English
新闻公告
More
化学进展 2021, Vol. 33 Issue (1): 1-12 DOI: 10.7536/PC200423   后一篇

• 特邀评论 •

循环肿瘤细胞体内检测技术及其应用研究

郭珊1,2,*(), 周翔2   

  1. 1 武汉大学中南医院生物样本库 武汉 430071
    2 武汉大学化学与分子科学学院 武汉 430072
  • 收稿日期:2020-04-19 修回日期:2020-06-24 出版日期:2021-01-24 发布日期:2020-10-14
  • 通讯作者: 郭珊
  • 作者简介:
    * Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(21904101); 武汉大学中南医院优秀博士(博士后)项目(ZNYB2019015)

Detection of Circulating Tumor Cell in Vivo:Technology and Application

Shan Guo1,2,*(), Xiang Zhou2   

  1. 1 Department of Biological Repositories, Zhongnan Hospital of Wuhan University,Wuhan 430071, China
    2 College of Chemistry and Molecular Sciences, Wuhan University,Wuhan 430072, China
  • Received:2020-04-19 Revised:2020-06-24 Online:2021-01-24 Published:2020-10-14
  • Contact: Shan Guo
  • Supported by:
    the National Natural Science Foundation of China(21904101); and the Program of Excellent Doctoral(Postdoctoral) of Zhongnan Hospital of Wuhan University(ZNYB2019015)

从实体瘤脱落进入血液循环系统的肿瘤细胞即循环肿瘤细胞(CTCs)与肿瘤转移密切相关,因此CTCs检测对癌症患者的诊断、治疗监测、病情评估以及肿瘤转移机制研究具有重要意义。由于CTCs在体内含量极少、异质性、分布不均一,通过体外采血发展的CTCs检测技术虽然已取得很大进展,但仍然面临肿瘤细胞损失、失活、失真以及灵敏度低等问题,因此亟需发展基于体内快速流动血液的肿瘤细胞检测技术,在真实生理状态下实时监测CTCs动态变化。在此,我们总结了CTCs体内检测技术及其相关应用的研究进展,分析了这些技术的优势和不足。最后,讨论并展望了CTCs体内检测技术的未来发展趋势。

Cancer cells that shed from solid tumor and circulate into bloodstream, namely circulating tumor cells(CTCs), are closely related to tumor metastasis. Therefore, CTCs detection is of great significance for cancer diagnosis, treatment monitoring, disease assessment and understanding of the mechanisms underlying tumor metastasis. However, CTCs are extraordinarily rare, heterogeneous, nonuniform in blood. Even if strategies for detection of CTCs in static blood collected from patients have made significant progress, they still face the tumor cell loss, cell death, low fidelity, and low sensitivity. It is essential to develop approaches available for detection of tumor cells in fast-flowing blood, allowing real-time monitoring of CTC dynamic changes under physiological conditions. In this review, we summarize techniques developed for CTC detection in vivo and their related applications. Furthermore, the advantages and disadvantages of these techniques are analyzed. Finally, future techniques for detection of CTCs in vivo are discussed and predicted.

