English
新闻公告
More
化学进展 2020, Vol. 32 Issue (6): 803-816 DOI: 10.7536/PC191004 前一篇   后一篇

• 综述与评论 •

P2结构层状复合金属氧化物钠离子电池正极材料

刘建文1, 姜贺阳1, 孙驰航1, 骆文彬1, 毛景2,**(), 代克化1,3,**()   

  1. 1. 东北大学冶金学院 沈阳 110819
    2. 郑州大学材料科学与工程学院 郑州 450001
    3. 天津师范大学化学学院 天津 300387
  • 收稿日期:2019-10-11 修回日期:2020-01-14 出版日期:2020-06-05 发布日期:2020-04-13
  • 通讯作者: 毛景, 代克化
  • 作者简介:
    ** Corresponding author e-mail: (Jing Mao); (Kehua Dai)
  • 基金资助:
    国家自然科学基金项目(51604244)

P2-Structure Layered Composite Metal Oxide Cathode Materials for Sodium Ion Batteries

Jianwen Liu1, Heyang Jiang1, Chihang Sun1, Wenbin Luo1, Jing Mao2,**(), Kehua Dai1,3,**()   

  1. 1. School of Metallurgy, Northeastern University, Shenyang 110819, China
    2. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
    3. Department of Chemistry, Tianjin Normal University, Tianjin 300387, China
  • Received:2019-10-11 Revised:2020-01-14 Online:2020-06-05 Published:2020-04-13
  • Contact: Jing Mao, Kehua Dai
  • Supported by:
    the National Natural Science Foundation of China(51604244)

目前,碱金属(锂、钠、钾等)离子电池中的锂离子电池已经广泛应用于社会生产生活的各个方面,有力地支撑了社会的自动化、信息化和智能化。然而,由于锂在地壳中的丰度较低,以较高丰度的钠为基础的钠离子电池引起了研究者和社会的广泛关注。其中,正极材料是制约钠离子电池实用化的重要因素之一,人们需要开发出面向实际应用的正极材料。P2结构层状复合金属氧化物钠离子电池正极材料具有资源丰富、制备简单、结构稳定、放电容量高、倍率性能好和循环稳定性较好等优点,获得了研究者的广泛关注,具有实用化前景。这一系列材料由于涉及到多种过渡金属元素的组合,较为复杂。本文针对含单一过渡金属、二元组分过渡金属、三元及以上组分过渡金属的P2结构材料及其优化改性进行了系统性梳理,力求厘清研究脉络,梳理研究思路,并给出了今后发展的方向与预测。P2结构材料的主要问题是提高其初始放电容量,氧还原的应用是解决这一问题的重要方向。此外,优化材料组分及采用具有丰富储量、低成本、高安全性和环境友好性的原材料是进一步降低成本并保护环境的重要研究方向。

Nowadays, lithium ion batteries as one of alkali metal(lithium, sodium, potassium, etc.) ion batteries have been widely used in all aspects of industry and life, and contribute to the success of automation, informatization and intelligence of society. However, due to the low abundance of lithium in the crust of earth, sodium-ion batteries based on sodium of high abundance have attracted extensive attention of researchers and society. Among all the component, cathode material is an important factor restricting the practicality of sodium ion batteries. Cathode materials need to be developed for practical application. P2-structure layered composite metal oxide sodium ion battery cathode material has many advantages, such as abundant resources, simple preparation, stable structure, high discharge capacity, good rate performance, good cycle stability, etc. It has attracted extensive attention of researchers and has a practical prospect. This series of materials are complex due to the combination of various transition metal elements. In this paper, the P2-structure materials containing single transition metal, binary transition metals, ternary transition metals and even more components and their optimization and modification are systematically reviewed. The future development prospects and predictions are given. The main problem of P2-structure cathode material is to improve the initial charge capacity. The use of oxygen redox is an important direction to solve this problem. In addition, optimizing the composition of materials and adopting raw materials with abundant reserves, low cost, high safety and environmental friendliness is also an important research direction for further reducing costs and protecting the environment.

