English
新闻公告
More
化学进展 2019, Vol. 31 Issue (11): 1591-1614 DOI: 10.7536/PC190820 前一篇   后一篇

• •

稳定富锂层状氧化物正极材料的结构与性能

王兆翔1,2,3,**(), 马君1,3, 高玉瑞1,3, 刘帅1,2, 冯欣1,3, 陈立泉1   

  1. 1. 中国科学院物理研究所清洁能源实验室 北京 100190
    2. 中国科学院大学材料科学与光电技术学院 北京 100190
    3. 中国科学院大学物理学院 北京 100190
  • 收稿日期:2019-08-16 出版日期:2019-11-15 发布日期:2019-10-23
  • 通讯作者: 王兆翔
  • 基金资助:
    国家重点研发计划(2016YFB0100400); 国家973计划(2015CB251100); 国家自然科学基金项目(51372268)

Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials

Zhaoxiang Wang1,2,3,**(), Jun Ma1,3, Yurui Gao1,3, Shuai Liu1,2, Xin Feng1,3, Liquan Chen1   

  1. 1. Laboratory for Renewable Energy, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    2. College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100190, China
    3. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
  • Received:2019-08-16 Online:2019-11-15 Published:2019-10-23
  • Contact: Zhaoxiang Wang
  • About author:
  • Supported by:
    National Key R&D Program of China(2016YFB0100400); National Key Development Program of China(2015CB251100); National Natural Science Foundation of China(51372268)

因高能量密度和高能量转换效率,锂离子电池已被广泛应用于便携式电子设备和电动交通中。富锂层状结构氧化物以高达300 mAh·g-1的可逆容量成为能量密度350 Wh·kg-1及以上动力锂离子电池的重要候选正极材料。但是,欲使这类材料获得实际应用,就必须解决循环过程中结构衰退带来的一系列问题。本文重点介绍近几年来笔者所领导的研究组通过元素筛选实现材料的表面和体相掺杂,通过全新的结构设计稳定材料结构和性能方面的努力。同时,为使读者对国内外重要研究组在相关方面的研究进展也有所了解,我们也将从元素替代、结构一体化表面修饰(包括多层表面修饰和浓度梯度材料)、表面包覆和表面掺杂等方面介绍他们的重要研究成果。最后,将对该类材料的未来发展方向作出展望并给出我们的一些思考。

The lithium ion(Li-ion) batteries, known for their high energy density and high energy conversion efficiency, have been widely applied in portable electronics and electric transportation. With reversible capacities over 300 mAh·g-1, the Li-rich layer-structured oxides are important candidiates of the cathode materials for the Li-ion batteries with energy densities of 350 Wh·kg-1 or higher. However, the issues related to the structural degradation during long-term cycling and the high surface/interface sensitivity(dissolution of the transition metal ions and the side reactions with the electrolyes) have to be well addressed before these materials can be commercially applied. This review is to present some of our efforts in stabilizing the structure and electrochemical performances of these materials by way of elemental substitution in the bulk and on the surface and by designing new structures, on the basis of comprehensive understandings on their crystalline and electronic structures and the structural evolution. Meanwhile, for the purpose of providing the audience with some overview about the world-wide research progress on these oxide materials, some important achievements are introduced including homogeneous elemental substitution in the lattice, structurally integrated surface modification(such as multilayer modification and construction of concentration-gradient materials), surface coating and surface doping. We will share our thinking on the research directions of these materials before ending this review.

()
[1]
Kim J S, Johnson C S, Thackeray M M . Electrochem. Commun., 2002,11:205.
[2]
Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A . J. Mater. Chem., 2007,17:3112. http://xlink.rsc.org/?DOI=b702425h

doi: 10.1039/b702425h     URL    
[3]
Johnson C S, Li N, Lefief C, Thackeray M M . Electrochem. Commun., 2007,9:787.
[4]
Kim J S, Johnson C S, Vaughey J T, Thackeray M M, Hackney S A, Yoon W, Grey C P . Chem. Mater., 2004,16:1996.
[5]
Ohzuku O, Nagayama M, Tsuji K, Ariyoshi K . J. Mater. Chem., 2011,21:10179. http://xlink.rsc.org/?DOI=c0jm04325g

doi: 10.1039/c0jm04325g     URL    
[6]
Liu J, Reeja-Jayan B, Manthiram A . J. Phys. Chem., 2011,114:9528.
[7]
Liu J, Wang Q Y, Reeja-Jayan B . Electrochem. Commun, 2010,12:750. https://linkinghub.elsevier.com/retrieve/pii/S1388248110001244

