English
新闻公告
More
化学进展 2021, Vol. 33 Issue (11): 2069-2084 DOI: 10.7536/PC200804 前一篇   后一篇

• 综述 •

负载型廉价金属催化剂在低温催化氧化甲醛中的应用

田景晨1,2, 吴功德2, 刘雁军2, 万杰2, 王晓丽2,*(), 邓琳1,*()   

  1. 1 东南大学土木工程学院 南京 211189
    2 南京工程学院能源研究院 南京 211167
  • 收稿日期:2020-08-03 修回日期:2020-10-13 出版日期:2021-11-20 发布日期:2020-12-28
  • 通讯作者: 王晓丽, 邓琳
  • 基金资助:
    国家自然科学基金项目(21203093); 江苏省重点研发计划项目(BE2018718); 南京工程学院能源研究院合作基金(CXY201911); 南京工程学院能源研究院合作基金(CXY201923); 南京工程学院高层次引进人才科研启动基金项目(YKJ2019110); 南京工程学院高层次引进人才科研启动基金项目(YKJ2019111)

Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature

Jingchen Tian1,2, Gongde Wu2, Yanjun Liu2, Jie Wan2, Xiaoli Wang2(), Lin Deng1()   

  1. 1 School of Civil Engineering, Southeast University,Nanjing 211189, China
    2 Energy Research Institute, Nanjing Institute of Technology,Nanjing 211167, China
  • Received:2020-08-03 Revised:2020-10-13 Online:2021-11-20 Published:2020-12-28
  • Contact: Xiaoli Wang, Lin Deng
  • Supported by:
    National Natural Science Foundation of China(21203093); Key Research and Development Program of Jiangsu Province(BE2018718); Cooperation Fund of Energy Research Institute, Nanjing Institute of Technology(CXY201911); Cooperation Fund of Energy Research Institute, Nanjing Institute of Technology(CXY201923); Scientific Research Fund of Nanjing Institute of Technology(YKJ2019110); Scientific Research Fund of Nanjing Institute of Technology(YKJ2019111)

甲醛是室内常见的挥发性有机污染物之一,长期接触会严重危害人体健康。负载型廉价金属催化剂在甲醛去除和实际应用方面表现出优异性能,引起研究人员的广泛关注。本文阐述了低温条件下负载型廉价金属催化剂在甲醛热催化氧化、光催化氧化和等离子协同催化氧化方面的研究进展,介绍了甲醛低温催化的影响因素,并讨论了反应机理。反应条件、载体类型和制备方式是影响甲醛低温催化活性的重要因素。虽然负载型廉价金属催化剂在甲醛光催化氧化和热催化氧化方面均表现出良好性能,但仍须进一步探究提升其在可见光和室温下的催化活性。对于甲醛等离子协同催化氧化,降低反应过程所产生的副产物和能耗仍是研究重点。此外,本文还对负载型廉价金属催化剂在甲醛催化应用中的发展方向进行了展望。

Formaldehyde is one of the most common volatile organic pollutants in the indoor environment. It has been confirmed that long-term exposure to formaldehyde causes great harm to health. Supported non-noble metal catalysts have shown excellent performance in formaldehyde removal and practical applications, which has attracted great attention of researchers. This article highlights the recent development of formaldehyde removal by supported non-noble metal catalysts at low temperature, including thermal catalysts, photocatalysts and non-thermal plasma assisted catalysts. Moreover, reaction factors that have great effects on formaldehyde removal and mechanisms are reviewed. The results show that reaction conditions, supports types and preparing conditions are the most important factors in the low-temperature catalytic removal of formaldehyde. Supported non-noble metal catalysts exhibit outstanding performance in the photocatalysis and thermal catalysis of formaldehyde. Besides, remarkable formaldehyde removal efficiency was also observed at low temperature or under UV light irradiation. However, catalytic activity improvement of the supported non-noble metal catalysts under visible light and room temperature should be further investigated. It is still the point of future research to reduce by-products and energy consumption in formaldehyde removal process by non-thermal plasma combined with non-noble metal catalysts. Here, this paper also proposes the prospects on the development direction of supported non-noble metal catalysts in formaldehyde removal.

