English
新闻公告
More
化学进展 2020, Vol. 32 Issue (7): 935-942 DOI: 10.7536/PC191024 前一篇   后一篇

• 综述 •

星形环糊精聚合物的制备及其应用

李霞1,**(), 马红艳1, 聂晓娟1, 刘旭1, 卞成明1, 谢龙1   

  1. 1. 中北大学理学院化学系 太原 030051
  • 收稿日期:2019-10-31 出版日期:2020-07-24 发布日期:2020-07-10
  • 通讯作者: 李霞
  • 基金资助:
    国家青年自然科学基金(21605133); 国家青年自然科学基金(21602209)

Preparation of Star-Like Polymer Based on Cyclodextrin and Its Application

Xia Li1,**(), Hongyan Ma1, Xiaojuan Nie1, Xu Liu1, Chengming Bian1, Long Xie1   

  1. 1. The Department of Chemistry, School of Science, North University of China, Taiyuan 030051, China
  • Received:2019-10-31 Online:2020-07-24 Published:2020-07-10
  • Contact: Xia Li
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21605133); National Natural Science Foundation of China(21602209)

环糊精由于特殊的中空结构特点,自被发现以来一直受到研究者的关注。星形环糊精聚合物将环糊精多羟基空腔结构与星形聚合物的多臂链结构相结合,不仅具有三维空间结构,而且还具有特定的官能团以及环糊精的结构特点,具有广泛的应用前景和发展潜力。本综述主要归纳总结了以环糊精为中心的星形聚合物的制备方法,及其在生物医学、电化学、污水处理及其他方面的应用,并在此基础上对星形环糊精聚合物的发展趋势和研究方向进行了展望。

Cyclodextrin has gained great attention since its discovery, due to its special cavity structure. Combining the cavity with multi-hydroxyl groups of cyclodextrin and the multi-arms of star-like polymer, a star-like polymer based on cyclodextrin has three-dimensional structure, special functional groups and features of cyclodextrin. These make star-like cyclodextrin polymers possess wide application and great development potential. Herein, this review summarizes the preparation methods of star-like polymer using cyclodextrin as reaction center, and the corresponding applications in biomedical, electrochemistry, wastewater treatment and other aspects. Furthermore, the new research trends and development direction of star-like polymer based on cyclodextrin are presented.

Contents

1 Introduction

2 Preparation of star-like polymer based on cyclodextrin

3 Application of star-like polymer based on cyclodextrin

3.1 Biomedical

3.2 Electrochemistry

3.3 Wastewater treatment

3.4 Other applications

4 Conclusion and outlook

()
图1 不同臂链s-CDPD的结构[25]
Fig.1 Structures of s-CDPD with different arms[25]
图2 ATRP反应过程
Fig.2 Polymerization process of ATRP
图3 seATRP法合成β-CD-PBA-b-PtBAs星形嵌段共聚物的合成路线[32]
Fig.3 Synthesis of β-CD-PBA-b-PtBAs star block copolymers via seATRP[32]
图4 β-CD-PLA-POEGMA的合成路线[40]
Fig.4 Synthesis of β-CD-PLA-POEGMA[40]
图5 β-CD-g-(PNIPAM-b-PDMA) P 的合成路线[44]
Fig.5 Synthesis of β-CD-g-(PNIPAM-b-PDMA) P [44]
图6 β-CD-PEG的合成路线[51]
Fig.6 Synthesis of β-CD-PEG[51]
图7 DOX@CDT NPs的合成过程[57]
Fig.7 Synthesis of DOX@CDT NPs[57]
图8 β-CD-g-(PCL-b-PDMAEMA) x 的合成过程[59]
Fig.8 Synthesis of β-CD-g-(PCL-b-PDMAEMA) x [59]
图9 离子液体星形β-CD聚合物的分子结构[64]
Fig.9 Molecular structure of polyIL star β-CD polymer[64]
图10 星形β-CD固态聚合物电解质膜的制备过程[65]
Fig.10 Preparation of hyperbranched β-CD based solid polymer electrolyte film[65]
图11 SM-CD-SPEG的合成过程[71]
Fig.11 Synthesis of SM-CD-SPEG[71]
图12 星形PS-b-PAA-b-PS-capped金属纳米颗粒(a)[72]和PAA-b-PNIPAM-capped Au纳米颗粒(b)的结构[74]
Fig.12 Structures of star like PS-b-PAA-b-PS-capped metal NPs[72] and PAA-b-PNIPAM-capped Au NP[74]
[1]
Sherje A P , Dravyakar B R , Kadam D , Jadhav M . Carbohyd. Polym., 2017,173:37.
[2]
刘育(Liu Y), 尤长城(You C C), 张衡益(Zhang H Y) . 超分子化学——合成受体的分子识别与组装(Supramolecular Chemistry—Molecular Recognition and Assembly of Synthetic Receptors). 天津: 南开大学出版社( Tianjin: Nankai University Press), 2001.
[3]
Zhang D J , Lv P , Zhou C , Zhao Y L , Liao X L , Yang B . Mat. Sci. Eng. C-Mater, 2019,96:872.
[4]
赵倩(Zhao Q), 李盛华(Li S H), 刘育(Liu Y) . 化学进展 (Progress in Chemistry), 2018,30(5):673. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC180101
[5]
Michalski A , Brzezinski M , Lapienis G , Biela T . Prog. Polym. Sci., 2019,89:159. doi: 10.1016/j.progpolymsci.2018.10.004 https://linkinghub.elsevier.com/retrieve/pii/S0079670018301114
[6]
Duan H L , Niu Q L , Wang J , Ma S Y , Zhang J , Zhang Z Q . J. Chromatogr. A, 2019,1600:80. doi: 10.1016/j.chroma.2019.04.056 https://www.ncbi.nlm.nih.gov/pubmed/31047663

