English
新闻公告
More
化学进展 DOI: 10.7536/PC200441 前一篇   后一篇

• •

选择性氧化HMF的研究及展望

程丽丽, 章赟, 朱烨坤, 吴瑛   

  1. 浙江师范大学物理化学研究所 金华 321004
  • 出版日期:2020-08-26 发布日期:2020-10-15
  • 通讯作者: 吴瑛 E-mail:yingwu@zjnu.cn
  • 基金资助:
    浙江省自然科学基金项目(No.LY16B030002)资助

Research and Prospect of Selective Oxidation of HMF

Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu   

  1. Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
  • Online:2020-08-26 Published:2020-10-15
  • Supported by:
    The work was supported by the Natural Science Foundation of Zhe jiang Province(No. LY16B030002)
近年来,利用储量丰富且可再生的生物质资源制备高附加值化学品和液体燃料是目前化学研究领域的热点之一,同时契合可持续发展的国家战略。5-羟甲基糠醛(HMF)是关键的生物质平台化合物之一,广泛应用于制备精细平台化合物、药物的中间体、聚合物的合成、液体燃料的前驱体等。因此,HMF的选择性氧化逐渐成为生物质领域的研究热点。本文主要介绍了近五年来关于HMF选择氧化制备DFF、FFCA、FDCA等生物质衍生物的研究,以及以HMF为中间体的生物质转化过程。关于对HMF进行选择性氧化,主要聚焦于以热催化和光催化两种途径。其中,以热催化的途径将HMF选择性氧化为DFF和FDCA研究较多,此途径下的催化体系主要介绍了贵金属和非贵金属两类;而在为数不多的光催化途径下,主要研究的催化体系是g-C3N4催化剂。此外还指出了目前HMF氧化反应研究存在的不足,并提出了可能解决的方法。
In recent years,the use of abundant and renewable biomass resources to prepare high value-added chemicals and liquid fuels is one of the hot spots in the chemical research field,which is in line with the national strategy of sustainable development. 5-hydroxymethylfurfural(HMF)is one of the key biomass platform compounds,widely used in the preparation of fine platform compounds,drug intermediates,polymer synthesis and liquid fuel precursor. Therefore,the selective oxidation of HMF has gradually become a research hotspot in the field of biomass. This paper mainly introduces the research on preparation of biomass derivatives such as DFF,FFCA and FDCA by selective oxidation of HMF in last five years,and the transformation of biomass with HMF as intermediate. The selective oxidation of HMF mainly focuses on two ways:thermalcatalytic and photocatalytic. Among them,the selective oxidation of HMF to DFF and FDCA by thermalcatalytic is widely studied. The catalytic system under this approach mainly introduces the noble metals and non-precious metals. In the few photocatalytic pathways,the main catalytic system is g-C3N4 catalyst. In addition,the deficiencies in there search on the oxidation of HMF are pointed out and the possible solutions are proposed.

中图分类号: 