Contents

1 Introduction

2 Detection of circulating tumor cells(CTCs) in vivo

2.1 Optical imaging-based CTC detection in vivo

2.2 In vivo flow cytometry-based CTC enumeration

2.3 Scaffold implant-based CTC recruiting in vivo

2.4 Intravenous indwelling device-based CTC capture in vivo

2.5 Microfluidic chip-based CTC detection in vivo

3 Conclusion and outlook

()
图1 基于SM-OCT的CTCs体内检测[58]: (a)金纳米棒的透射电子显微镜图片和可见-近红外吸收光谱;(b)金纳米棒标记的RPMI-8226细胞;(c)SM-OCT扫描检测流经老鼠耳部血管的RPMI细胞,金纳米棒标记的RPMI细胞经尾静脉注射入老鼠体内
Fig. 1 In vivo detection of circulating tumor cells by SM-OCT[58]. (a) TEM image and Vis-NIR absorbance spectrum of gold nanorod contrast agents.(b) RPMI-8226 cells are incubated with gold nanorods, resulting in gold nanorod-labeled cells.(c) SM-OCT scans at the cross section of blood vessels found in the ear of the mouse, determining the number of cells flowing through the blood vessel over time. Gold nanorod-labeled cells are injected into the tail vein of the mouse for detection. Copyright 2019, American Chemical Society
图2 基于cytophone设备的CTCs体内检测[95]: (a)cytophone平台用于CTCs光声检测的示意图;(b)cytohone平台检测单个CTC、CTC簇、CBC和CTC-CBC时产生的特征光声信号峰
Fig. 2 In vivo detection of CTCs based on cytophone device[95]. (a) Schematic diagram of cytophone platform for photoacoustic detection of CTCs.(b) Photoacoustic peaks of single CTC, CTC cluster, CBC and CTC-CBC generated from cytophone platform. Copyright 2019, the Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science
图3 基于静脉留置针装置的CTCs体内捕获: (a)功能化的Seldinger医用导丝经留置针导管进入静脉血管捕获CTCs示意图[100];(b)anti-EpCAM抗体修饰的输液型静脉留置针于CTCs体内捕获示意图[111];(c)三维PDMS支架嵌入的留置针于CTCs体内捕获和分析示意图[113]
Fig. 3 Capture of CTCs in vivo based on intravenous indwelling device. (a) Schematic diagram of functionalized Seldinger medical guidewire for in vivo capture of CTCs[100]. Seldinger medical guidewire is slowly pushed forward into the indwelling cannula until functionalized guidewire is exposed to the blood flow within the lumen of the vein.(b) Schematic diagram of in vivo capture of CTCs based on transfusion with a vein indwelling needle[110]. The surface of indwelling needle was modified with anti-EpCAM antibody. Copyright 2015, American Chemical Society(c) Schematic diagram of 3D PDMS scaffold-embedded hollow needle for in vivo capture and downstream analysis of CTCs[112]. Copyright 2020, American Chemical Society
图4 基于体外循环的磁性芯片用于CTCs体内检测示意图[115]
Fig. 4 Schematic diagram of magnetic chip for in vivo detection of CTCs based on extracorporeal circulation[115]. Copyright 2019, American Chemical Society
[1]
Ashworth T R. Med. J. Aust., 1869, 14: 146.
[2]
Paget S. Cancer Metastasis Rev., 1989, 8: 98.
[3]
Bonnet D, Dick J E. Nat. Med., 1997, 3: 730.

doi: 10.1038/nm0797-730     URL    
[4]
Gupta A S. Nanomedicine , 2014, 9: 1517.

doi: 10.2217/NNM.14.94    
[5]
Pantel K, Brakenhoff R H. Nat. Rev. Cancer , 2004, 4: 448.

doi: 10.1038/nrc1370     URL    
[6]
Schroeder A, Heller D A, Winslow M M, Dahlman J E, Pratt G W, Langer R, Jacks T, Anderson D G. Nat. Rev. Cancer , 2012, 12: 39.

doi: 10.1038/nrc3180     URL    
[7]
Dotan E, Cohen S J, Alpaugh K R, Meropol N J. The Oncologist , 2009, 14: 1070.

doi: 10.1634/theoncologist.2009-0094     URL    
[8]
Dasgupta A, Lim A R, Ghajar C M. Mol. Oncol. , 2017, 11: 40.

doi: 10.1002/1878-0261.12022     URL    
[9]
Micalizzi D S, Maheswaran S, Haber D A. Genes Dev., 2017, 31: 1827.

doi: 10.1101/gad.305805.117     URL    
[10]
Dianat-Moghadam H, Azizi M, Eslami-S Z, Cortes-Hernandez L E, Heidarifard M, Nouri M, Alix-Panabieres C. Cancers ( Basel), 2020, 12: 867.

doi: 10.3390/cancers12040867     URL    
[11]
Chaffer C L, Weinberg R A. Science , 2011, 331: 1559.

doi: 10.1126/science.1203543    
[12]
Alix-Panabieres C, Pantel K. Nat. Rev. Cancer , 2014, 14: 623.

doi: 10.1038/nrc3820     URL    
[13]
Stott S L, Lee R J, Nagrath S, Yu M, Miyamoto D T, Ulkus L, Inserra E J, Ulman M, Springer S, Nakamura Z, Moore A L, Tsukrov D I, Kempner M E, Dahl D M, Wu C L, Iafrate A J, Smith M R, Tompkins R G, Sequist L V, Toner M, Haber D A, Maheswaran S. Sci. Transl. Med., 2010, 2: 23.
[14]
Banys M, Krawczyk N, Becker S, Jakubowska J, Staebler A, Wallwiener D, Fehm T, Rothmund R. Breast Cancer Res. Treat , 2012, 132: 121.

doi: 10.1007/s10549-011-1569-0     URL    
[15]
Seal S H. Cancer, 1964, 17: 637.

doi: 10.1002/(ISSN)1097-0142     URL    
[16]
Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schutze K, Capron F, Franco D, Pazzagli M, Vekemans M, Lacour B, Brechot C, Paterlini-Brechot P. Am. J. Pathol., 2000, 156: 57.