URL     pmid: 31047663
[7]
Li X , Xie L , Yang X , Nie X J . RSC Adv., 2018,8:40321.
[8]
杨庆华(Yang Q H), 王龙刚(Wang L G), 柳杰(Liu J), 陆勇(Chen Y), 许华建(Xu H J), 陈天云(Chen T Y) . 高等学校化学学报 (Chemical Journal of Chinese Universities), 2018,39(4):793.
[9]
Bai Y , Liu C P , Xie F Y , Ma R , Zhuo L H , Li N , Tian W . Carbohyd. Polym., 2019,213:411.
[10]
Wu W , Wang W G , Li J S . Prog. Polym. Sci., 2015,46:55.
[11]
白阳(Bai Y), 范晓东(Fan X D), 穆承广(Mu C G), 杨臻(Yang Z), 王丹(Wang D), 张海涛(Zhang H T) . 化学进展 (Progress in Chemistry), 2013,25(2/3):363.
[12]
Zhou Z S , Li G Y , Wang N R , Guo F , Guo L , Liu X Y . Colloid. Surface. B, 2018,172:136.
[13]
Yin H , Zhao F , D H Zhang , J Li . Int. J. Pharmaceut., 2015,483(1-2):169
[14]
Liu H , Chen J , Li X F , Deng Z W , Gao P R , Li J B , Ren T , Huang L , Yang Y J , Zhong S A . Colloid. Surface. B, 2019,180:429.
[15]
Li J J , Gu Z Y , Liao M Q , Lin C , Zhuang Z G . Mat. Sci. Eng. C-Mater, 2019,99:740.
[16]
Xiao Q Z , Li Z H , Gao D S , He T , Zhang H L . J. Appl. Electrochem., 2009,39(2):247.
[17]
Li X , Iocozzia J , Chen Y H , Zhao S Q , Cui X , Wang W , Yu H F , Lin S L , Lin Z Q . Angew. Chem. Int. Edit., 2018,57(8):2046.
[18]
Verheyen L , Leysen P , Eede M P V D , Ceunen W , Hardeman T, Koeckelberghs G . Polymer, 2017,108:521.
[19]
Tunca U , Ozyurek Z , Erdogan T , Hizal G . J. Polym. Sci. Part A Polym. Chem., 2004,42(17):4228.
[20]
Yao X K , Huang P , Nie Z H . Prog. Polym. Sci., 2019,93:1.
[21]
Jin X , Sun P , Tong G S , Zhu X Y . Biomaterials, 2018,178:738. doi: 10.1016/j.biomaterials.2018.01.051 https://www.ncbi.nlm.nih.gov/pubmed/29429845