()
[1] Bozell J J,Petersen G R. Green Chemistry,2010,12(4):539.
[2] Ma J,Du Z,Xu J,Chu Q,Pang Y. ChemSusChem,2011,4(1):51.
[3] Rose M,Weber D,Lotsch B,Kremer R,Goddard R,Palkovits R. Microporous and Mesoporous Materials,2013,181:217.
[4] 李艳(Li Y),魏作君(Wei Z J),陈传杰(Chen C J),刘迎新(Liu Y X).化学进展(Progress in Chemistry). 2010,22(08):1603.
[5] Wei Z,Liu Y,Thushara D,Ren Q. Green Chemistry,2012,14(4):1220.
[6] Wei Z,Li Y,Thushara D,Liu R,Ren Q. Journal of The Taiwan Institute of Chemical Engineers,2011,42(2):363.
[7] Tong X L,Ma Y,Li Y D. Applied Catalysis A:General,2010,385(1/2):1.
[8] Zhang Z,Huber G W. Chemical Society Reviews,2018,47(4):1351.
[9] Pichler C M,Al-Shaal M G,Gu D,Joshi H,Ciptonugroho W,Schuth F. ChemSusChem,2018,11(13):2083.
[10] Antonyraj C A,Huynh N T T,Lee K W,Kim Y J,Shin S,Shin J S,Cho J K. Journal of Chemical Sciences,2018,130(11):156.
[11] Liu H,Cao X J,Wang T,Wei J N,Tang X,Zeng X H,Sun Y,Lei T Z,Liu S J,Lin L. Journal of Industrial and Engineering Chemistry,2019,77:209.
[12] Zheng L F,Zhao J Q,Du Z X,Zong B N,Liu H C. Science China Chemistry,2017,60(7):950.
[13] Wang S G,Zhang Z H,Liu B,Li J L. Industrial & Engineering Chemistry Research,2014,53(14):5820.
[14] Mosby B,Díaz A,Clearfield A. Dalton Transactions,2014,43(27):10328.
[15] Hajipour A R,Karimi H. Chinese Journal of Catalysis,2014,35(9):1529.
[16] Yang F,Yuan Z L,Liu B,Chen S H,Zhang Z. Journal of Industrial and Engineering Chemistry,2016,38:181.
[17] Mishra D K,Cho J K,Kim Y J. Journal of industrial and engineering chemistry,2018,60:513.
[18] Mishra D K,Lee H J,Kim J,Lee H,Cho J K,Suh Y,Kim Y J. Green J Chemistry,2017,19(7):1619.
[19] Ait Rass H,Essayem N,Besson M. ChemSusChem,2015,8(7):1206.
[20] Chen H,Shen J,Chen K,Qin Y,Lu X,Ouyang P,Fu J. Applied Catalysis A:General,2018,555:98.
[21] Zhou C M,Shi W R,Wan X Y,Meng Y,Yao Y,Guo Z,Dai Y H,Wang C,Yang Y H. Catalysis Today,2019,330:92.
[22] Rathod P V,Jadhav V H. ACS Sustainable Chemistry & Engineering,2018,6(5):5766.
[23] Zhang Z H,Zhen J D,Liu B,Lv K L,Deng K J. Green Chemistry,2015,17(2):1308.
[24] Antonyraj C A,Huynh N T T,Park S K,Shin S,Kim Y J,Kim S Y,Lee K Y,Cho J K. Applied Catalysis A:General,2017,547:230.
[25] Kim M,Su Y Q,Fukuoka A,Hensen E J M,Nakajima K. Angewandte Chemie International Edition,2018,57(27):8235.
[26] Yuan Z L,Liu B,Zhou P,Zhang Z H,Chi Q. Catalysis Science & Technology,2018,8(17):4430.
[27] Tong X L,Yu L H,Chen H,Zhuang X L,Liao S Y,Gui H G. Catalysis Communications,2017,90:91.
[28] Ke Q P,Jin Y X,Ruan F,Ha M N,Li D D,Cui P X,Cao Y L,Wang H,Wang T T,Nguyen V N,Han X Y,Wang X,Cui P. Green Chemistry,2019,21(16):4313.