Contents

1 Introduction

2 Supported non-noble metal catalysts and their performances in formaldehyde removal at low-temperature

2.1 Thermal catalytic oxidation of formaldehyde

2.2 Photocatalytic oxidation of formaldehyde

2.3 Formaldehyde oxidation with non-thermal plasma assisted catalysts

3 Factors affecting formaldehyde oxidation

3.1 Effect of reaction conditions

3.2 Effect of support

3.3 Effect of preparing conditions

4 Reaction mechanisms

4.1 Thermal catalytic reaction mechanism of formaldehyde

4.2 Photocatalytic reaction mechanism of formaldehyde

4.3 Plasma synergistic catalytic reaction mechanism of formaldehyde

5 Conclusion and outlook

()
表1 负载型廉价金属催化剂用于甲醛热催化去除的研究[25⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~52]
Table 1 Research on Thermal Catalytic Removal of Formaldehyde by Supported Non-noble Metal Catalysts[25⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~52]
Categories Catalysts Temperature/℃ Reaction conditions HCHO removal/conversion ref
Single non-noble
metal catalysts
MnO2/PET ~25 2 pieces, 4×6 cm, ~200 ppm HCHO 3.5 L static reactor ~84% HCHO removal4 within
60 min
40
MnOx/PET RT1 ~0.6 mg/m3 HCHO, GHSV2 60 000 h-1 >95% removal of HCHO within
240 min
44
MnOx/AC 25 ~10 ppm HCHO, GHSV ~65 000 h-1, RH3~50% 100% HCHO removal within
1000 min
25
MnO2/ACF 25 15 ppm HCHO, GHSV ~60 000 h-1,RH 20%±2% 100% HCHO removal within
500 min
41
MnOx/PG 25 1 ppm HCHO, GHSV 300 000 h-1 >95% HCHO removal within
600 min
28
50~250 1200 ppm HCHO, GHSV 60 000 h-1 100% HCHO conversion5 at 150 ℃
MnO2/PG 25 1 ppm HCHO, 20 vol % O2, GHSV 150 000 h-1 100% HCHO removal efficiency within 1500 min 27
MnOx/Hal 100~300 1500 ppm HCHO, 20 vol % O2, GHSV 60 000 h-1 90% HCHO removal at 90 ℃ 35
MnO2/Cellulose 60~180 100 ppm HCHO, 20 vol % O2, GHSV 50 000 h-1 99.1% HCHO removal at 140 ℃ 50
MnOx/Diatomite 25~250 1 ppm HCHO, GHSV 120 000 h-1 >80% HCHO removal at 25 ℃ within 10 h 26
300 ppm HCHO, GHSV 120 000 h-1 90% HCHO conversion at 128 ℃
MnOx/AC RT 0.5 mg/m3 HCHO, GHSV 120 000 h-1, RH 45%±5% >70% HCHO removal within 80 h 42
5 mg/m3, GHSV 120 000 h-1, RH 45%±5% >70% HCHO removal within 30 h
MnOx/ACS-O 25 2.61 mg/m3, GHSV 80 000 h-1 >95% HCHO removal within
1500 min
30
MnOx@PAN-ACNF 30 10 ppm HCHO, GHSV 50 000 h-1 >95% HCHO removal in 12 h 49
Mn/TiO2 20~150 100 mg/m3, 20 vol % O2, GHSV
300 000 h-1
<20% HCHO removal efficiency at 150 ℃ 51
OMS-2/SiO2 25 100mg, 200 ppm HCHO, RH 50% ± 5%, 1 L static reactor 52.3% HCHO removal within 2 h 32
MnOx/SBA-15 30~180 120 ppm HCHO, 20 vol% O2, GHSV 30 000 h-1 90% HCHO conversion at 121 ℃ 46
MnO2@SiO2-TiO2 25 2 pieces, 10×10 cm, 200 ppm HCHO, RH 40%±5%, 5 L static reactor 100% HCHO removal after 20 min 33
Co@NC RT ~100 ppm HCHO, GHSV 80 000 h-1 >85% HCHO removal within 60 min 34
Multiple non-
noble metals
catalysts