doi: 10.1016/S0002-9440(10)64706-2     URL    
[17]
Lee H J, Oh J H, Oh J M, Park J M, Lee J G, Kim M S, Kim Y J, Kang H J, Jeong J, Kim S I, Lee S S, Choi J W, Huh N. Angew. Chem. Int. Ed. , 2013, 52: 8337.

doi: 10.1002/anie.v52.32     URL    
[18]
Gascoyne P R, Noshari J, Anderson T J, Becker F F. Electrophoresis , 2009, 30: 1388.

doi: 10.1002/elps.v30:8     URL    
[19]
Moon H S, Kwon K, Kim S I, Han H, Sohn J, Lee S, Jung H I. Lab Chip , 2011, 11: 1118.

doi: 10.1039/c0lc00345j    
[20]
Huang S, Wu M, Lin Y, Hsieh C, Yang C, Lin H, Tseng C, Lee G. Lab Chip , 2013, 13: 1371.

doi: 10.1039/c3lc41256c    
[21]
Cristofanilli M, Budd G T, Ellis M J, Stopeck A, Matera J, Miller M C, Reuben J M, Doyle G V, Allard W J, Terstappen L W, Hayes D F. N. Engl. J. Med., 2004, 351: 781.

doi: 10.1056/NEJMoa040766     URL    
[22]
Wen C Y, Wu L L, Zhang Z L, Liu Y L, Wei S Z, Hu J, Tang M, Sun E Z, Gong Y P, Yu J, Pang D W. ACS Nano , 2014, 8: 941.

doi: 10.1021/nn405744f     URL    
[23]
Jo S M, Lee J J, Heu W, Kim H S. Small , 2015, 11: 1975.

doi: 10.1002/smll.v11.16     URL    
[24]
Xie M, Lu N N, Cheng S B, Wang X Y, Wang M, Guo S, Wen C Y, Hu J, Pang D W, Huang W H. Anal. Chem., 2014, 86: 4618.

doi: 10.1021/ac500820p     URL    
[25]
Chen W, Weng S, Zhang F, Allen S, Li X, Bao L, Lam R H, Macoska J A, Merajver S D, Fu J. ACS Nano , 2013, 7: 566.

doi: 10.1021/nn304719q     URL    
[26]
Wang S, Wang H, Jiao J, Chen K J, Owens G E, Kamei K, Sun J, Sherman D J, Behrenbruch C P, Wu H, Tseng H R. Angew. Chem. Int. Ed., 2009, 48: 8970.

doi: 10.1002/anie.v48:47     URL    
[27]
Zhang N, Deng Y, Tai Q, Cheng B, Zhao L, Shen Q, He R, Hong L, Liu W, Guo S, Liu K, Tseng H R, Xiong B, Zhao X Z. Adv. Mater., 2012, 24: 2756.

doi: 10.1002/adma.v24.20     URL    
[28]
Wan Y, Mahmood M A, Li N, Allen P B, Kim Y T, Bachoo R, Ellington A D, Iqbal S M. Cancer , 2012, 118: 1145.

doi: 10.1002/cncr.26349     URL    
[29]
Guo S, Xu J, Xie M, Huang W, Yuan E, Liu Y, Fan L, Cheng S, Liu S, Wang F, Yuan B, Dong W, Zhang X, Huang W, Zhou X. ACS Appl. Mater. Interfaces , 2016, 8: 15917.

doi: 10.1021/acsami.6b04002     URL    
[30]
Zhang F, Jiang Y, Liu X, Meng J, Zhang P, Liu H, Yang G, Li G, Jiang L, Wan L J, Hu J S, Wang S. Nano Lett., 2016, 16: 766.

doi: 10.1021/acs.nanolett.5b04731     URL    
[31]
Yu X, He R, Li S, Cai B, Zhao L, Liao L, Liu W, Zeng Q, Wang H, Guo S S, Zhao X Z. Small , 2013, 9: 3895.

doi: 10.1002/smll.v9.22     URL    
[32]
Mohamadi R M, Besant J D, Mepham A, Green B, Mahmoudian L, Gibbs T, Ivanov I, Malvea A, Stojcic J, Allan A L, Lowes L E, Sargent E H, Nam R K, Kelley S O. Angew. Chem. Int. Ed., 2015, 54: 139.
[33]
Stott S L, Hsu C H, Tsukrov D I, Yu M, Miyamoto D T, Waltman B A, Rothenberg S M, Shah A M, Smas M E, Korir G K, Floyd F J, Gilman A J, Lord J B, Winokur D, Springer S, Irimia D, Nagrath S, Sequist L V, Lee R J, Isselbacher K J, Maheswaran S, Haber D A, Toner M. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 18392.
[34]
Sheng W, Chen T, Tan W, Fan Z H. ACS Nano , 2013, 7: 7067.

