechanism of base catalyzed proton transfer for glucose isomerization into fructose
图2 葡萄糖异构化果糖的氢负离子转移机理
Fig. 2 Mechanism of hydride transfer for glucose isomerization into fructose.
表1 均相催化剂催化葡萄糖异构化果糖的代表性实验数据
Table 1 Representative experimental data for glucose isomerization into fructose catalyzed by homogeneous catalysts
图3 水体系中AlCl3催化葡萄糖异构化机理[24]
Fig. 3 Mechanism of glucose isomerization catalyzed by AlCl3 in water[24]
表2 水滑石催化剂催化葡萄糖异构化果糖的代表性实验数据
Table 2 Representative experimental data for glucose isomerization into fructose catalyzed by hydrotalcites
表3 金属氧化物和难溶盐催化葡萄糖异构化果糖的代表性实验数据
Table 3 Representative experimental data for glucose isomerization into fructose catalyzed by metal oxides and insoluble salts
表4 分子筛催化葡萄糖异构化果糖的代表性实验数据
Table 4 Representative experimental data for glucose isomerization into fructose catalyzed by zeolites
图4 Sn-beta表面部分水解的Sn中心[22]
Fig. 4 Partially hydrolyzed Sn center over the surface of Sn-beta[22]
表5 离子交换树脂和MOF催化葡萄糖异构化果糖的代表性实验数据
Table 5 Representative experimental data for glucose isomerization into fructose catalyzed by alkaline resins and MOFs
图5 甲醇中和水中的异构化/水解两步法转化葡萄糖制果糖[71]
Fig. 5 The conversion of glucose into fructose by two-step strategy(isomerization and hydrolysis) in methanol and water[71]
图6 MIL-101催化葡萄糖异构化机理
Fig. 6 Mechanism of glucose isomerization catalyzed by MIL-101
[1]
van Putten R J, van der Waal J C, de Jong E, Rasrendra C B, Heeres H J, de Vries J G. Chem. Rev., 2013, 113(3): 1499.

doi: 10.1021/cr300182k     URL    
[2]
Persson H, Yang W. Fuel, 2019, 252: 200.

doi: 10.1016/j.fuel.2019.04.087    
[3]
Güney T, Kantar K. Int. J. Sust. Dev. World., 2020, 1: 6.
[4]
Abelson P H. Science, 1981, 213(4508): 605.

pmid: 17847456
[5]
Torget R W, Kim J S, Lee Y Y. Ind. Eng. Chem. Res., 2000, 39(8): 2817.

doi: 10.1021/ie990915q     URL    
[6]
Watanabe M, Aizawa Y, Iida T, Nishimura R, Inomata H. Appl. Catal. A: Gen., 2005, 295(2): 150.

doi: 10.1016/j.apcata.2005.08.007     URL    
[7]
Kei-ichi S, Yoshihisa I, Hitoshi I. Chem. Lett., 2000, 29(1): 22.

doi: 10.1246/cl.2000.22     URL    
[8]
Ståhlberg T, Rodriguez-Rodriguez S, Fristrup P, Riisager A. Chem. Eur. J., 2011, 17(5): 1456.

doi: 10.1002/chem.v17.5     URL    
[9]
Wang J J, Xu W J, Ren J W, Liu X H, Lu G Z, Wang Y Q. Green Chem., 2011, 13(10): 2678.

doi: 10.1039/c1gc15306d     URL    
[10]
Wei J N, Wang T, Liu H, Liu Y Q, Tang X, Sun Y, Zeng X H, Lei T Z, Liu S J, Lin L. J. Catal., 2020, 389: 87.

doi: 10.1016/j.jcat.2020.05.020     URL    
[11]
Vuilleumier S. Am. J. Clin. Nutr., 1993, 58(5): 733S.

doi: 10.1093/ajcn/58.5.733S     URL    
[12]
Delidovich I, Palkovits R. ChemSusChem, 2016, 9(6): 547.

doi: 10.1002/cssc.201501577     pmid: 26948404
[13]
Buchholz K, Seibel J. Carbohydr. Res., 2008, 343(12): 1966.

doi: 10.1016/j.carres.2008.02.007     URL    
[14]
de Bruyn C A L, van Ekenstein W A. Recl. Trav. Chim. Pays-Bas, 1895, 14(7): 203.