Contents

1 Introduction
2 P2 structure materials composed by single transition metal
3 P2 structure materials composed by binary transition metals
4 P2 structure materials composed by ternary transition metals
5 Problems and optimization of P2 structure materials

5.1 Problems about P2 structure materials

5.2 Doping

5.3 Surface modification

6 Initial charge specific capacity enhanced by anion redox
7 Conclusion and perspective
()
图1 钠离子电池正极层状材料的分类与钠脱嵌引起的共边八面体MeO6和相变过程[46]
Fig. 1 Classification of Na-Me-O layered materials with sheets of edge-sharing MeO6 octahedra and phase transition processes induced by sodium extraction[46]
图2 O2、P2相过渡金属氧化物的晶体结构示意图 [69]
Fig. 2 Crystal structure illustration of layered oxides with O2 and P2 structures [69]
图3 (a) Na/NNMO电池首圈充放电状态的GITT曲线及(b)相应的钠离子扩散系数($D_{Na^{+}}$)在4.5 ~ 2.0 V之间;(c)Na/NNMO电池首圈充放电状态的GITT曲线以及(d) 相应的钠离子扩散系数($D_{Na^{+}}$)在2.0 ~ 1.5 V[89]
Fig. 3 (a) GITT curves for the charge and discharge states of the first cycle and (b) corresponding sodium-ion diffusion coefficient ($D_{Na^{+}}$) of Na/NNMO cell cycling between 4.5 and 2.0 V;(c) GITT curves for the charge and discharge states of the first cycle and (d) corresponding $D_{Na^{+}}$ of Na/NNMO cell cycling between 2.0 and 1.5 V electrode at current rate of 6C[89]
图4 10、20、30 C的循环性能,以及10 C对应的库仑效率[101]
Fig. 4 The cycling capacity at 10, 20, and 30 C, as well as the coulombic efficiency corresponding to 10 C[101]
图5 NCM55电极在1.5~4.3 V首次充放电和第二次充电的原位XRD图谱。黑色星号代表电池外壳的峰值[101]
Fig. 5 In situ XRD patterns collected during the first charge/discharge and second charge of the NCM55 electrode between 1.5 and 4.3 V. Black asterisks represent the peaks of the battery case[101]
图6 (a)循环伏安曲线和Na0.68Cu0.34Mn0.66O2首周充放电(b)曲线[104]
Fig. 6 (a) Cyclic voltammetry(CV) curve and(b) first charge/discharge curves of the Na0.68Cu0.34Mn0.66O2 electrode[104]
图7 Na2/3Ni1/3Mn7/12Fe1/12O2以5 C倍率循环300圈 [110]
Fig. 7 The cycling performance of Na2/3Ni1/3Mn7/12Fe1/12O2 at 5 C for 300 cycles [110]
图8 (a) x=1/12;(b) x=0时x-NNMF电极的In-situXRD图谱;(c) 0-NNMF电极对应的GCD[110]
Fig. 8 In-situ XRD patterns of x-NNMF electrodes with (a) x=1/12,(b) x=0; (c) the corresponding GCD profiles of 0-NNMF electrode[110]
[1]
Bruce D, Haresh K, Jean-Marie T. Science, 2011, 334: 928.https://www.ncbi.nlm.nih.gov/pubmed/22096188

doi: 10.1126/science.1212741     URL     pmid: 22096188
[2]
潘慧霖(Pan H L), 胡勇胜(Hu Y S), 李泓(Li H),陈立泉(Chen L Q). 中国科学: 化学(Scientia Sinica: Chimica), 2014, 8: 005.
[3]
Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou S L, Dou S X. Small, 2019, 15: 1805381.
[4]
钱江锋(Qian J F), 高学平(Gao X P), 杨汉西(Yang H X) 电化学(Journal of Electrochemistry), 2013, 19: 523.
[5]
Slater M D, Kim D, Lee E, Johnson C S. Adv. Funct. Mater., 2013, 23: 947.
[6]
Palomares V, Serras P, Villaluenga I, Hueso K B, Carretero-Gonzlez J, Rojo T. Energy Environ. Sci., 2012, 5: 5884.
[7]
Moreau P, Guyomard D, Gaubicher J, Boucher F. Chem. Mater., 2010, 22: 4126.
[8]
Casascabanas M, Roddatis V V, Saurel D, Kubiak P, Carreterogonzlez J, Palomares V, Serras P, Rojo T.J. Mater. Chem., 2012, 22: 17421.
[9]
Zaghib K, Trottier J, Hovington P, Brochu F, Guerfi A, Mauger A, Julien C M.J. Power Sources, 2011, 196: 9612.https://linkinghub.elsevier.com/retrieve/pii/S0378775311012973