[29] Hayashi E,Yamaguchi Y,Kamata K,Tsunoda N,Kumagai Y,Oba F,Hara M. Journal of the American Chemical Society,2019,141(2):890.
[30] Liao X,Hou J,Wang Y,Zhang H,Sun Y,Li X,Tang S. Green Chemistry,2019,21(15):4194.
[31] Liu H,Cao X,Wei J,Jia W,Li M,Tang X,Zeng X,Sun Y,Lei T Z,Liu S J,Lin L. ACS Sustainable Chemistry & Engineering,2019,7(8):7812.
[32] Gui Z Y,Saravanamurugan S.Cao W R,Schill L,Chen L F,Qi Z W,Riisager A. ChemistrySelect,2017,2(23):6632.
[33] Ding L,Yang W Y,Chen L F,Cheng H Y,Qi Z W. Catalysis Today,2020,347:39.
[34] Rao K T V,Rogers J L,Souzanchi S,Dessbesell L,Ray M B,Xu C. ChemSusChem,2018,11(18):3323.
[35] Gao T Y,Yin Y X,Zhu G H,Gao Q,Fang W H. Catalysis Today,2019. (10.1016/j.cattod.2019.03.065)
[36] Gawade A B,Nakhate A V,Yadav G D. Catalysis Today,2018,309:119.
[37] Ventura M,Lobefaro F,De Giglio E,Distaso M,Nocito F,Dibenedetto A. ChemSusChem,2018,11(8):1305.
[38] Ventura M,Aresta M,Dibenedetto A. ChemSusChem,2016,9(10):1096.
[39] Han X W,Li C Q,Liu X H,Xia Q N,Wang Y Q. Green Chemistry,2017,19(4):996.
[40] Hayashi E,Komanoya T,Kamata K,Hara M. ChemSusChem,2017,10(4):654.
[41] Nocito F,Ventura M,Aresta M,Dibenedetto A. ACS omega,2018,3(12):18724.
[42] Ventura M,Nocito F,Giglio E,Cometa S,Altomare A,Dibenedetto A. Green chemistry,2018,20(17):3921.
[43] Zhao J,Chen X P,Du Y H,Yang Y H,Lee J M. Applied Catalysis A:General,2018,568:16.
[44] Lai J,Liu K,Zhou S,Zhang D,Liu X,Xu Q,Yin D. RSC Advances,2019,9(25):14242.
[45] Yan Y B,Li K X,Zhao J,Cai W Z,Yang Y H,Lee J M. Applied Catalysis B:Environmental,2017,207:358.
[46] Liu L J,Wang Z M,Lyu Y J,Zhang J,Huang Z,Qi T,Si Z,Yang H,Hu C. Catalysis Science & Technology,2020,10(1):278.
[47] Gupta D,Pant K K,Saha B. Molecular Catalysis,2017,435:182.
[48] Wei Z,Xiao S,Chen M,Lu M,Liu Y. New Journal of Chemistry,2019,43(20):7600.
[49] Wu Q,He Y M,Zhang H L,Feng Z Y,Wu Y,Wu T H. Molecular Catalysis,2017,436:10.
[50] Zhang H L,Feng Z Y,Zhu Y K,Wu Y,Wu T Y. Journal of Photochemistry and Photobiology A:Chemistry,2019,371:1.
[51] Zhu Y K,Zhang Y,Cheng L L,Ismael M,Feng Z Y,Wu Y. Advanced Powder Technology,2020,31(3):1148.
[52] Xu S,Zhou P,Zhang Z,Yang C,Zhang B G,Deng K,Bottle S. Journal of the American Chemical Society,2017,139(41):14775.
[53] Xue J J,Huang C J,Zong Y Q,Gu J D,Wang M X,Ma S S. Applied Organometallic Chemistry,2019,33(11):e5187.
[54] Zhang H L,Wu Q,Guo C,Wu Y,Wu T H. ACS Sustain. Chem. & Eng,2017,5(4):3517.
[55] Ma B,Wang Y Y,Guo X N,Tong X L,Liu C,Wang Y W,Guo X Y. Applied Catalysis A:General,2018,552:70.
[56] Giannakoudakis D A,Nair V,Khan A,Deliyanni E A,Colmenares J C,Triantafyllidis K S. Applied Catalysis B:Environmental,2019,256:117803.
[57] Meng S,Wu H,Cui Y,Zheng X,Wang H,Chen S,Wang Y,Fu X. Applied Catalysis B:Environmental,2020,266:118617.