doi: 10.1021/nn4023747     URL    
[35]
Yoon H J, Kim T H, Zhang Z, Azizi E, Pham T M, Paoletti C, Lin J, Ramnath N, Wicha M S, Hayes D F, Simeone D M, Nagrath S. Nat. Nanotechnol. , 2013, 8: 735.

doi: 10.1038/nnano.2013.194     URL    
[36]
Cheng S B, Xie M, Xu J Q, Wang J, Lv S W, Guo S, Shu Y, Wang M, Dong W G, Huang W H. Anal. Chem. , 2016, 88: 6773.

doi: 10.1021/acs.analchem.6b01130     URL    
[37]
Karabacak N M, Spuhler P S, Fachin F, Lim E J, Pai V, Ozkumur E, Martel J M, Kojic N, Smith K, Chen P I, Yang J, Hwang H, Morgan B, Trautwein J, Barber T A, Stott S L, Maheswaran S, Kapur R, Haber D A, Toner M. Nat. Protoc., 2014, 9: 694.

doi: 10.1038/nprot.2014.044    
[38]
Poudineh M, Aldridge P M, Ahmed S, Green B J, Kermanshah L, Nguyen V, Tu C, Mohamadi R M, Nam R K, Hansen A, Sridhar S S, Finelli A, Fleshner N E, Joshua A M, Sargent E H, Kelley S O. Nat. Nanotechnol., 2017, 12: 274.

doi: 10.1038/nnano.2016.239     URL    
[39]
Ahmed M G, Abate M F, Song Y, Zhu Z, Yan F, Xu Y, Wang X, Li Q, Yang C. Angew. Chem. Int. Ed., 2017, 56: 10681.

doi: 10.1002/anie.201702675     URL    
[40]
Guo S, Huang H, Deng X, Chen Y, Jiang Z, Xie M, Liu S, Huang W, Zhou X. Nano Res., 2018, 11: 2592.

doi: 10.1007/s12274-017-1885-8     URL    
[41]
Huang D , Xiang N , Tang W L , Zhang X J , Ni Z H. Progress in Chemistry , 2015, 27: 882.

doi: 10.7536/PC150121     URL    
黄笛, 项南, 唐文来, 张鑫杰, 倪中华. 化学进展, 2015, 27: 882.

doi: 10.7536/PC150121     URL    
[42]
Pei H, Li L, Wang Y, Sheng R, Wang Y, Xie S, Shui L, Si H, Tang B. Anal. Chem., 2019, 91: 11078.

doi: 10.1021/acs.analchem.9b01647     URL    
[43]
Wu L, Tang M, Zhang Z, Qi C, Hu J, Ma X, Pang D. Anal. Chem., 2018, 90: 10518.

doi: 10.1021/acs.analchem.8b02585     URL    
[44]
Dong J, Jan Y J, Cheng J, Zhang R Y, Meng M, Smalley M, Chen P J, Tang X, Tseng P, Bao L, Huang T Y, Zhou D, Liu Y, Chai X, Zhang H, Zhou A, Agopian V G, Posadas E M, Shyue J J, Jonas S J, Weiss P S, Li M, Zheng G, Yu H H, Zhao M, Tseng H R, Zhu Y. Sci. Adv., 2019, 5: v9186.
[45]
Abdulla A, Liu W, Gholamipour-Shirazi A, Sun J, Ding X. Anal. Chem., 2018, 90: 4397.

doi: 10.1021/acs.analchem.7b04210     URL    
[46]
Kim J, Galanzha E I, Zaharoff D A, Griffin R J, Zharov V P. Mol. Pharmaceutics , 2013, 10: 813.

doi: 10.1021/mp300577s     URL    
[47]
Hartmann C, Patil R, Lin C P, Niedre M. Phys. Med. Biol., 2017, 63: 1T.
[48]
Pons T, Bouccara S, Loriette V, Lequeux N, Pezet S, Fragola A. ACS Nano , 2019, 13: 3125.

doi: 10.1021/acsnano.8b08463     URL    
[49]
Adonai N, Adonai N, Nguyen K N, Walsh J, Iyer M, Toyokuni T, Phelps M E, McCarthy T, McCarthy D W, Gambhir S S. Proc. Natl. Acad. Sci. U. S. A., 2002, 99: 3030.
[50]
Ahrens E T, Bulte J W. Nat. Rev. Immunol. Immunology , 2013, 13: 755.
[51]
Zhang H F, Maslov K, Stoica G, Wang L V. Nat. Biotechnol., 2006, 24: 848.