URL     pmid: 29429845
[22]
Li J S , Guo Z Z , Xin J Y , Zhao G L , Xiao H N . Carbohyd. Polym., 2010,79(2):277.
[23]
Yang C L , Qin Y T , Tu K , Xu C F , Li Z , Zhang Z P . Colloid. Surface. B, 2018,169:10.
[24]
Seidi F , Shamsabadi A A , Amini M , Shabanian M , Crespy D . Polym. Chem., 2019,10(27):3674.
[25]
Xiu K M , Yang J J , Zhao N N , Li J S , Xu F J . Acta Biomater., 2013,9:4726. doi: 10.1016/j.actbio.2012.08.020 https://www.ncbi.nlm.nih.gov/pubmed/22917804

URL     pmid: 22917804
[26]
Rodrigues P R , Vieira R P . Eur. Polym. J., 2019,115:45. doi: 10.1016/j.eurpolymj.2019.03.023 https://linkinghub.elsevier.com/retrieve/pii/S0014305719302812
[27]
Matyjaszewski K . Macromolecules, 2012,45:4015.
[28]
Guo J K , Zhou Y N , Luo Z H . Chem. Eng. J. 2019,37:163.
[29]
Pan X , Tasdelen M A , Laun J , Junkers T , Yagci Y , Matyjaszewski K . Prog. Polym. Sci., 2016,62:73.
[30]
Santos M R E , Ferreira S M , Mendonca P V , De Bon F , Serra A C , Coelho J F J . Polym. Chem., 2019,10(36):4944.
[31]
Wang G X , Lu M , Zhou M J . J. Macromol. Sci. Part A, 2018,55:85.
[32]
Chmielarz P , Park S , Sobkowiak A , Matyjaszewski K . Polymer, 2016,88:36.
[33]
Andrea K A , Plommer H , Kerton F M . Eur. Polym. J., 2019,120:109202.
[34]
Li X , Nie X J , Zhu Y N , Ye W C , Jiang Y L , Su S L , Yan B T . Colloid. Surface. A, 2019,578:123582.
[35]
Deng M D , Li M , Zhao Y , Jiang Z , Guo X J . Talanta, 2018,189:458. https://www.ncbi.nlm.nih.gov/pubmed/30086947

URL     pmid: 30086947
[36]
Fujiyoshi T , Carrez O , Imizcoz M , Zornoza A , Isasi J R . Carbohyd. Polym., 2019,219:105.
[37]
Jiang M W , Guo C G , Wang L , Li Y K , Wang C Q . Carbohyd. Polym., 2013,92(2):1566.
[38]
Cheng H W , Fan X S , Wu C S , Wang X Y , Wang L J , Loh X J , Li Z B , Wu Y L . Macromol. Rapid Comm., 2019,40(5):1800207.
[39]
Huin C , Eskandani Z , Badi N , Farcas A , Bennevault-Celton V , Guégan P . Carbohyd. Polym., 2013,94:323.
[40]
Xu Z G , Liu S Y , Liu H , Yang C J , Kang Y J , Wang M F . Chem. Commun., 2015,51(87):15768.
[41]
Mori H , Ishikawa K , Abiko Y , Nakabayashi K , Onuma A , Morishima M . Polymer, 2013,54(8):2001.
[42]
Döhler D , Kaiser J , Binder W H . Polymer, 2017,122:148.
[43]
Xian C H , Yuan Q J , Bao Z T , Liu G T , Wu J . Chinese Chem. Lett., 2020,31:19. doi: 10.1016/j.cclet.2019.03.052 https://linkinghub.elsevier.com/retrieve/pii/S1001841719301482
[44]
Zhang H J , Yan Q , Kang Y , Zhou L L , Zhou H , Yuan J Y , Wu S Z . Polymer, 2012,53:3719. doi: 10.1016/j.polymer.2012.05.059 d86e8df6-31a8-4d18-84f6-7b5cd10573d0 http://dx.doi.org/10.1016/j.polymer.2012.05.059
[45]
Xie C , Zhang P , Zhang Z K , Yang C C , Zhang J L , Wu W , Jiang X Q . Nanoscale, 2015,7:12572. doi: 10.1039/c5nr02861b https://www.ncbi.nlm.nih.gov/pubmed/26144838