[58] Ye H F,Shi R,Yang X. Appl. Catal. B:Environ,2018,233:70.
[59] Battula V,Jaryal A,Kailasam K,Mater J. Chem. A,2019,7:5643.
[60] Zhao H,Holladay J E,Brown H,Zhang Z C. Science,2007,316(5831):1597.
[61] Antonetti C,Melloni M,Licursi D,Fulignati S,Ribechini E,Rivas S,Parajo J C,Cavani F,Galletti A M R. Applied Catalysis B:Environmental,2017,206:364.
[62] Songo M M,Moutloali R,Ray S S. Catalysts,2019,9(2):126.
[63] Wang J,Qu T,Liang M S,Zhao Z B. RSC Advances,2015,5(128):106053.
[64] Raveendra G,Surendar M,Prasad P S S. New Journal of Chemistry,2017,41(16):8520.
[65] Yu X,Chu Y Y,Zhang L,Shi H,Xie M J,Peng L M,Guo X F,Li W,Xue N H,Ding W P. Journal of Energy Chemistry,2020,47:112.
[66] Dibenedetto A,Aresta M,Pastore C,Bitonto L D,Angelini A,Quaranta E. RSC Advances,2015,5(34):26941.
[67] Zhang Q,Liu X,Yang T,Pu Q,Yue C,Zhang S,Zhang Y. International Journal of Chemical Engineering,2019,2019:1.
[68] Zhang M L,Su K M,Song H M,Li Z H,Cheng B. Catalysis Communications,2015,69:76.
[69] Cao J J,Ma M W,Liu J C,Yang Y Q,Liu H,Xu X L,Yue H J,Tian G,Feng S H. Applied Catalysis A:General,2019,571:96.
[70] Candu N,El Fergani M,Verziu M,Cojocaru B,Jurca B,Apostol N,Teodorescu C,Parvulescu V I. Catalysis Today,2019,325:109.
[71] Guo Q,Ren L M,Alhassan S M,Tsapatsis M. Chemical Communications,2019,55(99):14942.
[72] Feng Y C,Zuo M,Wang T,Jia W L,Zhao X Y,Zeng X H,Sun Y,Tang X,Lei T Z,Lin L. Journal of the Taiwan Institute of Chemical Engineers,2019,96:431.
[73] Zhang Y L,Li B,Wei Y N,Yan C H,Meng M J,Yan Y S. Journal of the Taiwan Institute of Chemical Engineers,2019,96:93.
[74] Takagaki A. Catalysts,2019,9(10):818.
[75] Wang X,Lv T,Wu M H,Sui J W,Liu Q,Liu H,Huang J J,Jia L S. Applied Catalysis A:General,2019,574:87.
[76] Zhang Y,Wang J G,Wang J H,Wang Y,Wang M,Cui H Y,Song F,Sun X Y,Xie Y J,Yi W M. ChemistrySelect,2019,4(19):5724.
[77] Li K,Du M,Ji P. ACS Sustainable Chemistry & Engineering,2018,6(4):5636.
[78] Yue C,Li G,Pidko E A,Wiesfeld J J,Rigutto M S,Hensen E J M. ChemSusChem,2016,9(17):2421.
[79] Wen Z,Yu L,Mai F,Ma Z,Chen H,Li Y. Industrial & Engineering Chemistry Research,2019,58(38):17675.
[80] Li X,Peng K,Xia Q,Liu X,Wang Y. Chemical Engineering Journal,2018,332:528.
[81] Fang J,Zheng W W,Liu K,Li H,Li C. Chemical Engineering Journal,2020,385:123796.
[82] Zhou C M,Zhao J,Sun H L. ACS Sustainable Chemistry & Engineering,2018,7(1):315.
[83] Zhao J,Jayakumar A,Lee J M. ACS Sustainable Chemistry & Engineering,2018,6(3):2976.
[84] Yang Z Z,Qi W,Su R,He Z M. ACS Sustainable Chemistry & Engineering,2017,5(5):4179.
[85] Zhao J,Jayakumar A,Hu Z T. ACS Sustainable Chemistry & Engineering,2018,6(1):284.