doi: 10.1038/nbt1220     URL    
[52]
Yi J, Backman V. Opt. Lett., 2012, 37: 4443.

doi: 10.1364/OL.37.004443     URL    
[53]
Kircher M F, Gambhir S S, Grimm J. Nat. Rev. Clin. Oncol., 2011, 8: 677.

doi: 10.1038/nrclinonc.2011.141     URL    
[54]
Kuo C W, Chueh D, Chen P. Nanobiotechnol., 2019, 17: 26.
[55]
Hu Y, Tang W, Cheng P, Zhou Q, Tian X, Wei X, He H. Cytometry A , 2019, 95( 6): 657.

doi: 10.1002/cyto.v95.6     URL    
[56]
Hai P, Zhou Y, Zhang R, Ma J, Li Y, Shao J Y, Wang L V. J. Biomed. Opt., 2017, 22: 41004.
[57]
Hai P, Qu Y, Li Y, Zhu L, Shmuylovich L, Cornelius L A, Wang L V. J. Biomed. Opt., 2020, 25: 1.
[58]
Dutta R, Liba O, Sorelle E D, Winetraub Y, Ramani V C, Jeffrey S S, Sledge G W, de la Zerda A. Nano Lett. , 2019, 19: 2334.

doi: 10.1021/acs.nanolett.8b05005     URL    
[59]
Suo Y, Gu Z, Wei X. Cytometry A , 2020, 97: 15.

doi: 10.1002/cyto.a.v97.1     URL    
[60]
Galanzha E, Zharov V. Cancers , 2013, 5: 1691.

doi: 10.3390/cancers5041691     URL    
[61]
Novak J, Georgakoudi I, Wei X, Prossin A, Lin C P. Opt. Lett., 2004, 29: 77.

doi: 10.1364/OL.29.000077     URL    
[62]
Georgakoudi I, Solban N, Novak J, Rice W L, Wei X, Hasan T, Lin C P. Cancer Res., 2004, 64: 5044.

doi: 10.1158/0008-5472.CAN-04-1058     URL    
[63]
Li Y, Guo J, Wang C, Fan Z, Liu G, Wang C, Gu Z, Damm D, Mosig A, Wei X. Cytometry A , 2011, 79: 848.
[64]
Guo J, Fan Z, Gu Z, Wei X. J. Innov. Opt. Health Sci . , 2012, 5: 1250027.

doi: 10.1142/S1793545812500277     URL    
[65]
Fan Z C, Yan J, Liu G D, Tan X Y, Weng X F, Wu W Z, Zhou J, Wei X B. Cancer Res., 2012, 7: 2683.
[66]
Yan J, Fan Z, Wu X, Xu M, Jiang J, Tan C, Wu W, Wei X, Zhou J. Cytometry A , 2015, 87: 1020.

doi: 10.1002/cyto.a.22782     URL    
[67]
Pang K, Xie C, Yang Z, Suo Y, Zhu X, Wei D, Weng X, Wei X, Gu Z. Cytometry A , 2018, 93: 517.

doi: 10.1002/cyto.a.v93.5     URL    
[68]
Yu Q, Yao Y, Zhu X, Gao Y, Chen Y, Wang R, Xu P, Wei X, Jiang L. Cytometry A , 2020, DOI: 10.1002/cyto.a.24014.
[69]
Aceto N, Bardia A, Miyamoto D T, Donaldson M C, Wittner B S, Spencer J A, Yu M, Pely A, Engstrom A, Zhu H, Brannigan B W, Kapur R, Stott S L, Shioda T, Ramaswamy S, Ting D T, Lin C P, Toner M, Haber D A, Maheswaran S. Cell , 2014, 158: 1110.

doi: 10.1016/j.cell.2014.07.013    
[70]
Plaks V, Koopman C D, Werb Z. Science , 2013, 341: 1186.

doi: 10.1126/science.1235226    
[71]
Au S H, Storey B D, Moore J C, Tang Q, Chen Y, Javaid S, Sarioglu A F, Sullivan R, Madden M W, O Keefe R, Haber D A, Maheswaran S, Langenau D M, Stott S L, Toner M. Proc. Natl. Acad. Sci. U. S. A. , 2016, 113: 4947.
[72]
Suo Y, Xie C, Zhu X, Fan Z, Yang Z, He H, Wei X. Cytometry A , 2017, 91: 250.