doi: 10.1016/j.jpowsour.2011.06.061     URL    
[10]
Lee K T, Ramesh T N, Nan F, Botton G, Nazar L F. Chem. Mater., 2011, 23: 3593.https://pubs.acs.org/doi/10.1021/cm200450y

doi: 10.1021/cm200450y     URL    
[11]
Park Y U, Seo D H, Kwon H S, Kim B, Kim J, Kim H, Kim I, Yoo H I, Kang K.J. Am. Chem. Soc., 2013, 135: 13870.https://www.ncbi.nlm.nih.gov/pubmed/23952799

URL     pmid: 23952799
[12]
Zhao J, He J, Ding X, Zhou J, Ma Y O, Wu S, Huang R.J. Power Sources, 2010, 195: 6854.
[13]
Zhuo H, Wang X, Tang A, Liu Z, Gamboa S, Sebastian P J.J. Power Sources, 2006, 160: 698.
[14]
Sauvage F, Quarez E, Tarascon J M, Baudrin E. Solid State Sci. 2006, 8: 1215.https://linkinghub.elsevier.com/retrieve/pii/S1293255806001804

doi: 10.1016/j.solidstatesciences.2006.05.009     URL    
[15]
Plashnitsa L S, Kobayashi E, Noguchi Y, Okada S, Yamaki J.J. Electrochem. Soc., 2010, 157: A536.
[16]
Kim H, Dong J K, Seo D H, Min S Y, Kang K, Kim D K, Jung Y. Chem. Mater., 2012, 24: 1205.
[17]
Hosono E, Saito T, Hoshino J, Okubo M,Saito Y,Nishio-Hamane D, Kudo T, Zhou H.J. Power Sources, 2012, 217: 43.
[18]
Izabela K, Pawel Z, Wouter V B, Ioanna B, Alexandros L, Chris S, Green M A.J. Am. Chem. Soc., 2011, 133: 13950.https://www.ncbi.nlm.nih.gov/pubmed/21800890

URL     pmid: 21800890
[19]
Whitacre J F, Tevar A, Sharma S. Electrochem. Commun., 2010, 12: 463.
[20]
Li Y, Wu Y. Nano Res., 2009, 2: 54.
[21]
Talaie E, Kim S Y, Chen N, Nazar L F. Chem. Mater. 2017, 29: 6684.
[22]
Kataoka R, Mukai T, Yoshizawa A, Sakai T.J. Electrochem. Soc., 2013, 160: A933.
[23]
Lu Z, Dahn J.J. Electrochem. Soc., 2001, 148: A1225.
[24]
Yuan D, Wei H, Feng P, Wu F, Yue W,Qian J, Cao Y, Ai X, Yang H.J. Mater. Chem., 2013, 1: 3895.
[25]
Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S. Nat. Mater., 2012, 11: 512.https://www.ncbi.nlm.nih.gov/pubmed/22543301

doi: 10.1038/nmat3309     URL     pmid: 22543301
[26]
Sathiya M, Hemalatha K, Ramesha K, Tarascon J M, Prakash A S. Chem. Mater., 2012, 24: 1846.
[27]
Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough J. Angewandte Chemie, 2013, 52: 1964.https://www.ncbi.nlm.nih.gov/pubmed/23319239

URL     pmid: 23319239
[28]
Wessells C D, Huggins R A, Cui Y. . Nat. Commun.., 2011, 2: 550.https://www.ncbi.nlm.nih.gov/pubmed/22109524