doi: 10.1016/j.elecom.2010.03.024     URL    
[8]
Zhang H Z, Qiao Q Q, Li G R, Ye S H, Gao X P . J. Mater. Chem., 2012,22:13104.
[9]
Yu H J, Kim H J, Wang Y R, He P, Asakura D, Nakamura Y, Zhou H S . Phys. Chem. Chem. Phys., 2012,14:6584. https://www.ncbi.nlm.nih.gov/pubmed/22456724

doi: 10.1039/c2cp40745k     URL     pmid: 22456724
[10]
Lee E S, Huq A, Chang H Y, Manthiram A . Chem. Mater, 2012,24:600. https://pubs.acs.org/doi/10.1021/cm2034992

doi: 10.1021/cm2034992     URL    
[11]
Xu B, Fell C R, Chi M, Meng Y S . Energy Environ. Sci., 2011,4:2223. http://xlink.rsc.org/?DOI=c1ee01131f

doi: 10.1039/c1ee01131f     URL    
[12]
Shi J L, Xiao D D, Zhang X D, Yin Y X, Guo Y G, Wan L J . Nano Research, 2017,10:4201. http://link.springer.com/10.1007/s12274-017-1489-3

doi: 10.1007/s12274-017-1489-3     URL    
[13]
Rossouw M H, Thackeray M M . Mat. Res. Bull., 1991,26:463. https://linkinghub.elsevier.com/retrieve/pii/002554089190186P

doi: 10.1016/0025-5408(91)90186-P     URL    
[14]
Armstrong A R, Holzapfel M, Novã P, Johnson C S, Kang S H, Thackeray M M, Bruce P G . J. Am. Chem. Soc., 2006,128:8694. https://www.ncbi.nlm.nih.gov/pubmed/16802836

doi: 10.1021/ja062027+     URL     pmid: 16802836
[15]
Arunkumar Y W T A, Manthiram A . Chem. Mater., 2017,19:3067. https://pubs.acs.org/doi/10.1021/cm070389q

doi: 10.1021/cm070389q     URL    
[16]
Kang K, Ceder G . Phys. Rev. B, 2006,74:094105.
[17]
Croy J R, Kim D, Balasubramanian M, Gallagher K, Kang S H, Thackeray M M . J. Electrochem. Soc., 2012,159:A781.
[18]
Li L, Lee K S, Lu L . Funct. Mater. Lett., 2014,7:1430002.
[19]
Thackeray M M, Johnson C S, Vaughey J T, Li N, Hackney S A . J. Mater. Chem., 2005,15:2267.
[20]
Bareño J, Balasubramanian M, Kang S H, Wen J G, Lei C H, Pol S V, Petrov I, Abraham D P . Chem. Mater., 2011,23:2039.
[21]
Bareño J, Lei C H, Wen J G, Kang S H, Petrov I, Abraham D P . Adv. Mater., 2010,22:1122. https://www.ncbi.nlm.nih.gov/pubmed/20401936

doi: 10.1002/adma.200904247     URL     pmid: 20401936
[22]
Boulineau A, Colin L S J F, Canevet E, Daniel L, Patoux S . Chem. Mater., 2012,24:3558. https://pubs.acs.org/doi/10.1021/cm301140g

doi: 10.1021/cm301140g     URL    
[23]
Yu H J, Ishikawa R, So Y G, Shibata N, Kudo T, Zhou H S, Ikuhara K . Angew. Chem, 2013,125:6085. http://doi.wiley.com/10.1002/ange.201301236

doi: 10.1002/ange.201301236     URL    
[24]
Navak P K, Erickson E M, Schipper F, Penki T R, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B, Aurbach D . Adv. Energy Mater., 2018,8:1702397. http://doi.wiley.com/10.1002/aenm.v8.8

doi: 10.1002/aenm.v8.8     URL    
[25]
Jarvis K A, Deng Z, Allard L F, Manthiram A, Ferreira P . Chem. Mater, 2011,23:3614. https://pubs.acs.org/doi/10.1021/cm200831c

doi: 10.1021/cm200831c     URL    
[26]
Lu Z, Chen Z, Dahn J R . Chem. Mater., 2013,15:3214.
[27]
Koga H, Croguennec L, Mannessiez P, Ménétrier M, Weill F, Bourgeois L, Duttine M, Suard E, Delmas C . J. Phys. Chem. C, 2012,116:13497. https://pubs.acs.org/doi/10.1021/jp301879x

