English
新闻公告
More
化学进展 2020, Vol. 32 Issue (11): 1651-1664 DOI: 10.7536/PC200333 前一篇   后一篇

• •

磺化冠醚的分子键合与组装

王慧娟1, 刘育1,*()   

  1. 1. 南开大学化学系元素有机化学国家重点实验室 天津 300071
  • 收稿日期:2020-03-31 修回日期:2020-04-22 出版日期:2020-11-24 发布日期:2020-09-01
  • 通讯作者: 刘育
  • 作者简介:

    刘育

    南开大学教授,主要从事有机超分子化学的研究, 1996年获国家杰出青年科学基金资助,2000年教育部“长江学者奖励计划”特聘教授,2006年和2011年分别两次任国家973重大研究计划项目首席科学家。获国家自然科学奖二等奖1项,省部级自然科学一等奖3项,宝钢优秀教师特等奖1项和国家“十一五”科技计划执行突出贡献奖。

    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(21772100); 国家自然科学基金项目(21432004); 国家自然科学基金项目(29672021)

Molecular Binding and Assembly of Sulfonated Crown Ethers

Hui-Juan Wang1, Yu Liu1,*()   

  1. 1. State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
  • Received:2020-03-31 Revised:2020-04-22 Online:2020-11-24 Published:2020-09-01
  • Contact: Yu Liu
  • Supported by:
    the National Natural Science Foundation of China(21772100); the National Natural Science Foundation of China(21432004); the National Natural Science Foundation of China(29672021)

冠醚作为第一代大环主体分子,具有柔性的空腔,因其对金属离子、有机阳离子的络合作用而被广泛用于构筑超分子组装体。磺化冠醚是一种水溶性良好的阴离子型冠醚衍生物,相比于冠醚,它具有更多的键合位点,对金属离子、有机阳离子具有更强的键合和良好的选择性。本文从磺化冠醚的合成,对碱金属离子、镧系金属的络合,对有机阳离子客体的组装等方面介绍了磺化冠醚的研究进展。然后从热力学、晶体结构学的角度综合分析了磺化冠醚键合与组装的模式及驱动力。最后讨论了磺化冠醚的分子键合与组装发展所面临的挑战,并对其应用前景进行了展望。

Crown ethers, as the first generation macrocycle, with flexible cavity, are widely used to construct supramolecular assemblies, due to their complexation of metal ions and organic cations. Sulfonated crown ether is a kind of anionic crown ether derivative with good water solubility, compared with crown ether, it possess more binding sites, stronger binding ability and better guest selectivity with metal ions and organic cations. This review introduces the research progress of sulfonated crown ether from the synthesis of sulfonated crown ethers, the complexation of alkali metal ions, lanthanide metals, and the assembly of organic cationic guests. Then we comprehensively analyse the binding modes and driving forces of sulfonated crown ethers from the perspectives of thermodynamics and crystal structures. Finally, we discuss the opportunities and challenges of the development of molecular binding and assembly of sulfonated crown ethers, and prospected the application of sulfonated crown ethers.