doi: 10.1002/recl.18950140703     URL    
[15]
Nagorski R W, Richard J P. J. Am. Chem. Soc., 2001, 123(5): 794.

pmid: 11456612
[16]
Wolfrom M L, Lewis W L. J. Am. Chem. Soc., 1928, 50(3): 837.

doi: 10.1021/ja01390a032     URL    
[17]
De Wit G, Kieboom A P G, van Bekkum H. Carbohydr. Res., 1979, 74(1): 157.

doi: 10.1016/S0008-6215(00)84773-4     URL    
[18]
Román-Leshkov Y, Moliner M, Labinger J A, Davis M E. Angewandte Chemie Int. Ed., 2010, 49(47): 8954.

doi: 10.1002/anie.v49.47     URL    
[19]
Yang Q, Sherbahn M, Runge T. ACS Sustainable Chem. Eng., 2016, 4(6): 3526.

doi: 10.1021/acssuschemeng.6b00587     URL    
[20]
Yang Q, Zhou S F, Runge T. J. Catal., 2015, 330: 474.

doi: 10.1016/j.jcat.2015.08.008     URL    
[21]
Nguyen H, Nikolakis V, Vlachos D G. ACS Catal., 2016, 6(3): 1497.

doi: 10.1021/acscatal.5b02698     URL    
[22]
Li Y P, Head-Gordon M, Bell A T. ACS Catal., 2014, 4(5): 1537.

doi: 10.1021/cs401054f     URL    
[23]
Choudhary V, Pinar A B, Lobo R F, Vlachos D G, Sandler S I. ChemSusChem, 2013, 6(12): 2369.

doi: 10.1002/cssc.201300328     pmid: 24106178
[24]
Tang J Q, Guo X W, Zhu L F, Hu C W. ACS Catal., 2015, 5(9): 5097.

doi: 10.1021/acscatal.5b01237     URL    
[25]
Guo J, Zhu S H, Cen Y L, Qin Z F, Wang J G, Fan W B. Appl. Catal. B: Environ., 2017, 200: 611.

doi: 10.1016/j.apcatb.2016.07.051     URL    
[26]
Chen S S, Tsang D C W, Tessonnier J P. Appl. Catal. B: Environ., 2020, 261: 118126.
[27]
de Bruijn J M, Kieboom A P G, van Bekkum H. Recl. Trav. Chim. Pays-Bas, 2010, 106(2): 35.

doi: 10.1002/recl.19871060201     URL    
[28]
Mendicino J F. J. Am. Chem. Soc., 1960, 82(18): 4975.

doi: 10.1021/ja01503a055     URL    
[29]
Despax S, Estrine B, Hoffmann N, Le Bras J, Marinkovic S, Muzart J. Catal. Commun., 2013, 39: 35.

doi: 10.1016/j.catcom.2013.05.004     URL    
[30]
Liu C, Carraher J M, Swedberg J L, Herndon C R, Fleitman C N, Tessonnier J P. ACS Catal., 2014, 4(12): 4295.

doi: 10.1021/cs501197w     URL    
[31]
Kumar S, Sharma S, Kansal S K, Elumalai S. ACS Omega, 2020, 5(5): 2406.

doi: 10.1021/acsomega.9b03918     URL    
[32]
Li X, Zhang X, Li H W, Long J X. ChemistrySelect, 2019, 4(46): 13731.

doi: 10.1002/slct.v4.46     URL    
[33]
Xiang X Y, Wei Y, Pei B Y, Qiu R X, Chen X Y, Zhao C Y, Luo X Y, Lin J Q. J. Chem. Ind. Engin., 2020, 71(01):290.
(项小燕, 危依, 裴宝有, 丘荣星, 陈晓燕, 赵朝阳, 罗小燕, 林金清. 化工学报, 2020, 71(01): 290. )
[34]
Jia S Y, Liu K R, Xu Z W, Yan P F, Xu W J, Liu X M, Zhang Z C. Catal. Today, 2014, 234: 83.

doi: 10.1016/j.cattod.2014.02.038     URL    
[35]
Yang B Y, Montgomery R. Carbohydr. Res., 1996, 280(1): 27.

doi: 10.1016/0008-6215(95)00294-4     URL    
[36]
de Bruijn J M, Kieboom A P G, van Bekkum H. Recl. Trav. Chim. Pays-Bas, 1986, 105(6): 176.