URL     pmid: 26144838
[46]
Lava K , Verbraeken B , Hoogenboom R . Eur. Polym. J., 2015,65:98.
[47]
Liu X Y , Ding Y L , Liu J , Lin S L , Zhuang Q X . Eur. Polym. J., 2019,116:342.
[48]
Ouyang T , Liu X H , Ouyang H S , Ren L Z . Virus Res., 2018,256:21. https://www.ncbi.nlm.nih.gov/pubmed/30081058

URL     pmid: 30081058
[49]
Sugane K , Yoshioka Y , Shimasaki T , Teramoto N , Shibata M . Polymer, 2018,144:92.
[50]
Unverferth M , Meier M A R . Polymer, 2014,55(22):5571.
[51]
Rojas-Aguirre Y , Torres-Mena M A , López-Méndez L J , Alcaraz-Estrad S L , Guadarrama P , Urucha-Ortíz J M . Carbohyd. Polym., 2019,223:115113.
[52]
Godinho B M D C , Ogier J R , Quinlan A , Darcy R , Griffin B T , Cryan J F , O’Driscoll C M . Int. J. Pharmaceut., 2014,473(1/2):105.
[53]
Nafee N , Hirosue M , Loretz B , Wenz G , Lehr C M . Colloid. Surface. B, 2015,129:30.
[54]
Chen W J , Hong Y H , Zhang T , Kong D L , Zhang M M , Zhang Q Q , Wang C . Colloid. Surface. B, 2019,181:721.
[55]
Song X , Zhu J L , Wen Y T , Zhao F , Zhang Z X , Li J . J. Colloid Interf. Sci., 2017,490:372.
[56]
Cha R T , Li J J , Liu Y , Zhang Y F , Xie Q , Zhang M M . Colloid. Surface. B, 2017,158:213.
[57]
Yang C L , Qin Y T , Tu K , Xu C F , Li Z , Zhang Z P . Colloid. Surface. B, 2018,169:10.
[58]
陈涛(Chen T), 黄婵(Huang C) . 高等学校化学学报 (Chemical Journal of Chinese Universities), 2018,39(10):2350.
[59]
Cheng H W , Fan X S , Wu C S , Wang X Y , Wang L J , Loh X J , Li Z B , Wu Y L . Macromol. Rapid Commun. 2019,40:1.
[60]
Wang S , Wang A L , Yang C K , Gao R , Liu X , Chen J , Wang Z N , Zeng Q H , Liu X F , Zhou H H , Zhang L Y . J. Power Sources, 2018,395:137.
[61]
Zhou N , Wang Y F , Zhou Y , Shen J Y , Zhou Y , Yang Y . Electrochim. Acta, 2019,301:284.
[62]
Wang A L , Xu H , Liu X , Wang S , Zhou Q , Chen J , Zhang L Y . Compos. Sci. Technol., 2017,152:68.
[63]
Imholt L , Dörr T S , Zhang P , Ibing L , Cekic-Laskovic I , Winter M , Brunklaus G . J. Power Sources, 2019,409:148.
[64]
Erwin A J , Lee H , Ge S , Zhao S , Korolovych V F , He H K , Matyjaszewski K , Sokolov A P , Tsukruk V V . Eur. Polym. J., 2018,109:326.
[65]
Chen S L , Feng F , Yin Y M , Che H Y , Liao X Z , Ma Z F . J. Power Sources, 2018,399:363.
[66]
Liu W W , Zhang S K , Qiao Z , Li Q , Li X Y , Wang H Q . Colloid. Surface. A, 2018,541:17.
[67]
Samuel L , Wang R , Dubois G , Allen R , Wojtecki R , La Y H . Chemosphere, 2017,169:437. doi: 10.1016/j.chemosphere.2016.11.049 https://www.ncbi.nlm.nih.gov/pubmed/27889510