Contents

1 Introduction

2 The sulfonation method of crown ether

3 The binding and assembly of sulfonated crown ether to metal ions

4 The binding and assembly of sulfonated crown ether to organic cations

4.1 The binding and assembly of bis-sulfonated crown ether to organic cations

4.2 The binding and assembly of tetra-sulfonated bis(m-phenylene) crown ether to organic cations

4.2.1 The binding and assembly of tetra-sulfonated dibenzo crown ether to organic cations

4.2.2 The binding and assembly of tetra-sulfonated dinaphtho crown ether to organic cations

5 Conclusion

()
图1 磺化冠醚的化学结构式[11,12,13]
Fig.1 Chemical structures of sulfonated crown ethers[11,12,13]
图2 DS16C5、DS16C5-Me和DS16C5-Butyl的化学结构式[14]
Fig.2 Chemical structures of DS16C5, DS16C5-Me and DS16C5-Butyl [14]
图3 磺化冠醚的化学结构式及离子键合模式图[17, 18, 23]
Fig.3 Chemical structures of sulfonated crown ethers and diagrams of ion binding pattern [17, 18, 23]
图4 SNIB15C5和SNIB18C6的化学结构式[26]
Fig.4 Chemical structures of SNIB15C5 and SNIB18C6[26]
图5 磺化冠醚表面活性剂的化学结构式[27]
Fig.5 Chemical structures of sulfonate-crown ether surfactants[27]
图6 二磺化冠醚和吡啶阳离子的化学结构式[15, 32]
Fig.6 Chemical structures of bis-sulfonated crown ethers and pyridine cations[15, 32]
表1 在不同溶剂中形成[2]准轮烷的键合常数Ka/103 M-1[a]对比[32]
Table 1 A comparison of association constants Ka/103 M-1[a] for the formation of [2]pseudorotaxanes in various solvents at 298 K[32]
图7 4-BPE2+?DSDB24C8(下)和3-BPE2+?DSDB24C8(上)的球棍模型图。S黄色,O红色,N蓝色,轴=金色键,轮=银色键;氢原子省略[32]
Fig.7 Ball-and-stick representations of the X-ray structures of [4-BPE2+?DSDB24C8](bottom) and [3-BPE2+?DSDB24C8](top). S yellow, O red, N blue, C black, axle=gold bonds, wheel=silver bonds; hydrogen atoms omitted for clarity[32]
图8 [2]准轮烷(EV2+?DSDB34C10)的X-衍射单晶结构[15]
Fig.8 X-ray crystal structure of [2] pseudorotaxane salt(EV2+?DSDB34C10)[15]
图9 四磺化冠醚的化学结构式[19]
Fig.9 Chemical structures of tetra-sulfonated crown ethers[19]
图10 吡啶阳离子的化学结构式[19]
Fig.10 Chemical structures of pyridine cations[19]
图11 [2]准轮烷MV2+?TSBMP26C8的(a)晶体结构及(b)堆积模式图,[2]准轮烷BPE2+?TSBMP26C8的(c)晶体结构及(d)堆积模式图[16]
Fig.11 (a) Crystal structure and(b) the packing representation of [2]pseudorotaxane MV2+?TSBMP26C8,(c) Crystal structure and(d) the packing representation of [2]pseudorotaxane BPE2+?TSBMP26C8[16]
图12 阳离子客体的化学结构式[19, 46, 48, 49]
Fig.12 Chemical structures of cationic guests[19, 46, 48, 49]
表2 TSBMP26C8 或TSBMP32C10与有机阳离子客体在水中1∶1形成络合物的键合常数(Ka/M-1)及焓(ΔH/kJ·mol-1)熵(TΔS/kJ·mol-1)变化[16, 19]
Table 2 Complex associate constants(Ka/M-1), enthalpy(ΔH/kJ·mol-1) and entropy changes(TΔS/kJ·mol-1) for 1∶1 inclusion complexation of TSBMP26C8 or TSBMP32C10 with organic cationic guests in water at 25 ℃[16, 19]