URL     pmid: 22109524
[29]
Pasta M, Wessells C D, Liu N, Nelson J, McDowell M T, Huggins R A, Toney M F, Cui Y. Nat. Commun., 2014, 5: 3007.https://www.ncbi.nlm.nih.gov/pubmed/24389854

doi: 10.1038/ncomms4007     URL     pmid: 24389854
[30]
You Y, Wu X L, Yin Y X, Guo Y G. Energy Environ. Sci. 2014, 7: 1643.http://xlink.rsc.org/?DOI=C3EE44004D

doi: 10.1039/C3EE44004D     URL    
[31]
Lee H, Kim Y I, Park J K, Choi J W. Chem. Commun., 2012, 48: 8416.
[32]
Tomoyuki M, Masamitsu T, Yutaka M. Chem. Commun., 2013, 49: 2750.
[33]
Han M H, Gonzalo E, Singh G, Rojo T. Energy Environ. Sci. 2015, 8: 81.
[34]
Kubota K, Komaba S.J. Electrochem. Soc., 2015, 162: A2538.
[35]
Kaliyappan K, Liu J, Lushington A, Li R, Sun X. ChemSusChem, 2015, 8: 2537.https://www.ncbi.nlm.nih.gov/pubmed/26119638

URL     pmid: 26119638
[36]
Shadike Z, Zhao E, Zhou Y N, Yu X, Yang Y, Hu E, Bak S, Gu L, Yang X Q. Adv. Energy Mater., 2018, 8: 1702588.
[37]
Delmas C, Fouassier C, Hagenmuller P. Physica B&C, 1980, 99: 81.
[38]
Delmas C. Adv. Energy Mater., 2018, 8: 1703137.
[39]
Rong X, Hu E, Lu Y, Meng F, Zhao C, Wang X, Zhang Q, Yu X, Gu L, Hu Y S, Li H, Huang X, Yang X Q, Delmas C, Chen L. Joule, 2019, 3: 503.
[40]
Yuan D, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y. Electrochim Acta, 2014, 116: 300.
[41]
Yao H R, Wang P F, Wang Y, Yu X, Yin Y X, Guo Y G. Adv. Energy Mater., 2017, 7: 1700189.
[42]
Luo C, Langrock A, Fan X, Liang Y, Wang C.J. Mater. Chem., 2017, 5: 18214.
[43]
Hasa I, Passerini S, Hassoun J.J. Mater. Chem., 2017, 5: 4467.
[44]
Ma C, Alvarado J, Xu J, Clement R J, Kodur M, Tong W, Grey C P, Meng Y S.J. Am. Chem. Soc., 2017, 139: 4835.https://www.ncbi.nlm.nih.gov/pubmed/28271898

URL     pmid: 28271898
[45]
Hou P, Sun Y, Li F, Sun Y, Deng X, Zhang H, Xu X, Zhang L. Nanoscale, 2019, 11: 2787.https://www.ncbi.nlm.nih.gov/pubmed/30672951

doi: 10.1039/c8nr09601e     URL     pmid: 30672951
[46]
Yabuuchi N, Kubota K, Dahbi M, Komaba S. Chem. Rev., 2014, 114: 11636.https://www.ncbi.nlm.nih.gov/pubmed/25390643

doi: 10.1021/cr500192f     URL     pmid: 25390643
[47]
Ozawa K. Solid State Ionics, 1994, 69: 212.https://linkinghub.elsevier.com/retrieve/pii/0167273894904111

doi: 10.1016/0167-2738(94)90411-1     URL    
[48]
Kim S, Hegde V I, Yao Z, Lu Z, Amsler M, He J, Hao S, Croy J R, Lee E, Thackeray M M. ACS Appl. Mater. Interfaces, 2018, 10: 13479.https://www.ncbi.nlm.nih.gov/pubmed/29616800

URL     pmid: 29616800
[49]
Sironval V, Reylandt L, Chaurand P, Ibouraadaten S, Palmaipallag M, Yakoub Y, Ucakar B, Rose J, Poleunis C, Vanbever R. Arch. Toxicol., 2018, 92: 1.https://www.ncbi.nlm.nih.gov/pubmed/28905185