doi: 10.1002/recl.19861050603     URL    
[37]
van den Berg R, Peters J A, van Bekkum H. Carbohydr. Res., 1994, 253: 1.

doi: 10.1016/0008-6215(94)80050-2     URL    
[38]
Mushrif S H, Varghese J J, Vlachos D G. Phys. Chem. Chem. Phys., 2014, 16(36): 19564.

doi: 10.1039/c4cp02095b     pmid: 25105840
[39]
Norton A M, Nguyen H, Xiao N L, Vlachos D G. RSC Adv., 2018, 8(31): 17101.

doi: 10.1039/C8RA03088J     URL    
[40]
Loerbroks C, Van Rijn J, Ruby M P, Tong Q, Schüth F, Thiel W. Chem. Eur. J., 2014, 20(38): 12298.

doi: 10.1002/chem.v20.38     URL    
[41]
Lecomte J, Finiels A, Moreau C. Starch Stärke, 2002, 54(2): 75.

doi: 10.1002/(ISSN)1521-379X     URL    
[42]
Delidovich I, Palkovits R. J. Catal., 2015, 327: 1.

doi: 10.1016/j.jcat.2015.04.012     URL    
[43]
Yu S, Kim E, Park S, Song I K, Jung J C. Catal. Commun., 2012, 29: 63.

doi: 10.1016/j.catcom.2012.09.015     URL    
[44]
Lee G, Jeong Y, Takagaki A, Jung J C. J. Mol. Catal. A: Chem., 2014, 393: 289.

doi: 10.1016/j.molcata.2014.06.019     URL    
[45]
Upare P P, Chamas A, Lee J H, Kim J C, Kwak S K, Hwang Y K, Hwang D W. ACS Catal., 2020, 10(2): 1388.

doi: 10.1021/acscatal.9b01650     URL    
[46]
Delidovich I, Palkovits R. Catal. Sci. Technol., 2014, 4(12): 4322.

doi: 10.1039/C4CY00776J     URL    
[47]
Cavani F, Trifirò F, Vaccari A. Catal. Today, 1991, 11(2): 173.

doi: 10.1016/0920-5861(91)80068-K     URL    
[48]
Chimentão R J, AbellÓ S, Medina F, Llorca J, Sueiras J E, Cesteros Y, Salagre P. J. Catal., 2007, 252(2): 249.

doi: 10.1016/j.jcat.2007.09.015     URL    
[49]
Roelofs J C A A, van Dillen A J, Jong K P D. Catal. Today, 2000, 60(3/4): 297.

doi: 10.1016/S0920-5861(00)00346-1     URL    
[50]
Debecker D, Gaigneaux E, Busca G. Chem. Eur. J., 2009, 15(16): 3920.

doi: 10.1002/chem.v15:16     URL    
[51]
Takagaki . Catalysts, 2019, 9(11): 907.

doi: 10.3390/catal9110907     URL    
[52]
Rabee A I M, Le S D, Nishimura S. Chem. Asian J., 2020, 15(2): 294.

doi: 10.1002/asia.v15.2     URL    
[53]
Kitajima H, Higashino Y, Matsuda S, Zhong H, Watanabe M, Aida T M, Smith R L Jr. Catal. Today, 2016, 274: 67.

doi: 10.1016/j.cattod.2016.01.049     URL    
[54]
Son P A, Nishimura S, Ebitani K. React. Kinetics Mech. Catal., 2014, 111(1): 183.
[55]
Lima S, Dias A S, Lin Z, Brandão P, Ferreira P, Pillinger M, Rocha J, Calvino-Casilda V, Valente A A. Appl. Catal. A: Gen., 2008, 339(1): 21.

doi: 10.1016/j.apcata.2007.12.030     URL    
[56]
Witvrouwen T, Dijkmans J, Paulussen S, Sels B. J. Energy Chem., 2013, 22(3): 451.

doi: 10.1016/S2095-4956(13)60059-5     URL    
[57]
Moliner M, Roman-Leshkov Y, Davis M E. Proc. Natl. Acad. Sci. U S A, 2010, 107(14): 6164.

doi: 10.1073/pnas.1002358107     pmid: 20308577
[58]
Bermejo-Deval R, Assary R S, Nikolla E, Moliner M, Roman-Leshkov Y, Hwang S J, Palsdottir A, Silverman D, Lobo R F, Curtiss L A, Davis M E. PNAS, 2012, 109(25): 9727.