图13 复合物(a) MV2+?TSDN32C8,(b) MV2+?TSDN38C10和(c) EV2+?TSDN38C10的晶体结构及堆积模式图[37]
Fig.13 Crystal structures and packing representation for the complexation of(a) MV2+?TSDN32C8,(b) MV2+?TSDN38C10 and(c) EV2+?TSDN38C10[37]
图14 [2]准轮烷(a) PMDI2+?TSDN38C10 和(b) NDI2+?TSDN38C10的晶体结构及堆积模式图,左:单晶结构,右:堆积结构。溶剂分子和部分氢原子已省略[43]
Fig.14 Crystal structures and packing representation of [2]pseudorotaxane(a) PMDI2+?TSDN38C10 and(b) NDI2+?TSDN38C10. Left: single unit; right: packing structure. Solvent molecules and partial hydrogen atoms are omitted for clarity[43]
表3 TSDN32C8 或TSDN38C10与有机阳离子客体在水中1∶1形成络合物的键合常数(Ka/M-1)及焓(ΔH/kJ·mol-1)和熵(TΔS/kJ·mol-1)变化[19, 37, 43, 44, 46]
Table 3 Complex associate constants(Ka/M-1), enthalpy(ΔH/kJ·mol-1) and entropy changes(TΔS/kJ·mol-1) for 1∶1 inclusion complexation of TSDN32C8 or TSDN38C10 with organic cationic guests in Water at 25 ℃ [19, 37, 43, 44, 46]
Host Guest Ka(M-1) DG° - ΔH°(kJ/mol) TΔS°(kJ/mol)
TSDN32C8 MV2+ (4.04 ± 0.35) × 107 43.40 ± 0.22 38.93 ± 0.27 4.47 ± 0.05
EV2+ (5.25 ± 0.58) × 107 44.04 ± 0.28 41.54 ± 0.54 2.50 ± 0.26
BuV2+ (4.66 ± 0.48) × 107 43.75 ± 0.26 43.92 ± 1.05 -0.17 ± 0.79
MP2+ (1.13 ± 0.06) × 105 28.84 ± 0.04 29.23 ± 0.23 -0.39 ± 0.35
PMDI2+ (5.82 ± 0.05) × 105 32.90 ± 0.02 24.85 ± 0.01 8.05 ± 0.03
NDI2+ (9.81 ± 0.08) × 105 34.18 ± 0.02 23.17 ± 0.03 11.01 ± 0.08
G1 (2.82 ± 0.21) × 106 36.81 ± 0.18 35.47 ± 0.05 1.34 ± 0.23
G2 (4.94 ± 0.29) × 106 38.20 ± 0.14 33.38 ± 0.04 4.82 ± 0.18
G3 4.32 × 106 37.85 41.39 -3.54
G4 (8.09 ± 0.09) × 105 33.72 ± 0.03 39.37 ± 0.37 -5.65 ± 0.39
G5 (1.64 ± 0.08) × 106 35.47± 0.12 40.54 ± 0.07 -5.08 ± 0.20
G6 (1.82 ± 0.13) × 106 35.52 ± 0.02 41.42 ± 0.42 -5.89 ± 0.40
TSDN38C10 MV2+ (3.25 ± 0.04) × 105 31.46 ± 0.03 30.13 ± 0.24 1.33 ± 0.21
EV2+ (1.85 ± 0.04) × 105 30.06 ± 0.05 27.20 ± 0.01 2.86 ± 0.07
BuV2+ (1.88 ± 0.02) × 105 30.10 ± 0.03 27.27 ± 0.01 2.83 ± 0.02
MP2+ (4.42 ± 0.26) × 102 15.03 ± 0.69 14.71 ± 1.29 0.38 ± 1.43
PMDI2+ (8.08 ± 0.30) × 104 27.99 ± 0.09 20.59 ± 0.15 7.40 ± 0.24
NDI2+ (2.33 ± 0.03) × 106 36.32 ± 0.03 36.31 ± 0.04 0.01 ± 0.01
BV2+ (7.12 ± 0.01) × 105 33.37 ± 0.00 30.99 ± 0.07 2.54 ± 0.07
DP2+ (2.49 ± 0.00) × 106 36.47 ± 0.00 29.80 ± 0.06 6.84 ± 0.06
DMDAP2+ (1.12 ± 0.03) × 108 45.89 ± 0.06 47.84 ± 0.12 -1.96 ± 0.18
DBDAP2+ (2.25 ± 0.03) × 107 41.93 ± 0.04 40.06 ± 0.06 1.87 ± 0.10
表4 五种荧光染料与四磺化二萘并-32-冠-8键合的荧光光谱的参数[19]
Table 4 Parameters of fluorescence spectra of five silk tricyclic fluorescent dyes binded to tetrasulfonated dinaphtho-32-crown-8[19]