URL     pmid: 28905185
[50]
Yamada A, Chung S C, Hinokuma K. Cheminform, 2010, 32: 17.
[51]
Seo J H, Verlinde K, Jing G, Heidary D S B, Rajagopalan R, Mallouk T E, Randall C A Scr. Mater., 2018, 146: 267.
[52]
Marchini F, Rubi D, Pozo M D, Williams F J, Calvo E J. J. Phys. Chem C, 2016, 120: 15875.
[53]
Hyun-Wook L, Muralidharan P, Riccardo R, Mari C M, Yi C, Do Kyung K. Nano Lett., 2010, 10: 3852.https://www.ncbi.nlm.nih.gov/pubmed/20795626

doi: 10.1021/nl101047f     URL     pmid: 20795626
[54]
Leng L, Li J, Zeng X, Song H, Shu T, Wang H, Ren J, Liao S. ACS Sustainable Chem. Eng., 2019,7: 430.
[55]
Viciu L, Bos J W G, Zandbergen H W, Huang Q, Foo M L, Ishiwata S, Ramirez A P, Lee M, Ong N P, Cava R J. Phys. Rev. B, 2006, 73.
[56]
Sawicki M, Ortiz A L, Luo M, Shaw L L. ChemElectroChem, 2017, 4: 3222.
[57]
Man H H, Gonzalo E, Casascabanas M, Rojo T.J. Power Sources, 2014, 258: 266.https://linkinghub.elsevier.com/retrieve/pii/S0378775314002328

doi: 10.1016/j.jpowsour.2014.02.048     URL    
[58]
Guo J Z, Wan F, Wu X L, Zhang J P.J. Mol. Sci., 2016, 4: 3222.
[59]
Nithya C, Gopukumar S. Wiley Interdisciplinary Reviews Energy & Environment, 2015, 4: 253.
[60]
Dai K, Mao J, Song X, Battaglia V, Liu G.J. Power Sources, 2015, 285: 161.
[61]
Liu X, Xi W, Iyo A, Yu H, Li D, Zhou H S.J. Mater. Chem., 2014, 2: 14822.
[62]
Li J Y, Lü H Y, Zhang X H, Xing Y M, Wang G, Guan H Y, Wu X L. Chem. Eng. J., 2017, 316: 499.https://linkinghub.elsevier.com/retrieve/pii/S1385894717301201

doi: 10.1016/j.cej.2017.01.109     URL    
[63]
Chen S Y, Mi C H, Su L H, Gao B, Fu Q B, Zhang X G.J. Appl. Electrochem., 2009, 39: 1943.
[64]
Hemalatha K, Jayakumar M, Bera P, Prakash A S.J. Mater. Chem. A, 2015, 3: 20908.
[65]
陆雅翔(Lu Y X), 赵成龙(Zhao C L), 容晓晖(Rong X H), 陈立泉(Chen L Q), 胡勇胜(Hu Y S) 物理学报(Acta Physica Sinica), 2018, 67: 39.
[66]
Zhang J, Yu D Y W. J. Power Sources, 2018, 391: 106.
[67]
Clement R J, Bruce P G, Grey C P. Electrochem. Soc., 2015, 162: A2589.
[68]
Gao L, Chen S, Zhang L, Yang X.J. Alloys Compd., 2019, 782: 81.
[69]
方永进(Fang Y J), 陈重学(Chen C X), 艾新平(Ai X P), 杨汉西(Yang H X), 曹余良(CaoY L) 物理化学学报(Acta Physico-Chimica Sinica), 2017, 33: 211.
[70]
Xia X, Dahn J R. Electrochem Solid-State Lett., 2011, 15: A1.
[71]
Komaba S, Takei C, Nakayama T, Ogata A, Yabuuchi N. Electrochem. Commun., 2010, 12: 355.https://linkinghub.elsevier.com/retrieve/pii/S1388248109006316

doi: 10.1016/j.elecom.2009.12.033     URL    
[72]
Ding J J,Zhou Y N,Sun Q,Fu Z W. Electrochem. Commun., 2012, 22: 85.
[73]
Tsuchiya Y, Glushenkov A M, Yabuuchi N. ACS Applied Nano Materials, 2017, 1: 364.
[74]
Yabuuchi N, Ikeuchi I, Kubota K, Komaba S. ACS Appl. Mater. Interfaces, 2016, 8: 32292.https://www.ncbi.nlm.nih.gov/pubmed/27933819