CoxMnyO4/Carbon textile 20~200 50 ppm HCHO, 25 vol.% O2, GHSV 120 000 h-1, RH 50% 100% HCHO removal at 95 ℃ 43
Mn1-xCex/PG 100~180 300 ppm HCHO, GHSV 20 000 h-1 100% HCHO conversion at 160 ℃ 36
Mn/PG 100% HCHO conversion at 180 ℃
CeO2/PG 6.9% HCHO conversion at 180 ℃
CuMn/Pal 150~350 1500 ppm HCHO, 20 vol % O2, 5% H2O, GHSV 32 500 h-1 100% HCHO conversion at 200 ℃ 37
Mn/Pal 90% HCHO conversion at 248 ℃
Cu/Pal 100% HCHO conversion at 276 ℃
Non-noble/noble metal catalysts AgCo/APTES@
MCM-41
30~200 500 ppm HCHO, GHSV 9000 h-1 100% HCHO conversion at 90 ℃ 47
Ag/CeO2/SiO2 100~200 10,000~22,000 ppm HCHO, GHSV 69 000 h-1 100% HCHO removal at 175 ℃ 52
Pt-FeOx/Al2O3 25~100 400 ppm HCHO, 20 vol% O2, RH 30%, GHSV 60 000 h-1 100% HCHO removal at 25 ℃ 45
AuPt/MnO2/Cotton 20~200 460 ppm HCHO, GHSV 20 000 h-1 100% HCHO conversion at 120 ℃ 48
PtNi/Al2O3 30~80 ~30 ppm HCHO, GHSV 24 000 h-1, RH ~35% 100% HCHO removal at 30 ℃ 39
Pt/MnO2-CF 25 100 mg, 200 ppm HCHO, static reactor 90% HCHO removal after 60 min 29
Pt-Fe/Al2O3 25 375 mg/m3, 20 vol % O2, RH 30%, GHSV 60 000 h-1 100% HCHO conversion within 60 h 31
Pt/Fex/α-AlOOH 25~50 200 ppm HCHO, GHSV 95 000 h-1 100% HCHO conversion at 30 ℃ 38
200×200×0.4 mm3, 21.7 g catalysts, 1 ppm HCHO, RH 55%, 3 m3 static reactor <0.08 ppm HCHO concentration after 60 min
图1 MnOx/坡缕石(PG)的甲醛去除效果[50]
Fig.1 Formaldehyde removal over MnOx/Palygorskite[50]. Copyright 2019, Elsevier
图2 MnOx/AC(a)[25]和Mn20/DM(b)[26]的甲醛去除效果
Fig. 2 Formaldehyde removal over MnOx/AC(a)[25] and Mn20/DM(b)[26]. Copyright 2018, Elsevier. Copyright 2020, Elsevier
表2 负载型廉价金属催化剂用于甲醛光催化的研究[67,69⇓⇓⇓⇓⇓~75]
Table 2 Research on photocatalytic removal of formaldehyde by supported non-noble metal catalysts[67,69⇓⇓⇓⇓⇓~75]
图3 TiO2和TiO2/硅藻土的甲醛吸附/光催化效果[69]
Fig. 3 Adsorption-photocatalytic degradation of formaldehyde over TiO2 and TiO2/Diatomite[69]. Copyright 2017, Elsevier
图4 海泡石、TiO2、BiOCl和不同煅烧温度下BiOCl/TiO2/海泡石的UV-Vis DRS光谱[70]
Fig. 4 UV-Vis DRS spectra of sepiolite, TiO2, BiOCl and BiOCl/ TiO2/Sepiolite with different calcination temperatures[70]. Copyright 2020, Elsevier
表3 负载型廉价金属催化剂用于甲醛等离子协同催化去除的研究[85⇓⇓~88]
Table 3 Research on formaldehyde removal by non-thermal plasma assisted supported non-noble metal catalysts.[85⇓⇓~88]
图5 Co/Mn对CoxMn3-xO4/Carbon textile甲醛转化的影响[43]
Fig. 5 Effect of Co/Mn on formaldehyde conversion over CoxMn3-xO4/Carbon textile[43]. Copyright 2016, Springer
图6 甲醛在OMS-2/SiO2纳米纤维上转化的机理示意图[32]
Fig. 6 Schematic diagram of the mechanism of formaldehyde conversion over OMS-2/SiO2 nanofibers[32]. Copyright 2019, Elsevier
图7 甲醛在TiO2/AAS表面的光催化过程[67]
Fig. 7 Photocatalytic process of formaldehyde overTiO2/AAS[67]. Copyright 2014, Elsevier
图8 甲醛在BiOCl/TiO2/海泡石上的光催化机理示意图[70]
Fig. 8 Photocatalytic process of formaldehyde over BiOCl/TiO2/sepiolite[70]. Copyright 2020, Elsevier
[1]
Salthammer T, Mentese S, Marutzky R. Chem. Rev., 2010, 110: 2536.