doi: 10.1002/cyto.a.23037     URL    
[73]
Cho E H, Wendel M, Luttgen M, Yoshioka C, Marrinucci D, Lazar D, Schram E, Nieva J, Bazhenova L, Morgan A, Ko A H, Korn W M, Kolatkar A, Bethel K, Kuhn P. Phys. Biol., 2012, 9: 16001.

doi: 10.1088/1478-3975/9/1/016001     URL    
[74]
Paterlini-Brechot P, Benali N L. Cancer Lett., 2007, 253: 180.

doi: 10.1016/j.canlet.2006.12.014     URL    
[75]
Kallergi G, Konstantinidis G, Markomanolaki H, Papadaki M A, Mavroudis D, Stournaras C, Georgoulias V, Agelaki S. Mol. Cancer Ther., 2013, 12: 1886.

doi: 10.1158/1535-7163.MCT-12-1167    
[76]
Wei X, Sipkins D A, Pitsillides C M, Novak J, Georgakoudi I, Lin C P. Mol. Imaging , 2005, 4: 415.
[77]
Nolan J, Nedosekin D A, Galanzha E I, Zharov V P. Cytometry A , 2019, 95: 664.

doi: 10.1002/cyto.v95.6     URL    
[78]
Markovic S, Li S, Niedre M. J. Biomed. Opt., 2015, 20: 35005.
[79]
Zettergren E, Vickers D, Runnels J, Murthy S K, Lin C P, Niedre M. J. Biomed. Opt., 2012, 17: 37001.

doi: 10.1117/1.JBO.17.3.037001     URL    
[80]
Patil R A, Srinivasarao M, Amiji M M, Low P S, Niedre M. Mol. Imaging Biol. , 2020, DOI: 10.1007/s11307-020-01505-9.
[81]
Bartosik P B, Fitzgerald J E, El K M, Yaseen M A, Vinogradov S A, Niedre M. Int. J. Nanomed., 2020, 15: 1709.

doi: 10.2147/IJN     URL    
[82]
Tan X, Patil R, Bartosik P, Runnels J M, Lin C P, Niedre M. Sci. Rep., 2019, 9: 3366.

doi: 10.1038/s41598-019-40143-2     URL    
[83]
Woodard H Q, White D R. Br. J. Radiol. , 1986, 59: 1209.

doi: 10.1259/0007-1285-59-708-1209     URL    
[84]
Suo Y, Liu T, Xie C, Wei D, Tan X, Wu L, Wang X, He H, Shi G, Wei X, Shi C. Cytometry A , 2015, 87: 878.

doi: 10.1002/cyto.a.22711     URL    
[85]
Labelle M, Begum S, Hynes R O. Proc. Natl. Acad. Sci. U. S. A. , 2014, 111: 3053.
[86]
Ding Y, Wang J, Fan Z, Wei D, Shi R, Luo Q, Zhu D, Wei X. Biomed. Opt .Express , 2013, 4: 2518.

doi: 10.1364/BOE.4.002518    
[87]
Zharov V P, Galanzha E I, Shashkov E V, Kim J, Khlebtsov N G, Tuchin V V. J. Biomed. Opt., 2007, 12: 51503.

doi: 10.1117/1.2793746     URL    
[88]
Galanzha E I, Shashkov E V, Spring P M, Suen J Y, Zharov V P. Cancer Res., 2009, 69: 7926.

doi: 10.1158/0008-5472.CAN-08-4900     URL    
[89]
Galanzha E I, Shashkov E V, Kelly T, Kim J, Yang L, Zharov V P. Nat. Nanotechnol., 2009, 4: 855.

doi: 10.1038/nnano.2009.333     URL    
[90]
Galanzha E I, Kim J, Zharov V P. J. Biophoton., 2009, 2: 725.

doi: 10.1002/jbio.v2:12     URL    
[91]
Galanzha E I, Kokoska M S, Shashkov E V, Kim J, Tuchin V V, Zharov V P. J. Biophoton. , 2009, 2: 528.

doi: 10.1002/jbio.v2:8/9     URL    
[92]
Nedosekin D A, Juratli M A, Sarimollaoglu M, Moore C L, Rusch N J, Smeltzer M S, Zharov V P, Galanzha E I. J. Biophoton., 2013, 6: 523.

doi: 10.1002/jbio.v6.6/7     URL    
[93]
de la Zerda A, Kim J W, Galanzha E I, Gambhir S S, Zharov V P. Contrast Media Mol. Imaging , 2011, 6: 346.