URL     pmid: 27933819
[75]
Kang S M, Park J H, Jin A, Jung Y H, Mun J, Sung Y E. ACS Appl. Mater. Interfaces, 2018, 10: 3562.https://www.ncbi.nlm.nih.gov/pubmed/29300078

doi: 10.1021/acsami.7b16077     URL     pmid: 29300078
[76]
Kim H, Kim H, Ding Z, Lee M H, Lim K, Yoon G, Kang K. Adv. Energy Mater., 2016, 6: 1600943.
[77]
Gao L, Chen S, Zhang L, Yang X.J. Power Sources, 2018, 396: 379.
[78]
Li M, Yang K, Liu J, Hu X, Kong D, Liu T, Zhang M, Pan F. Chem. Commun.(Camb), 2018, 54: 10714.
[79]
Chen M, Liu Q, Wang S W, Wang E, Guo X, Chou S L. Adv. Energy Mater., 2019, 9: 1803609.
[80]
Palomares V, Casas-Cabanas M, Castillo-Martínez E, Man H H, Rojo T. Energy Environ. Sci., 2013, 6: 2312.
[81]
Hongli Z, Taek L K, Gregory Thomas H, Xiaogang H, Yuanyuan L, Jiayu W, Steven L, Cresce A V W, Kang X, Eric W. ACS Appl. Mater Interfaces, 2014, 6: 4242.https://www.ncbi.nlm.nih.gov/pubmed/24588793

doi: 10.1021/am405970s     URL     pmid: 24588793
[82]
Kalluri S, Seng K H, Pang W K, Guo Z, Chen Z, Liu H K, Dou S X. ACS Appl. Mater. Interfaces, 2014, 6: 8953.
[83]
Billaud J, Singh G, Armstrong A R, Gonzalo E, Roddatis V, Armand M, Rojo T, Bruce P G. Energy Environ. Sci., 2014, 7: 1387.
[84]
Yabuuchi N, Hara R, Kajiyama M, Kubota K, Ishigaki T, Hoshikawa A, Komaba S. Adv. Energy Mater., 2015, 4: 13072.
[85]
Wang L, Hong L, Huang X, Baudrin E. Solid State Ionics, 2011, 193: 32.
[86]
Haridas A K, Sharma C S, Rao T N.Electrochim Acta, 2016, 212: 500.https://linkinghub.elsevier.com/retrieve/pii/S0013468616315444

doi: 10.1016/j.electacta.2016.07.039     URL    
[87]
Molenda J, Stokłlosa A. Solid State Ionics, 1990, 38: 1.
[88]
Wen Y, Wang B, Zeng G, Nogita K. Chem. Asian J., 2015, 46: 661.
[89]
Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Gu Q, Chou S.J. Mater. Chem., 2019, 7: 9215.
[90]
Liu Y, Xin F, Zhang A, Shen C, Liu Q, Enaya H A, Zhou C. Nano Energy, 2016, 27: 27.
[91]
Yan P, Zheng J, Zhang X, Rui X, Amine K, Jie X, Zhang J G, Wang C M. Chem. Mater.,2016, 28: 857.
[92]
Liu H, Qian D, Verde M G, Zhang M, Meng Y S. ACS Appl. Mater. Interfaces, 2015, 7: 19189.https://www.ncbi.nlm.nih.gov/pubmed/26287963