doi: 10.1021/cr800399g     pmid: 20067232
[2]
Jiang C J, Li D D, Zhang P Y, Li J, Wang J, Yu J. Build Environ., 2017, 117: 118.

doi: 10.1016/j.buildenv.2017.03.004     URL    
[3]
Wolkoff P, Nielsen G D. Environ. Int., 2010, 36: 788.

doi: 10.1016/j.envint.2010.05.012     pmid: 20557934
[4]
Hadei M, Hopke P K, Rafiee M, Rastkari N, Yarahmadi M, Kermani M, Shahsavani A. Environ. Sci. Pollut. Res., 2018, 25: 27423.

doi: 10.1007/s11356-018-2794-4     URL    
[5]
Neamtiu I A, Lin S, Chen M, Roba C, Csobod E, Gurzau E S. Environ. Monit. Assess., 2019, 191: 591.

doi: 10.1007/s10661-019-7768-6     pmid: 31446497
[6]
Miao L, Wang J L, Zhang P Y. Appl. Surf. Sci., 2019, 466: 441.

doi: 10.1016/j.apsusc.2018.10.031     URL    
[7]
Yan Z X, Xu Z H, Cheng B, Jiang C J. Appl. Surf. Sci, 2017, 404: 426.

doi: 10.1016/j.apsusc.2017.02.010     URL    
[8]
Chen M, Wang H H, Chen X Y, Wang F, Qin X X, Zhang C B, He H. Chem. Eng. J., 2020, 390: 1.
[9]
Deng X Q, Liu J L, Li X, Zhu B, Zhu X B, Zhu A M. Catal. Today, 2017, 281: 630.

doi: 10.1016/j.cattod.2016.05.014     URL    
[10]
Sang J P, Bae I, Nam I S, Cho B K, Jung S M, Lee J H. Chem. Eng. J., 2012, 195/196: 392.

doi: 10.1016/j.cej.2012.04.028     URL    
[11]
Chen B B, Shi C, Crocker M, Wang Y, Zhu A M. Appl. Catal. B, 2013, 132/133: 245.

doi: 10.1016/j.apcatb.2012.11.028     URL    
[12]
Huang H, Leung D Y C. ACS Catal., 2011, 1: 348.

doi: 10.1021/cs200023p     URL    
[13]
Zhang L, Xie Y Q, Jiang Y, Li Y B, Wang C Y, Han S C, Luan H M, Meng X J, Xiao F S. Appl. Catal. B, 2020, 268: 118461.
[14]
Tan H Y, Wang J, Yu S Z, Zhou K B. Environ. Sci. Technol., 2015, 49: 8675.

doi: 10.1021/acs.est.5b01264     URL    
[15]
Wang Y Y, Ye J W, Jiang C J, Le Y G, Cheng B, Yu J G. Environ. Sci. Nano, 2020, 7: 198.

doi: 10.1039/C9EN00652D     URL    
[16]
Boyjoo Y, Rochard G, Giraudon J M, Liu J, Lamonier J F. SM&T, 2019, 2: 74.
[17]
Gao H, Zhang J Y, Wang R M, Wang M. Appl. Catal. B, 2015, 172-173: 1.
[18]
Liang X L, Liu P, He H P, Wei G L, Chen T H, Tan W, Tan F D, Zhu J X, Zhu R L. J. Hazard. Mater., 2016, 306: 305.

doi: 10.1016/j.jhazmat.2015.12.035     URL    
[19]
Chen Y, Guo Y H, Hu H X, Wang S X, Lin Y, Huang Y C. Inorg. Chem. Commun., 2017, 82: 20.

doi: 10.1016/j.inoche.2017.05.005     URL    
[20]
Zhu X B, Chang D L, Li X S, Sun Z G, Deng X Q, Zhu A M. Chem. Eng. J., 2015, 279: 897.

doi: 10.1016/j.cej.2015.05.095     URL    
[21]
Liu P, He H P, Wei G L, Liang X L, Qi F H, Tan F D, Tan W, Zhu J X, Zhu R L. Appl. Catal. B, 2016, 182: 476.

doi: 10.1016/j.apcatb.2015.09.055     URL    
[22]
Sun M, Zhang B T, Liu H F, He B B, Ye F, Yu L, Sun C Y, Wen H L. RSC Adv., 2017, 7: 3958.