图15 (a) DP2+?TSDN38C10- 和(b) DMDAP2+? TSDN38C10-晶体结构图;(c) DP2+?TSDN38C10 和(d) DMDAP2+?TSDN38C10的堆积模式图(溶剂分子和部分氢原子已省略)[44]
Fig.15 Crystal structures of(a) DP2+?TSDN38C10 and(b) DMDAP2+?TSDN38C10, and packing representation of(c) DP2+?TSDN38C10 and(d) DMDAP2+?TSDN38C10. Please note that the solvent molecules and partial hydrogen atoms are omitted for clarity[44]
图16 基于光响应的准轮烷的组装与解组装[48]
Fig.16 Self-assembly/disassembly based on the photoresponsive interconversion of pseudorotaxanes[48]
图17 复合物MV-FF?TSDN32C8的SEM(a)、TEM图(b)及示意图(c)[49]
Fig.17 The SEM(a), TEM(b) images and diagram(c) of the complex MV-FF?TSDN32C8 [49]
[1]
Pedersen C J . Am. Chem. Soc., 1967,89(26):7017.
[2]
Huang S L , Hor T S A, Jin G X, Coord. Chem. Rev., 2017,333:1.
[3]
Wang H J, Zhang H Y, Wu H, Dai X Y, Li P Y, Liu Y. . Chem. Commun., 2019,55:4499.
[4]
Fu H G, Zhang H Y, Zhang H Y, Liu Y. . Chem. Commun., 2019,55:13462.
[5]
Li X, Deng Y, Lai J, Zhao G, Dong S . Am. Chem. Soc., 2020,142:5371.
[6]
Wang L, Cheng L, Li G, Liu K, Zhang Z, Li P, Dong S, Yu W, Huang F, Yan X . Am. Chem. Soc., 2020,142:2051.
[7]
Fu H G, Chen Y , Liu Y. ACS Appl. Mater Interfaces., 2019,11:16117.
[8]
Chen Y, Huang F, Li Z T , Liu Y. Sci China Chem., 2018,61:979.
[9]
刘育 ( Liu Y), 尤长城(You C C), 张衡益(Zhang H Y). 超分子化学—合成受体的分子识别与组装(Supramolecular Chemistry-Molecular Recognition and Assembly of Synthetic Receptors). 天津:南开大学出版社( Tianjin: Nankai University Press), 2001. 624.
[10]
王慧娟 ( Wang H J). 南开大学硕士论文( Master’s Dissertation of Nankai University), 2019.
[11]
Pederson C J . US3687978, 1972.
[12]
Cram D J, Helgeson R C, Peacock S C, Kaplan L J, Domeier L A, Moreau P, Koga K, Mayer J M, Chao Y, Siegel M G, Hoffman D H, Sogah G D . Org. Chem., 1978,43:1930.
[13]
Shinkai S, Minami T, Araragi Y, Manabe O . Chem. Soc. Perkin. Trans., 1985,2:503.
[14]
Pugia M J, Desai D H, Bartsch R A . Org. Chem., 1987,52:4389.
[15]
Lestini E, Nikitin K, Muller-Bunz H , Fitzmaurice D. Chem. Eur. J., 2008,14:1095.
[16]
Chen L, Zhang Y M, Liu Y . J. Phys. Chem. B, 2012,116:9500.
[17]
Sasaki T, Umetani S , Le Q T H, Matsui M, Tsurubou S. Analyst., 1996,121:1051.
[18]
Sasaki T, Umetani S, Matsui M, Tsurubou S, Kimura T , Yoshida Z. Bull. Chem. Soc. Jpn., 1998,71:371.
[19]
陈岭 ( Chen L). 南开大学博士论文( Doctoral Dissertation of Nankai University), 2019.
[20]
Morzherin Y, Rudkevich D M, Verboom W, Reinhoudt D N . Org. Chem., 1993,58:7602.
[21]
Jenkins H D B, Thakur K P . Chem. Educ., 1979,56:576.
[22]
Shannon R D. Acta Crystallogr., 1976,32:751.
[23]