URL     pmid: 27889510
[68]
Liu R , Du D J , Pu W F , Peng Q , Tao Z W , Pang Y . Chem. Eng. Res. Des., 2019,142:369.
[69]
Li J S , Modak P R , Xiao H N . Colloid. Surface. A, 2006,289(1-3):172.
[70]
潘远凤(Pan Y F), 李一朵(Li Y D), 韦藤幼(Wei T Y), 童张法(Tong Z F) . 高分子材料科学与工程 (Polymer Materials Science & Engineering), 2013,29(10):22.
[71]
Liang J H , Liu Y Y , Zhang X Y . Macromol. Rapid Comm., 2019,40(17):1800562.
[72]
Chen Y H , Yang D , Yoon Y J , Pang X C , Wang Z W , Jung J , He Y J , Harn Y W , He M , Zhang S G , Zhang G Z , Lin Z Q . J. Am. Chem. Soc., 2017,139(37):12956. doi: 10.1021/jacs.7b04545 https://www.ncbi.nlm.nih.gov/pubmed/28845985

URL     pmid: 28845985
[73]
Yang D , Chen Y H , Peng H S , Chen G X , Lin Z Q . Nanoscale, 2018,10(48):22750. doi: 10.1039/c8nr07115b https://www.ncbi.nlm.nih.gov/pubmed/30346004

URL     pmid: 30346004
[74]
Chen Y H , Wang Z W , Harn Y W , Pan S , Li Z L , Lin S L , Peng J , Zhang G Z , Lin Z Q . Angew. Chem. Int. Edi., 2019,58(34):11910.
[75]
Li X , Iocozzia J , Chen Y H , Zhao S Q , Cui X , Wang W , Yu H F , Lin S L , Lin Z Q . Angew. Chem. Int. Edi., 2018,57(8):2046.
[76]
Chen Y H , Wang Z W , He Y J , Yoon Y J , Jung J , Zhang G Z , Lin Z Q . Proc. Natl. Acad. Sci. U. S. A., 2018,115(7):E1391. doi: 10.1073/pnas.1714748115 https://www.ncbi.nlm.nih.gov/pubmed/29386380

URL     pmid: 29386380
[77]
Yoon Y J , Chang Y Y , Zhang S G , Zhang M , Pan S , He Y J , Lin C H , Yu S T , Chen Y H , Wang Z W , Ding Y , Jung J , Thadhani N , Tsukruk V V , Kang Z T , Lin Z Q . Adv. Mater., 2019,31(32):1901602.
[78]
Liu Y Y , Zhong Y B , Nan J K , Tian W . Macromolecules, 2010,43(24):10221.
[1] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[2] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[3] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[4] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[5] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[6] 胡强强, 郭和泽, 窦红静. ZIF-8纳米颗粒的粒径调控及生物医学应用[J]. 化学进展, 2020, 32(5): 656-664.
[7] 杨悦, 王珏玉, 赵敏, 崔岱宗. 病毒模板合成的金属纳米材料及应用[J]. 化学进展, 2019, 31(7): 1007-1019.
[8] 曹小卫, 陈帅, 鲍敏, 史宏灿, 李巍. 金纳米星的制备、表面修饰及其在生物医学领域的应用研究[J]. 化学进展, 2018, 30(9): 1380-1391.
[9] 姚温浩, 于飞, 马杰. 海藻酸盐复合凝胶吸附材料的合成及其在水处理中的应用[J]. 化学进展, 2018, 30(11): 1722-1733.
[10] 肖肖, 陈昌盛, 刘伟强, 张业顺. 丝胶蛋白的结构、性能及生物医学应用[J]. 化学进展, 2017, 29(5): 513-523.
[11] 王瑞莹, 张超艳, 王淑萍, 周友亚. 磁性金属-有机骨架材料的合成及其应用[J]. 化学进展, 2015, 27(7): 945-952.
[12] 舒昕, 李兆祥, 夏江滨. 聚噻吩的合成方法[J]. 化学进展, 2015, 27(4): 385-394.
[13] 刘迎亚, 范霄, 李艳艳, 渠陆陆, 覃海月, 曹英男, 李海涛. 多光谱光声层析成像及其在生物医学中的应用[J]. 化学进展, 2015, 27(10): 1459-1469.
[14] 刘春桃, 童国权, 陈朝珠, 谭子芳, 全昌云, 张超. 聚合物晶胶的制备、性能及生物医学应用[J]. 化学进展, 2014, 26(07): 1190-1201.
[15] 吴伟兵, 张磊. 纳晶纤维素的功能化及应用[J]. 化学进展, 2014, 26(0203): 403-414.