doi: 10.1039/C6RA27700D     URL    
[23]
Guo J H, Lin C X, Jiang C J, Zhang P Y. Appl. Surf. Sci., 2019, 475: 237.

doi: 10.1016/j.apsusc.2018.12.238     URL    
[24]
Nie L H, Yu J G, Jaroniec M, Tao F F. Catal. Sci. Technol., 2016, 6: 3649.

doi: 10.1039/C6CY00062B     URL    
[25]
Fang R, Huang H B, Ji J, He M, Feng Q Y, Zhan Y J, Leung D Y C. Chem. Eng. J., 2018, 334: 2050.

doi: 10.1016/j.cej.2017.11.176     URL    
[26]
Han Z Y, Wang C, Zou X H, Chen T H, Dong S W, Zhao Y, Xie J J, Liu H B. Appl. Surf. Sci., 2020, 502: 144201.
[27]
Wang C, Chen T H, Liu H B, Xie J J, Li M X, Han Z Y, Zhao Y, He H Y, Zou X H, Suib S L. Appl. Clay. Sci., 2019, 182: 105289.
[28]
Wang C, Zou X H, Liu H B, Chen T H, Suib S L, Chen D, Xie J J, Li M X, Sun F W. Appl. Surf. Sci., 2019, 486: 420.

doi: 10.1016/j.apsusc.2019.04.257    
[29]
Ye J W, Zhou M H, Le Y, Cheng B, Yu J G. Appl. Catal. B, 2020, 267:118689.
[30]
Zhang C M, Wang Y Q, Song W, Zhang H T, Zhang X C, Li R, Fan C M. J. Porous Mater., 2020, 3: 801.
[31]
Cui W Y, Wang S G, Wang L L, Dai J Q, Tan N D. Chem. Ind. & Eng. Pro., 2019, 38: 1427.
(崔维怡, 王圣公, 王琳琳, 戴俊琦, 谭乃迪. 化工进展, 2019, 38: 1427.).
[32]
Su J F, Cheng C L, Guo Y P, Xu H, Ke Q F. J. Hazard. Mater., 2019, 380: 120890.
[33]
Cui F H, Han W D, Si Y, Chen W K, Zhang M, Kim H Y, Ding B. Compos. Commun., 2019, 16: 61.

doi: 10.1016/j.coco.2019.08.002     URL    
[34]
Zhu D D, Huang Y, Cao J J, Lee S C, Chen M J, Shen Z X. Appl. Catal. B, 2019, 258: 117981.
[35]
Wei G L, Liu P, Chen D, Chen T H, Liang X L, Chen H L. Appl. Clay. Sci., 2019, 182: 105280.
[36]
Wang C, Liu H B, Chen T H, Qing C S, Zou X H, Xie J J, Zhang X R. Appl. Clay. Sci., 2018, 159: 50.

doi: 10.1016/j.clay.2017.08.023     URL    
[37]
Liu P, Wei G L, Liang X L, Chen D, He H P, Chen T H, Xi Y F, Chen H L, Han D H, Zhu J X. Appl. Clay. Sci., 2018, 161: 265.

doi: 10.1016/j.clay.2018.04.032     URL    
[38]
Zhang Q, Sun S B, Wang T Y, Liu F, Yang J H, Cheng A. Chem. Eng. Process, 2018, 132: 169.

doi: 10.1016/j.cep.2018.07.003     URL    
[39]
Yang T F, Huo Y, Liu Y, Rui Z, Ji H B. Appl. Catal. B, 2017, 200: 543.

doi: 10.1016/j.apcatb.2016.07.041     URL    
[40]
Rong S P, Zhang P Y, Wang J L, Liu F, Yang Y J, Yang G L, Liu S. Chem. Eng. J, 2016, 306: 1172.

doi: 10.1016/j.cej.2016.08.059     URL    
[41]
Dai Z J, Yu X W, Huang C, Li M, Su J F, Guo Y P, Xu H, Ke Q F. RSC Adv., 2016, 6: 97022.

doi: 10.1039/C6RA15463H     URL    
[42]
Li J, Zhang P Y, Wang J L, Wang M X. J. Phys. Chem. C, 2016, 120: 24121.

doi: 10.1021/acs.jpcc.6b07217     URL    
[43]
Huang Y C, Ye K H, Li H B, Fan W J, Zhao F Y, Zhang Y M, Ji H B. Nano Res., 2016, 9: 3881.