doi: 10.1073/pnas.1206708109     pmid: 22665778
[59]
Chang C C, Cho H J, Wang Z P, Wang X T, Fan W. Green Chem., 2015, 17(5): 2943.

doi: 10.1039/C4GC02457E     URL    
[60]
Rai N, Caratzoulas S, Vlachos D G. ACS Catal., 2013, 3(10): 2294.

doi: 10.1021/cs400476n     URL    
[61]
Bermejo-Deval R, Orazov M, Gounder R, Hwang S J, Davis M E. ACS Catal., 2014, 4(7): 2288.

doi: 10.1021/cs500466j     URL    
[62]
Li G N, Pidko E A, Hensen E J M. Catal. Sci. Technol., 2014, 4(8): 2241.

doi: 10.1039/C4CY00186A     URL    
[63]
Dapsens P Y, Mondelli C, Jagielski J, Hauert R, PÉrez-Ramírez J. Catal. Sci. Technol., 2014, 4(8): 2302.

doi: 10.1039/c4cy00172a     URL    
[64]
Graça I, Iruretagoyena D, Chadwick D. Appl. Catal. B: Environ., 2017, 206: 434.

doi: 10.1016/j.apcatb.2017.01.037     URL    
[65]
Li B, Li L W, Dong Y N, Zhang Q, Weng W Z, Wan H L. Chin. J. Chem. Phys., 2018, 31(02): 203.

doi: 10.1063/1674-0068/31/cjcp1709183     URL    
(李兵, 李路微, 董颖男, 章青, 翁维正, 万惠霖. 化学物理学报. 2018, 31(02): 203.)
[66]
Zhou Y B, Zhuang J P, Wang L Y, Yu K R, Wu S B. Modern Food Sci. Technol., 2017, 33(05): 155.
(周彦斌, 庄军平, 庄军平, 王兰英, 余开荣, 武书彬. 现代食品科技. 2017, 33(05): 155.)
[67]
Rajabbeigi N, Torres A I, Lew C M, Elyassi B, Ren L M, Wang Z P, Cho H J, Fan W, Daoutidis P, Tsapatsis M. Chem. Eng. Sci., 2014, 116: 235.

doi: 10.1016/j.ces.2014.04.031     URL    
[68]
Gounder R, Davis M E. J. Catal., 2013, 308: 176.

doi: 10.1016/j.jcat.2013.06.016     URL    
[69]
Guo Q, Ren L M, Alhassan S M, Tsapatsis M. Chem. Commun., 2019, 55(99): 14942.

doi: 10.1039/C9CC07842H     URL    
[70]
Cordon M J, Hall J N, Harris J W, Bates J S, Hwang S J, Gounder R. Catal. Sci. Technol., 2019, 9(7): 1654.

doi: 10.1039/C8CY02589D     URL    
[71]
Saravanamurugan S, Paniagua M, Melero J A, Riisager A. J. Am. Chem. Soc., 2013, 135(14): 5246.

doi: 10.1021/ja400097f     pmid: 23506200
[72]
Saravanamurugan S, Riisager A, Taarning E, Meier S. ChemCatChem, 2016, 8(19): 3107.

doi: 10.1002/cctc.v8.19     URL    
[73]
Saravanamurugan S, Riisager A, Taarning E, Meier S. Chem. Commun., 2016, 52(86): 12773.

doi: 10.1039/C6CC05592C     URL    
[74]
Ren L M, Guo Q, Kumar P, Orazov M, Xu D D, Alhassan S M, Mkhoyan K A, Davis M E, Tsapatsis M. Angew. Chem. Int. Ed., 2015, 54(37): 10848.

doi: 10.1002/anie.201505334     URL    
[75]
Ren L M, Guo Q, Orazov M, Xu D D, Politi D, Kumar P, Alhassan S M, Mkhoyan K A, Sidiras D, Davis M E, Tsapatsis M. ChemCatChem, 2016, 8(7): 1274.

doi: 10.1002/cctc.v8.7     URL    
[76]
de Moreau C, Durand R, Roux A, Tichit D. Appl. Catal. A: Gen., 2000, 193(1/2): 257.