doi: 10.1021/jp301879x     URL    
[28]
Lei C H, Bareno J, Wen J G, Petrov I, Kang S H, Abraham D P . J. Power Sources, 2008,178:422.
[29]
Ven A V D, Ceder G . Electrochem. Commun., 2004,6:1045. https://linkinghub.elsevier.com/retrieve/pii/S1388248104002073

doi: 10.1016/j.elecom.2004.07.018     URL    
[30]
Tang D C, Liu Y Y, Yang Z Z, Chen L Q . Prog. Nat. Sci.: Mater. Intl., 2014,24:388. https://linkinghub.elsevier.com/retrieve/pii/S1002007114000926

doi: 10.1016/j.pnsc.2014.07.005     URL    
[31]
Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Saubanère M, Doublet M L, Vezin H, Laisa C P, Prakash A S, Gonbeau D, van Tendeloo G, Tarascon J M . Nat. Mater., 2015,14:230. https://www.ncbi.nlm.nih.gov/pubmed/25437258

doi: 10.1038/nmat4137     URL     pmid: 25437258
[32]
Salager E, Sarou-Kanian V, Sathiya M, Tang M X, Leriche J B, Melin P, Wang Z L, Vezin H, Bessada C, Deschamps M, Tarascon J M . Chem. Mater., 2014,26:7009. https://pubs.acs.org/doi/10.1021/cm503280s

doi: 10.1021/cm503280s     URL    
[33]
Ma J, Zhou Y N, Gao Y R, Yu X Q, Kong Q Y, Gu G, Wang Z X, Yang X Q, Chen L Q . Chem. Mater., 2014,26:3256.
[34]
Lee J, Li X, Su D, Hautier G, Ceder G . Science, 2014,343:519. https://www.ncbi.nlm.nih.gov/pubmed/24407480

doi: 10.1126/science.1246432     URL     pmid: 24407480
[35]
Ko Y N, Choi S H, Kang Y C, Park S B . J. Power Sources, 2013,244:336.
[36]
Assat G, Iadecola A, Foix D, Dedryvere R, Tarascon J M . ACS Energy Letters, 2018,3:2721. https://pubs.acs.org/doi/10.1021/acsenergylett.8b01798

doi: 10.1021/acsenergylett.8b01798     URL    
[37]
Hu E Y, Yu X Q, Lin R Q, Bi X X, Lu J, Bak S M, Nam K W, Xin H L, Jaye C, Fischer D A, Amine K, Yang X Q . Nature Energy, 2018,3:690. https://doi.org/10.1038/s41560-018-0207-z

doi: 10.1038/s41560-018-0207-z     URL    
[38]
Li J, Shunmugasundaram R, Doig R, Dahn J R . Chem. Mater., 2016,28:162.
[39]
Gent W E, Lim K, Liang Y F, Li Q H, Barnes T, Ahn S J, Stone K H, McIntire M, Hong J Y, Song J H, Li Y Y, Mehta A, Ermon S, Tyliszczak T, Kilcoyne D, Vine D, Park J H, Doo S K, Toney M F, Yang W L, Prendergast D, ChuehW C . Nat. Commun., 2017,8:12. https://www.ncbi.nlm.nih.gov/pubmed/28400552

doi: 10.1038/s41467-017-00025-5     URL     pmid: 28400552
[40]
Sathiya M, Rousse G, Ramesha K, Laisa C P, Vezin H, Sougrati M T, Doublet M, Foix D, Gonbeau D, Walker W . Nat. Mater, 2013,12:827. https://www.ncbi.nlm.nih.gov/pubmed/23852398

doi: 10.1038/nmat3699     URL     pmid: 23852398
[41]
McCalla E, Abakumov A M, Saubanère M, Foix D, Berg E J, Rousse G, Doublet M L, Gonbeau D, Novák P, van Tendeloo G . Science, 2015,350:1516. https://www.ncbi.nlm.nih.gov/pubmed/26680196

doi: 10.1126/science.aac8260     URL     pmid: 26680196
[42]
Doublet M L, Saubanere M, Mccalla E, Tarascon J M, Doublet M L . Energy Environ. Sci., 2016,9:984.
[43]
Grimaud A, Hong W T, Shaohorn Y, Tarascon J M . Nat. Mater., 2016,15:121. https://www.ncbi.nlm.nih.gov/pubmed/26796721