doi: 10.1002/cmmi.455     URL    
[94]
Juratli M A, Sarimollaoglu M, Siegel E R, Nedosekin D A, Galanzha E I, Suen J Y, Zharov V P. Head Neck , 2014, 36: 1207.

doi: 10.1002/pro.v36.8     URL    
[95]
Galanzha E I, Menyaev Y A, Yadem A C, Sarimollaoglu M, Juratli M A, Nedosekin D A, Foster S R, Jamshidi-Parsian A, Siegel E R, Makhoul I, Hutchins L F, Suen J Y, Zharov V P. Sci. Transl. Med., 2019, 11: 5857.
[96]
Sarimollaoglu M, Nedosekin D A, Menyaev Y A, Juratli M A, Zharov V P. Photoacoustics , 2014, 2: 1.

doi: 10.1016/j.pacs.2013.11.002     URL    
[97]
Moreau J E, Anderson K, Mauney J R, Nguyen T, Kaplan D L, Rosenblatt M. Cancer Res., 2007, 67: 10304.

doi: 10.1158/0008-5472.CAN-07-2483     URL    
[98]
Lee J, Li M, Milwid J, Dunham J, Vinegoni C, Gorbatov R, Iwamoto Y, Wang F, Shen K, Hatfield K, Enger M, Shafiee S, McCormack E, Ebert B L, Weissleder R, Yarmush M L, Parekkadan B. Proc. Natl. Acad. Sci. U. S. A. , 2012, 109: 19638.
[99]
Azarin S M, Yi J, Gower R M, Aguado B A, Sullivan M E, Goodman A G, Jiang E J, Rao S S, Ren Y, Tucker S L, Backman V, Jeruss J S, Shea L D. Nat. Commun., 2015, 6: 8094.

doi: 10.1038/ncomms9094     URL    
[100]
Saucedo-Zeni N, Mewes S, Niestroj R, Gasiorowski L, Murawa D, Nowaczyk P, Tomasi T, Weber E, Dworacki G, Morgenthaler N G, Jansen H, Propping C, Sterzynska K, Dyszkiewicz W, Zabel M, Kiechle M, Reuning U, Schmitt M, Lücke K. Int. J. Oncol., 2012, 41: 1241.

doi: 10.3892/ijo.2012.1557    
[101]
Gallerani G, Cocchi C, Bocchini M, Piccinini F, Fabbri F. J. Vis. Exp., 2017, 130: 56930.
[102]
Mandair D, Vesely C, Ensell L, Lowe H, Spanswick V, Hartley J A, Caplin M E, Meyer T. Endocr. Relat. Cancer , 2016, 23: 29.
[103]
Gasiorowski L, Dyszkiewicz W, Zielinski P. Neoplasma , 2017, 64: 938.

doi: 10.4149/neo_2017_618     URL    
[104]
El-Heliebi A, Hille C, Laxman N, Svedlund J, Haudum C, Ercan E, Kroneis T, Chen S, Smolle M, Rossmann C, Krzywkowski T, Ahlford A, Darai E, von Amsberg G, Alsdorf W, Konig F, Lohr M, de Kruijff I, Riethdorf S, Gorges T M, Pantel K, Bauernhofer T, Nilsson M, Sedlmayr P. Clin. Chem., 2018, 64: 536.

doi: 10.1373/clinchem.2017.281295     URL    
[105]
Markou A, Lazaridou M, Paraskevopoulos P, Chen S, Swierczewska M, Budna J, Kuske A, Gorges T M, Joosse S A, Kroneis T, Zabel M, Sedlmayr P, Alix-Panabieres C, Pantel K, Lianidou E S. Clin. Chem., 2018, 64: 297.

doi: 10.1373/clinchem.2017.275503     URL    
[106]
Chen S, Tauber G, Langsenlehner T, Schmolzer L M, Potscher M, Riethdorf S, Kuske A, Leitinger G, Kashofer K, Czyz Z T, Polzer B, Pantel K, Sedlmayr P, Kroneis T, El-Heliebi A. Cancers ( Basel), 2019, 11: 933.

doi: 10.3390/cancers11070933     URL    
[107]
Li J B , Geng C Z , Yan M , Wang Y S , Ouyang Q C , Yin Y M , Wu L N , He J , Jiang Z F. Zhonghua Yi Xue Za Zhi , 2017, 97: 1857.
李健斌, 耿翠芝, 闫敏, 王永胜, 欧阳取长, 殷咏梅, 武林楠, 贺佳, 江泽飞. 中华医学杂志, 2017, 97: 1857.
[108]
Dizdar L, Fluegen G, van Dalum G, Honisch E, Neves R P, Niederacher D, Neubauer H, Fehm T, Rehders A, Krieg A, Knoefel W T, Stoecklein N H. Mol. Oncol., 2019, 13: 1548.