doi: 10.1016/S0926-860X(99)00435-4     URL    
[77]
Dijkmans J, Gabriëls D, Dusselier M de Clippel F, Vanelderen P, Houthoofd K, Malfliet A, Pontikes Y, Sels B F. Green Chem., 2013, 15(10): 2777.

doi: 10.1039/c3gc41239c     URL    
[78]
Chakrabarti A, Sharma M M. React. Polym., 1993, 20(1/2): 1.

doi: 10.1016/0923-1137(93)90064-M     URL    
[79]
Langlois D P, Larson R F. US 2746889, 1956.
[80]
Rendleman J A Jr, Hodge J E Jr. Carbohydr. Res., 1979, 75: 83.

doi: 10.1016/S0008-6215(00)84629-7     URL    
[81]
Mun D, Huynh N T T, Shin S, Kim Y J, Kim S, Shul Y G, Cho J K. Res. Chem. Intermed., 2017, 43(10): 5495.

doi: 10.1007/s11164-017-2942-3     URL    
[82]
Jiang J C, Yaghi O M. Chem. Rev., 2015, 115(14): 6966.

doi: 10.1021/acs.chemrev.5b00221     URL    
[83]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444.
[84]
Akiyama G, Matsuda R, Sato H, Kitagawa S. Chem. Asian J., 2014, 9(10): 2772.

doi: 10.1002/asia.201402119     URL    
[85]
Guo Q, Ren L M, Kumar P, Cybulskis V J, Mkhoyan K A, Davis M E, Tsapatsis M. Angew. Chem. Int. Ed., 2018, 57(18): 4926.

doi: 10.1002/anie.v57.18     URL    
[86]
de Mello M D, Tsapatsis M. ChemCatChem, 2018, 10(11): 2417.

doi: 10.1002/cctc.v10.11     URL    
[1] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[2] 程丽丽, 章赟, 朱烨坤, 吴瑛. 选择性氧化HMF[J]. 化学进展, 2021, 33(2): 318-330.
[3] 尹钰, 马春慧, 李伟, 刘守新. 葡萄糖制备5-羟甲基糠醛的溶剂体系及转化机理[J]. 化学进展, 2021, 33(10): 1856-1873.
[4] 孙子茹, 刘胜男, 高清志. 靶向葡萄糖转运蛋白(GLUTs)抗癌药物的开发[J]. 化学进展, 2020, 32(12): 1869-1878.
[5] 冯云超, 左淼, 曾宪海*, 孙勇, 唐兴, 林鹿*. 葡萄糖制备5-羟甲基糠醛[J]. 化学进展, 2018, 30(2/3): 314-324.
[6] 方莉, 贺进禄. 无酶葡萄糖传感器[J]. 化学进展, 2015, 27(5): 585-593.
[7] 张宇琪, 俞计成, 沈群东, 顾臻. 随葡萄糖响应的合成类闭路胰岛素递释系统[J]. 化学进展, 2015, 27(1): 11-26.
[8] 李京, 谢小丽, 王佳佳, 王晓敏, 李静, 王鹏. 戈谢病的药物分子伴侣[J]. 化学进展, 2014, 26(05): 889-897.
[9] 周理龙, 吴廷华*, 吴瑛*. 纤维素在离子液体中的降解转化[J]. 化学进展, 2012, 24(08): 1533-1543.
[10] 李文玲, 臧鹏, 李洪福, 杨世霞. 二苯乙烯类低聚物的仿生合成[J]. 化学进展, 2012, 24(04): 545-555.
[11] 石文韬, 邸静, 马占芳. 电化学葡萄糖传感器[J]. 化学进展, 2012, 24(04): 568-576.
[12] 李艳 魏作君 陈传杰 刘迎新. 碳水化合物降解为5-羟甲基糠醛的研究*[J]. 化学进展, 2010, 22(08): 1603-1609.
[13] 陈茂 翁玥 雷爱文. 过渡金属催化的1,n-烯炔类化合物的不对称环异构化反应[J]. 化学进展, 2010, 22(07): 1341-1352.
[14] 卢玉华 宋飞杰 贾学顺 刘元红. 过渡金属催化的呋喃合成*[J]. 化学进展, 2010, 22(01): 58-70.
[15] 黄世勇,王富丽,潘丽霞. 果糖脱水制备5-羟甲基糠醛*[J]. 化学进展, 2009, 21(0708): 1442-1449.
阅读次数
全文


摘要

化学催化葡萄糖异构化果糖