doi: 10.1007/s12274-016-1257-9     URL    
[44]
Wang J L, Yunus R, Li J, Li P L, Zhang P Y, Kim J. Appl. Surf. Sci., 2015, 357: 787.

doi: 10.1016/j.apsusc.2015.09.109     URL    
[45]
Cui W, Yuan X, Wu P, Zheng B, Zhang W, Jia M. RSC Adv., 2015, 5: 104330.
[46]
Averlant R, Royer S, Giraudon J, Bellat J, Bezverkhyy I, Weber G, Lamonier J. ChemCatChem., 2014, 6: 152.

doi: 10.1002/cctc.v6.1     URL    
[47]
Qu Z P, Chen D, Sun Y H, Wang Y. Appl. Catal. A, 2014, 487: 100.

doi: 10.1016/j.apcata.2014.08.044     URL    
[48]
Yu X H, He J H, Wang D H, Hu Y C, Tian H, Dong T X, He Z C. J. Nanopart. Res., 2013, 15: 1.
[49]
Miyawaki J, Lee G, Yeh J, Shiratori N, Shimohara T, Mochida I, Yoon S. Catal. Today, 2012, 185: 278.

doi: 10.1016/j.cattod.2011.09.036     URL    
[50]
Zhou L, He J H, Zhang J, He Z C, Hu Y C, Zhang C B, He H. J. Phys. Chem. C, 2011, 115: 16873.

doi: 10.1021/jp2050564     URL    
[51]
Peng J X, Wang S D. Appl. Catal. B, 2007, 73: 282.

doi: 10.1016/j.apcatb.2006.12.012     URL    
[52]
Kharlamova T, Mamontov G, Salaev M, Zaikovskii V, Popova G, Sobolev V, Knyazev A, Vodyankina O. Appl. Catal. A, 2013, 467: 519.

doi: 10.1016/j.apcata.2013.08.017     URL    
[53]
Fang R M, Huang W J, Huang H B, Feng Q Y, He M, Ji J, Liu B Y, Leung D Y C. Appl. Surf. Sci., 2019, 470: 439.

doi: 10.1016/j.apsusc.2018.11.146     URL    
[54]
Liu P, He H P, Wei G L, Liu D, Liang X L, Chen T H, Zhu J X, Zhu R L. Microporous Mesoporous Mater., 2017, 239: 101.

doi: 10.1016/j.micromeso.2016.09.053     URL    
[55]
Sekine Y. Atmos. Environ., 2002, 36: 5543.

doi: 10.1016/S1352-2310(02)00670-2     URL    
[56]
Zhang J H, Li Y B, Wang L, Zhang C B, He H. Catal. Sci. Technol., 2015, 5: 2305.

doi: 10.1039/C4CY01461H     URL    
[57]
Yu J G, Li X Y, Xu Z H, Xiao W. Environ. Sci. Technol., 2013, 47: 9928.

doi: 10.1021/es4019892     URL    
[58]
Hu M C, Yao Z H, Liu X G, Ma L P, He Z, Wang X Q. J. Taiwan Inst. Chem. Eng., 2018, 85: 91.

doi: 10.1016/j.jtice.2017.12.021     URL    
[59]
Li J W, Pan K L, Yu S J, Yan S Y, Chang M B. J. Environ. Sci., 2014, 26: 2546.

doi: 10.1016/j.jes.2014.05.030     URL    
[60]
Wang H C, Huang Z W, Jiang Z, Jiang Z, Zhang Y, Zhang Z X, Shangguan W F. ACS Catal., 2018, 8: 3164.

doi: 10.1021/acscatal.8b00309     URL    
[61]
Bai B, Arandiyan H, Li J H. Appl. Catal. B, 2013, 142/143: 677.

doi: 10.1016/j.apcatb.2013.05.056     URL    
[62]
Li H W, Ho W K, Cao J L, Park D, Lee S C, Huang Y. Environ. Sci. Technol., 2019, 53: 10906.

doi: 10.1021/acs.est.9b03197     URL    
[63]
Yan Z X, Xu Z H, Yu J G, Jaroniec M. Appl. Catal. B, 2016, 199: 458.

doi: 10.1016/j.apcatb.2016.06.052     URL    
[64]
Shu Y J, Xu Y, Huang H B, Ji J, Liang S M, Wu M Y, Leung D Y C. Chemosphere, 2018, 208: 550.