Umetani S, Sasaki T , Le Q T H, Matsui M, Tsurubou S, Kimura T, Yoshida Z. Analytical Sciences., 1997,13:123.
[24]
Minta A, Tsien R Y . Biol. Chem., 1989,264:19449.
[25]
He H, Mortellaro A M , Leiner P J M, Fraatz J R, Tusa K. J. Am. Chem. Soc., 2003,125:1468.
[26]
Nandhikonda P, Begaye M P, Heagy M D . Tetrahedron Letters, 2009,50:2459.
[27]
Zhou J, Liang H L, Chen Q D, Shen X H . Chinese Chemical Letters, 2013,24(12):1137.
[28]
Oshovsky G V, Reinhoudt D N , Verboom W. Angew. Chem. Int. Ed., 2007,46:2366.
[29]
Florea M , Nau W M. Org. Biomol. Chem., 2010,8:1033.
[30]
Badjic J D, Balzani V, Credi A, Silvi S, Stoddart J F . Science, 2004,303:1845.
[31]
Badjic J D, Ronconi C M, Stoddart J F, Balzani V, Silvi S, Credi A . Am. Chem. Soc., 2006,128:1489.
[32]
Hoffart D J, Tiburcio J, Torre A, Knight L K , Loeb S J. Angew. Chem. Int. Ed., 2008,47:97.
[33]
Altobello S, Nikitin K, Stolarczyk J, Lestini E , Fitzmaurice D. Chem. Eur. J., 2007,14:1107.
[34]
Ashton P R, Ballardini R, Balzani V , Bělohradsk y M, Gandolfi M T, Philp D, Rrodi L, Raymo F M, Reddington M V, Spencer N, Stoddart J F, Venturi M, Williams D J. J. Am. Chem. Soc., 1996,118:4931.
[35]
Huang F, Gibson H W, Bryant W S, Nagvekar D S, Froncze F R . Am. Chem. Soc., 2003,125:9367.
[36]
Zhang M, Luo Y, Zheng B, Xia B, Huang F . Org. Chem., 2010: 5543.
[37]
Chen L, Zhang H Y, Liu Y . Org. Chem., 2012,77:9766.
[38]
Vignon S A, Jarrosson T, Iijima T, Tseng H R , Sander J K M, Stoddart J F. J. Am. Chem. Soc., 2004,126:9884.
[39]
Han T, Chen C F . Org. Chem., 2007,72:7287.
[40]
Bhosale S V, Jani C H , Langford S J. Chem. Soc. Rev., 2008,37:331.
[41]
Mullen K M, Davis J D , Beer P D. New J. Chem., 2009,33:769.
[42]
Jacquot de R, H P, Iehl J, Bruns C J, McGrier P L, Frasconi M, Sarjeant A A, Stoddart J F . Org. Lett., 2012,14:5188.
[43]
Chen L, Zhang Y M, Wang L H, Liu Y . Org. Chem., 2013,78:5357.
[44]
Zhang Y M, Wang Z, Chen L, Song H B, Liu Y . J. Phys. Chem. B, 2014,118:2433.
[45]
张旭杰 ( Wang H J). 南开大学硕士论文( Master’s Dissertation of Nankai University), 2016.
[46]
Zhang Y M, Zhang X J, Xu X F, Fu X N, Hou H B, Liu Y . J. Phys. Chem. B, 2016,120:3932.
[47]
Houk K N, Leach A G, Kim S P , Zhang X. Angew. Chem. Int. Ed., 2003,42:4872.
[48]
Wang J, Zhang H Y, Zhang X J, Song Z H, Zhao X J, Liu Y. . Chem. Commun., 2015,51:7329.
[49]
Zhang W, Zhang Y M, Li S H, Cui Y L, Yu J , Liu Y. Angew. Chem. Int. Ed., 2016,55:11452.
[1] 王孔江,辛亮,任洁. Na+和Cl-对CDI活化的酸性及碱性氨基酸聚合反应的高效促进效应[J]. 化学进展, 2006, 18(10): 1391-1396.
[2] 欧阳健明. 单分子膜诱导生物矿物晶体生长中的晶格匹配和电荷匹配*[J]. 化学进展, 2005, 17(05): 931-937.
阅读次数
全文


摘要

磺化冠醚的分子键合与组装