doi: 10.1021/acsami.5b04932     URL     pmid: 26287963
[93]
Han S C, Lim H, Jeong J, Ahn D, Park W B, Sohn K S, Pyo M.J. Power Sources, 2015, 277: 9.
[94]
Kim S W, Seo D H, Ma X, Ceder G, Kang K. Adv. Energy Mater., 2012, 2: 710.
[95]
李慧(Li H), 吴川(Wu C), 吴锋(Wu F), 白莹(Bai Y). 化学学报(Acta Chim Sinica), 2014, 72: 21.
[96]
Qian J, Wu X, Cao Y, Ai X, Yang H. Angew. Chem. Int. Ed., 2013, 52: 4633.
[97]
Manikandan P, Ramasubramonian D, Shaijumon M M. Electrochim. Acta, 2016, 206: 199.
[98]
Mao J, Liu X, Liu J, Jiang H, Zhang T, Shao G, Ai G, Mao W, Feng Y, Yang W, Liu G, Dai K.J. Electrochem. Soc., 2019, 166: A3980.
[99]
Carlier D, Cheng J H, Berthelot R, Guignard M, Yoncheva M, Stoyanova R, Hwang B J, Delmas C. Dalton Trans., 2011, 40: 9306.https://www.ncbi.nlm.nih.gov/pubmed/21842107

URL     pmid: 21842107
[100]
Cheng J H, Pan C J, Lee J F, Chen J M, Guignard M, Delmas C, Carlier D, Hwang B J. Chem. Mater., 2014, 26: 1219.
[101]
Zhu Y E, Qi X, Chen X, Zhou X, Zhang X, Wei J, Hu Y, Zhou Z. J. Mater. Chem. A, 2016, 4: 11103.
[102]
Manikandan P, Heo S, Kim H W, Jeong H Y, Lee E, Kim Y.J. Power Sources, 2017, 363: 442.
[103]
Hemalatha K, Jayakumar M, Prakash A S. Dalton Trans., 2018, 47: 1223.
[104]
Xu S Y, Wu X Y, Li Y M, Hu Y S, Chen L Q. Chin. Phys. B, 2014, 23: 118202.
[105]
Man H H, Gonzalo E, Sharma N, Amo J M L D, Armand M, Avdeev M, Garitaonandia J J S, Rojo T. Chem. Mater., 2015, 28: 106.
[106]
Zhou D, Huang W, Zhao F. Solid State Ionics, 2018, 322: 18.
[107]
Wen Y, Fan J, Shi C, Dai P, Hong Y, Wang R, Wu L, Zhou Z, Li J, Huang L,Sun S G. Nano Energy, 2019, 60: 162.
[108]
Dae Hoe L, Jing X, Shirley M Y. Physical Chemistry Chemical Physics, 2013, 15: 3304.
[109]
Yoshida H, Yabuuchi N, Kubota K, Ikeuchi I, Garsuch A, Schulz-Dobrick M, Komaba S. Chem. Commun., 2014, 50: 3677.
[110]
Yang Q, Wang P F, Guo J Z, Chen Z M, Pang W L, Huang K C, Guo Y G, Wu X L, Zhang J P. ACS Appl. Mater. Interfaces, 2018, 10: 34272.https://www.ncbi.nlm.nih.gov/pubmed/30222306

URL     pmid: 30222306
[111]
Wang L, Sun Y G, Hu L L, Piao J Y, Guo J, Manthiram A, Ma J, Cao A M.J. Mater. Chem., 2017, 5: 8752.
[112]
Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y. ACS Appl. Mater. Interfaces, 2011, 3: 4165.
[113]
Zheng J, Yan P, Kan W H, Wang C, Manthiram A.J. Electrochem. Soc., 2016, 163: A584.https://iopscience.iop.org/article/10.1149/2.0041605jes

doi: 10.1149/2.0041605jes     URL    
[114]
Wang K, Yan P, Sui M. Nano Energy, 2018, 54: 148.
[115]
Zhou Y N, Wang P F, Niu Y B, Li Q, Yu X, Yin Y X, Xu S, Guo Y G. Nano Energy, 2019, 55: 143.
[116]
Zhou D, Huang W, Lv X, Zhao F.J. Power Sources, 2019, 421: 147.
[117]
Chen S, Han E, Xu H, Zhu L, Liu B, Zhang G, Lu M. Ionics, 2017, 23: 3057.
[118]
Pang W L, Zhang X H, Guo J Z, Li J Y, Yan X, Hou B H, Guan H Y, Wu X L.J. Power Sources, 2017, 356: 80.
[119]
Wu X, Xu G L, Zhong G, Gong Z, McDonald M J, Zheng S, Fu R, Chen Z, Amine K, Yang Y. ACS Appl. Mater. Interfaces, 2016, 8: 22227.https://www.ncbi.nlm.nih.gov/pubmed/27494351