doi: 10.1016/j.chemosphere.2018.06.011     URL    
[65]
Sansotera M, Geran Malek Kheyli S, Baggioli A, Bianchi C L, Pedeferri M P, Diamanti M V, Navarrini W. Chem. Eng. J., 2019, 361: 885.

doi: 10.1016/j.cej.2018.12.136    
[66]
Weon S, Choi J, Park T, Choi W. Appl. Catal. B, 2017, 205: 386.

doi: 10.1016/j.apcatb.2016.12.048     URL    
[67]
Zhang G, Xiong Q, Xu W, Guo S. Appl. Clay. Sci., 2014, 102: 231.

doi: 10.1016/j.clay.2014.10.001     URL    
[68]
Kibanova D, Sleiman M, Cervini-Silva J, Destaillats H. J. Hazard. Mater., 2012, 211/212: 233.

doi: 10.1016/j.jhazmat.2011.12.008     URL    
[69]
Zhang G X, Sun Z M, Duan Y W, Ma R X, Zheng S L. Appl. Surf. Sci., 2017, 412: 105.

doi: 10.1016/j.apsusc.2017.03.198     URL    
[70]
Hu X L, Li C Q, Sun Z M, Song J Y, Zheng S L. Build Environ., 2020, 168: 106481.
[71]
Liu R F, Li W B, Peng A Y. Appl. Surf. Sci., 2018, 427: 608.
[72]
Huang C, Ding Y P, Chen Y W, Li P W, Zhu S M, Shen S B. J. Environ. Sci.(China), 2017, 60: 61.

doi: 10.1016/j.jes.2017.06.041     URL    
[73]
Cui G X, Xin Y, Jiang X, Dong M Q, Li J L, Wang P, Zhai S M, Dong Y C, Jia J B, Yan B. Int. J. Mol. Sci., 2015, 16: 27721.

doi: 10.3390/ijms161126055     URL    
[74]
Han Z A, Chang V W, Wang X P, Lim T T, Hildemann L. Chem. Eng. J., 2013, 218: 9.

doi: 10.1016/j.cej.2012.12.025     URL    
[75]
Zhang G K, Qin X. Mater. Res. Bull., 2013, 48: 3743.

doi: 10.1016/j.materresbull.2013.05.112     URL    
[76]
Liu S H, Lin W X. J. Hazard. Mater., 2019, 368: 468.

doi: 10.1016/j.jhazmat.2019.01.082     URL    
[77]
Curcio M S, Oliveira M P, Waldman W R, Sánchez B, Canela M C. Environ. Sci. Pollut. Res., 2015, 22: 800.

doi: 10.1007/s11356-014-2683-4     URL    
[78]
Chen W M, Li S, Feizbakhshan M, Amdebrhan B T, Shi S K, Xin W, Nguyen T, Chen M Z, Zhou X Y. Constr. Build Mater., 2018, 161: 381.

doi: 10.1016/j.conbuildmat.2017.11.129     URL    
[79]
Yang J L, Shi Q J, Zhang R, Xie M Z, Jiang X, Wang F C, Cheng X W, Han W H. Carbon, 2018, 138: 118.

doi: 10.1016/j.carbon.2018.06.003     URL    
[80]
Wu X, Zhao J, Guo S, Wang L, Shi W, Huang H, Liu Y, Kang Z. Nanoscale, 2016, 8: 17314.

doi: 10.1039/C6NR05864G     URL    
[81]
Zhang Z M, Jiang X, Mei J F, Li Y X, Han W H, Xie M Z, Wang F C, Xie E. Chem. Eng. J., 2018, 331: 48.

doi: 10.1016/j.cej.2017.08.102     URL    
[82]
Wang J Z, Li H L, Yan X R, Qian C, Xing Y J, Yang S T, Kang Z, Han J Y, Gu W X, Yang H Y, Xiao F J. J. Alloys Compd., 2019, 795: 120.

doi: 10.1016/j.jallcom.2019.04.176     URL    
[83]
Liu R R, Wang J, Zhang J J, Xie S, Wang X Y, Ji Z J. Microporous Mesoporous Mater., 2017, 248: 234.

doi: 10.1016/j.micromeso.2017.04.029     URL    
[84]
Fan X, Zhu T L, Sun Y F, Yan X. J. Hazard. Mater., 2011, 196: 380.