[86] Zhao J,Anjali J,Yan Y B,Yang Y H,Lee J M. ChemCatChem,2017,9(7):1187.
[87] Liu Y,Zhu L F,Tang J Q,Liu M Y,Hu C W. ChemSusChem,2014,7(12):3541.
[88] Mittal N,Nisola G M,Malihan L B. RSC advances,2016,6(31):25678.
[89] Fang R Q,Luque R,Li Y W. Green Chemistry,2017,19(3):647.
[90] Chen Z,Liao S,Ge L. Chemical Engineering Journal,2020,379:122284.
[91] Lv G Q,Wang H L,Yang Y X,Deng T S,Hou X L. Green Chemistry,2016,18(8):2302.
[92] Zhang W,Meng T,Tang J. ACS Sustainable Chemistry & Engineering,2017,5(11):10029.
[93] Hou W,Wang Q,Guo Z,Li J,Zhou Y,Wang J. Catalysis Science & Technology,2017,7(4):1006.
[94] Xu F H,Zhang Z H. ChemCatChem,2015,7(9):1470.
[95] Yan D X,Wang G,Gao K,Xin X,Zhang J X. Industrial & Engineering Chemistry Research,2018,57(6):1851.
[96] Motagamwala A H,Won W Y,Sener C,Alonso D M,Maravelias C T,Dumesic J A. Science advances,2018,4(1):eaap9722.
[97] Raut A B,Bhanage B M. ChemistrySelect,2018,3(41):11388.
[98] Chen G Y,Wu L,Fan H,Li B G. Industrial & Engineering Chemistry Research,2018,57(48):16172.
[99] De S,Dutta S,Saha B. Green Chemistry,2011,13(10):2859.
[100] Despax S,Estrine B,Hoffmann N,Bras J L,Marinkovic S. Catalysis Communications,2013,39:35.
[101] Dijkmans J,Gabriëls D,Dusselier M,Clippel F D,Sels B F. Green Chemistry,2013,15(10):2777.
[102] Zhang S,Li W,Zeng X,Sun Y,Lin L. Bioresources,2014,9(3):4568.
[103] Xiang X,He L,Yang Y, Guo B,Tong D M,Hu C W. Catalysis Letters,2011,141(5):735.
[104] Takagaki A,Takahashi M,Nishimura S,Ebitani K. ACS Catalysis,2011,1(11):1562.
[1] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[2] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
[3] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[4] 程丽丽, 章赟, 朱烨坤, 吴瑛. 选择性氧化HMF[J]. 化学进展, 2021, 33(2): 318-330.
[5] 刘毅强, 裘依梅, 唐兴, 孙勇, 曾宪海, 林鹿. 化学催化葡萄糖异构化果糖[J]. 化学进展, 2021, 33(11): 2128-2137.
[6] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[7] 尹钰, 马春慧, 李伟, 刘守新. 葡萄糖制备5-羟甲基糠醛的溶剂体系及转化机理[J]. 化学进展, 2021, 33(10): 1856-1873.
[8] 史利娜, 胡欣, 朱宁, 郭凯. 纤维素基介电材料[J]. 化学进展, 2020, 32(12): 2022-2033.
[9] 孙子茹, 刘胜男, 高清志. 靶向葡萄糖转运蛋白(GLUTs)抗癌药物的开发[J]. 化学进展, 2020, 32(12): 1869-1878.
[10] 黄秉乾, 王立艳, 韦漩, 徐伟超, 孙振, 李庭刚. 低共熔溶剂预处理木质纤维素生产生物丁醇[J]. 化学进展, 2020, 32(12): 2034-2048.
[11] 易锦馨, 霍志鹏, AbdullahM.Asiri, KhalidA.Alamry, 李家星. 农林废弃生物质吸附材料在水污染治理中的应用[J]. 化学进展, 2019, 31(5): 760-772.
[12] 乔颖, 腾娜, 翟承凯, 那海宁, 朱锦. 化学法催化纤维素高效水解成糖[J]. 化学进展, 2018, 30(9): 1415-1423.
[13] 杜海顺, 刘超, 张苗苗, 孔庆山, 李滨*, 咸漠. 纳米纤维素的制备及产业化[J]. 化学进展, 2018, 30(4): 448-462.
[14] 冯云超, 左淼, 曾宪海*, 孙勇, 唐兴, 林鹿*. 葡萄糖制备5-羟甲基糠醛[J]. 化学进展, 2018, 30(2/3): 314-324.
[15] 蒋叶涛, 宋晓强, 孙勇*, 曾宪海, 唐兴, 林鹿*. 基于木质生物质分级利用的组分优先分离策略[J]. 化学进展, 2017, 29(10): 1273-1284.
阅读次数
全文


摘要

选择性氧化HMF的研究及展望