doi: 10.1021/acsami.6b06701     URL     pmid: 27494351
[120]
Chen H, Wu Z, Zhong Y. Electrochimica Acta, 2019, 308: 64.
[121]
Wang P F, Yao H R, Liu X Y, Yin Y X, Zhang J N, Wen Y, Yu X, Gu L, Guo Y G. Sci. Adv., 2018, 4: eaar6018.
[122]
Vinckeviiiuete J, Radin M D, Van der Ven A. Chem. Mater., 2016, 28: 8640.
[123]
Katcho N A, Carrasco J, Saurel D, Gonzalo E, Man H, Aguesse F, Rojo T. Adv. Energy Mater., 2016, 7: 1601477.http://doi.wiley.com/10.1002/aenm.v7.1

doi: 10.1002/aenm.v7.1     URL    
[124]
Tie D, Gao G, Xia F, Yue R, Wang Q, Qi R, Wang B, Zhao Y. ACS Appl. Mater. Interfaces, 2019, 11: 6978.
[125]
Nupur Nikkan S, Munichandraiah N. ACS Appl. Mater. Interfaces, 2009, 1: 1241.
[126]
Chu S, Jia X, Wang J, Liao K, Zhou W, Wang Y, Shao Z. Composites Part B: Engineering, 2019, 173: 106913.
[127]
Wang Y, Tang J. RSC Adv., 2018, 8: 24143.http://xlink.rsc.org/?DOI=C8RA04210A

doi: 10.1039/C8RA04210A     URL    
[128]
Wang Y, Tang K, Li X, Yu R, Zhang X, Huang Y, Chen G, Jamil S, Cao S, Xie X, Luo Z, Wang X. Chemical Engineering Journal, 2019, 372: 1066.
[129]
Singh G, Acebedo B, Cabanas M C, Shanmukaraj D, Armand M, Rojo T. Electrochem. Commun., 2013, 37: 61.
[130]
Park K, Yu B C, Goodenough J B. Chem. Mater., 2015, 27: 6682.https://pubs.acs.org/doi/10.1021/acs.chemmater.5b02684

doi: 10.1021/acs.chemmater.5b02684     URL    
[131]
Maitra U, House R A, Somerville J W, Tapia-Ruiz N, Lozano J G, Guerrini N, Hao R, Luo K, Jin L, Perez-Osorio M A, Massel F, Pickup D M, Ramos S, Lu X, McNally D E, Chadwick A V, Giustino F, Schmitt T, Duda L C, Roberts M R, Bruce P G. Nat. Chem., 2018, 10: 288.
[132]
Dai K, Wu J, Zhuo Z, Li Q, Yang W. Joule, 2019, 3: 518.
[1] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[2] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[3] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[6] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[7] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
[8] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[9] 刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽, 廖世军. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340.
[10] 李佳慧, 张晶, 芮秉龙, 林丽, 常立民, 聂平. MXene及其复合材料在钠/钾离子电池中的应用[J]. 化学进展, 2019, 31(9): 1283-1292.
[11] 邵奕嘉, 黄斌, 刘全兵, 廖世军. 三元镍钴锰正极材料的制备及改性[J]. 化学进展, 2018, 30(4): 410-419.
[12] 杨蓉, 李兰, 任冰, 陈丹, 陈利萍, 燕映霖. 锂硫电池中的石墨烯掺杂[J]. 化学进展, 2018, 30(11): 1681-1691.
[13] 王昊, 邓邦为, 葛武杰, 陈滔, 瞿美臻, 彭工厂. 普鲁士蓝类材料在钠离子电池中的研究进展[J]. 化学进展, 2017, 29(6): 683-694.
[14] 张松涛, 郑明波, 曹洁明, 庞欢. 锂硫电池用多孔碳/硫复合正极材料的研究[J]. 化学进展, 2016, 28(8): 1148-1155.
[15] 易罗财, 次素琴, 孙成丽, 温珍海. 非水系锂氧气电池正极材料研究现状[J]. 化学进展, 2016, 28(8): 1251-1264.