doi: 10.1016/j.jhazmat.2011.09.044     URL    
[85]
Dong B Y, Shi Z Y, He J W, Wng H, Zhou H J, Zhang P, Nie Y L. Chem. Ind. & Eng. Pro., 2015, 34: 3337.
(董冰岩, 施志勇, 何俊文, 王晖, 周海金, 张鹏, 聂亚林. 化工进展, 2015, 34: 3337).
[86]
Wan Y J, Fan X, Zhu T L. Chem. Eng. J., 2011, 171: 314.

doi: 10.1016/j.cej.2011.04.011     URL    
[87]
Dong B Y, Lan S R. J. Phys. Conf. Ser., 2013, 418: 12121.

doi: 10.1088/1742-6596/418/1/012121     URL    
[88]
Zhao D Z, Li X S, Shi C, Fan H Y, Zhu A M. Chem. Eng. J., 2011, 66: 3922.
[89]
Liu F, Rong S P, Zhang P Y, Gao L L. Appl. Catal. B, 2018, 235: 158.

doi: 10.1016/j.apcatb.2018.04.078     URL    
[90]
Shayegan Z, Lee C, Haghighat F. Chem. Eng. J., 2018, 334: 2408.

doi: 10.1016/j.cej.2017.09.153     URL    
[91]
Qu X G, Liu W X, Ma J, Cao W B. Res. Chem. Intermed., 2009, 35: 313.

doi: 10.1007/s11164-009-0026-8     URL    
[92]
Li S, Dang X, Yu X, Abbas G, Zhang Q, Cao L. Chem. Eng. J., 2020, 388: 124275.
[93]
Feng X X, Liu H X, He C, Shen Z X, Wang T B. Catal. Sci. Technol., 2018, 8: 936.

doi: 10.1039/C7CY01934C     URL    
[94]
Li H W, Huang T T, Lu Y F, Cui L, Wang Z Y, Zhang C F, Lee S C, Huang Y, Cao J J, Ho W K. Environ. Sci. Nano, 2018, 5: 1130.

doi: 10.1039/C8EN00176F     URL    
[95]
Wang J, Li D, Li P, Zhang P, Xu Q, Yu J. RSC Adv., 2015, 5: 100434.
[96]
Liu P, Wei G L, He H P, Liang X L, Chen H L, Xi Y F, Zhu J X. Appl. Surf. Sci., 2019, 464: 287.

doi: 10.1016/j.apsusc.2018.09.070     URL    
[97]
Park S M, Jeon S W, Kim S H. Catal. Letters, 2014, 144: 756.

doi: 10.1007/s10562-014-1207-7     URL    
[98]
Wang J, Zhang G, Zhang P. J. Mater. Chem. A, 2017: 5719.
[99]
Zhang C B, Liu F D, Zhai Y P, Ariga H, Yi N, Liu Y C, Asakura K, Flytzani-Stephanopoulos M, He H. Angew. Chem., Int. Ed., 2012, 51: 9628.

doi: 10.1002/anie.v51.38     URL    
[100]
Wang X Y, Rui Z B, Ji H B. Catal. Today, 2018, 347: 124.

doi: 10.1016/j.cattod.2018.06.021     URL    
[101]
Li Y B, Zhang C B, He H. Catal. Today, 2017, 281: 412.

doi: 10.1016/j.cattod.2016.05.037     URL    
[102]
Wang J L, Zhang P Y, Li J, Jiang C J, Yunus R, Kim J. Environ. Sci. Technol., 2015, 49: 12372.

doi: 10.1021/acs.est.5b02085     URL    
[103]
Xu Z H, Yu J G, Liu G, Cheng B, Zhou P, Li X Y. Dalton Trans., 2013, 42: 119.
[104]
Yan Z X, Xu Z H, Yu J G, Jaroniec M. J. Colloid Interface Sci., 2017, 501: 164.

doi: 10.1016/j.jcis.2017.04.050     URL    
[105]
Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H, Dionysiou D D. Appl. Catal. B, 2012, 125: 331.

doi: 10.1016/j.apcatb.2012.05.036     URL    
[106]
Zhu X B, Gao X, Qin R, Zeng Y X, Qu R Y, Zheng C H, Tu X. Appl. Catal. B, 2015, 170/171: 293.

doi: 10.1016/j.apcatb.2015.01.032     URL    
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[9] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[10] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[11] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[12] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[13] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[14] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[15] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.