doi: 10.1002/mol2.2019.13.issue-7     URL    
[109]
Wang H, Yue G, Dong C, Wu F, Wei J, Yang Y, Zou Z, Wang L, Qian X, Zhang T, Liu B. ACS Appl. Mater. Interfaces , 2014, 6: 4550.

doi: 10.1021/am500394j     URL    
[110]
Zhang H, Jia Z, Wu C, Zang L, Yang G, Chen Z, Tang B. ACS Appl. Mater. Interfaces , 2015, 7: 20477.

doi: 10.1021/acsami.5b06874     URL    
[111]
Jia M, Mao Y, Wu C, Wang S, Zhang H. Anal. Chim. Acta , 2019, 1082: 136.

doi: 10.1016/j.aca.2019.07.051     URL    
[112]
Cheng S B, Wang M, Zhang C, Chen M M, Wang Y K, Tian S, Zhan N, Dong W G, Xie M, Huang W H. Anal. Chem. , 2020, 92: 5447.

doi: 10.1021/acs.analchem.0c00203     URL    
[113]
Vermesh O, Aalipour A, Ge T J, Saenz Y, Guo Y, Alam I S, Park S, Adelson C N, Mitsutake Y, Vilches-Moure J, Godoy E, Bachmann M H, Ooi C C, Lyons J K, Mueller K, Arami H, Green A, Solomon E I, Wang S X, Gambhir S S. Nat. Biomed. Eng., 2018, 2: 696.

doi: 10.1038/s41551-018-0257-3     URL    
[114]
Hamza B, Ng S R, Prakadan S M, Delgado F F, Chin C R, King E M, Yang L F, Davidson S M, Degouveia K L, Cermak N, Navia A W, Winter P S, Drake R S, Tammela T, Li C M, Papagiannakopoulos T, Gupta A J, Shaw Bagnall J, Knudsen S M, Vander Heiden M G, Wasserman S C, Jacks T, Shalek A K, Manalis S R. Proc. Natl. Acad. Sci. U. S. A., 2019, 116: 2232.
[115]
Tang M, Xia H, Xu C, Feng J, Ren J, Miao F, Wu M, Wu L, Pang D, Chen G, Zhang Z. Anal. Chem., 2019, 91: 15260.

doi: 10.1021/acs.analchem.9b04286     URL    
[1] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[2] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[3] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[4] 王佳佳, 吴惠英, 董任峰, 蔡跃鹏. 基于微/纳马达的智能癌症诊断、递送及治疗[J]. 化学进展, 2021, 33(5): 883-894.
[5] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[6] 郑秉得, 赵园园, 李洪才, 郑碧远, 柯美荣, 黄剑东*. 可激活抗癌光敏剂[J]. 化学进展, 2018, 30(9): 1403-1414.
[7] 田亮, 姚琛, 王怡红*. 电化学生物传感应用于体外检测的研究[J]. 化学进展, 2016, 28(12): 1824-1833.
[8] 黄笛, 项楠, 唐文来, 张鑫杰, 倪中华. 基于微流控技术的循环肿瘤细胞分选研究[J]. 化学进展, 2015, 27(7): 882-912.
[9] 范霄, 李艳艳, 刘迎亚, 曹昌盛, 李海涛. 单分子荧光技术在端粒和端粒酶研究中的应用[J]. 化学进展, 2014, 26(12): 1987-1996.
[10] 曾红梅, 陈万青. 中国癌症流行病学与防治研究现状[J]. 化学进展, 2013, 25(09): 1415-1420.
[11] Michael B. Sporn, Karen T. Liby. 癌症化学预防:过去,现在和未来[J]. 化学进展, 2013, 25(09): 1421-1428.
[12] 黎钧耀. 癌症的营养干预研究[J]. 化学进展, 2013, 25(09): 1462-1479.
[13] 杨中枢. 维生素E和茶多酚用于癌症预防:动物模型和人群研究的体验[J]. 化学进展, 2013, 25(09): 1492-1500.
[14] Ann M. Bode, 董子钢. 发现癌症化学预防分子靶标的策略[J]. 化学进展, 2013, 25(09): 1501-1516.
[15] 苏正元, 舒利民, Jong Hun Lee, Franciso Fuentes, 王虎, 吴天元, 余四旺, Ah-Ng Tony Kong. 食用植物成分和中药用于癌症化学预防:Nrf2,表观基因组学,癌症干细胞[J]. 化学进展, 2013, 25(09): 1526-1543.