doi: 10.1038/nmat4551     URL     pmid: 26796721
[44]
Seo D H, Lee J, Urban A, Malik R, Kang S, Ceder G . Nat. Chem, 2016,8:692. https://www.ncbi.nlm.nih.gov/pubmed/27325096

doi: 10.1038/nchem.2524     URL     pmid: 27325096
[45]
Luo L, Roberts M R, Hao R, Guerrini N, Pickup D M, Liu Y S, Edstrom K, Guo J, Chadwick A V, Duda L C, Bruce P G . Nat. Chem., 2016,8:684. https://www.ncbi.nlm.nih.gov/pubmed/27325095

doi: 10.1038/nchem.2471     URL     pmid: 27325095
[46]
Li X, Qiao Y, Guo S H, Xu Z M, Zhu H, Zhang X Y, Yuan Y, He P, Ishida M, Zhou H S . Adv. Mater., 2018,30:6.
[47]
Gent W E, Lim K, Liang Y, Li Q, Barnes T, Ahn S J, Stone K H, McIntire M, Hong J, Song J H, Li Y, Mehta A, Ermon S, Tyliszczak T, Kilcoyne D, Vine D, Park J H, Doo S K, Toney M F, Yang W, Prendergast D, Chueh W C . Nat. Commun., 2017,8:2091. https://www.ncbi.nlm.nih.gov/pubmed/29233965

doi: 10.1038/s41467-017-02041-x     URL     pmid: 29233965
[48]
Tran N, Croguennec L, Ménétrier M, Weill F, Biensan P, Jordy C, Delmas C . Chem. Mater, 2008,20:4815. https://pubs.acs.org/doi/10.1021/cm070435m

doi: 10.1021/cm070435m     URL    
[49]
Gao Y R, Ma J, Wang Z X, Chen L Q . Phys. Chem. Chem. Phys., 2017,19:7025. https://www.ncbi.nlm.nih.gov/pubmed/28245015

doi: 10.1039/c6cp08441a     URL     pmid: 28245015
[50]
McCalla E, Sougrati M T, Rousse G, Berg E J, Abakumov A, Recham N, Ramesha K, Sathiya M, Dominko R, van Tendeloo G . J. Am. Chem. Soc., 2015,137:4804. https://www.ncbi.nlm.nih.gov/pubmed/25811894

doi: 10.1021/jacs.5b01424     URL     pmid: 25811894
[51]
Hong J, Gent W E, Xiao P, Lim K, Seo D H, Wu J, Csernica P M, Takacs C J, Nordlund D, Sun C J, Stone K H, Passarello D, Yang W, Prendergast D, Ceder G, Toney M, Chueh W C . Nat. Mater., 2019,18:256. https://www.ncbi.nlm.nih.gov/pubmed/30718861

doi: 10.1038/s41563-018-0276-1     URL     pmid: 30718861
[52]
Gao Y, Wang X, Ma J, Wang X, Chen L Q . Chem. Mater., 2015,27(9):3456. https://pubs.acs.org/doi/10.1021/acs.chemmater.5b00875

doi: 10.1021/acs.chemmater.5b00875     URL    
[53]
Wu S, Liu H . J. Power Sources, 2007,174:789 https://linkinghub.elsevier.com/retrieve/pii/S0378775307013973

doi: 10.1016/j.jpowsour.2007.06.230     URL    
[54]
Tabuchi M, Nabeshima Y, Takeuchi T, Tatsumi T, Imaizumi J, Nitta Y . J. Power Sources, 2010,195:834. https://linkinghub.elsevier.com/retrieve/pii/S0378775309014475

doi: 10.1016/j.jpowsour.2009.08.059     URL    
[55]
Tabuchi M, Nakashima A, Shigemura H, Ado K, Kobayashi H, Sakaebe H, Kageyama H, Nakamura T, Kohzaki M, Hirano A, Kanno R . J. Electrochem. Soc., 2002,149:A509. https://iopscience.iop.org/article/10.1149/1.1462791

doi: 10.1149/1.1462791     URL    
[56]
Tabuchi M, Nabeshima Y, Takeuchi T, Kageyama H, Tatsumi K, Akimoto J, Shibuya H, Imaizumi J . J. Power Sources, 2011,196:3611.
[57]
Tabuchi M, Nakashima A, Ado K, Sakaebe H, Kobayashi H, Kageyama H, Tatsumi K, Kobayashi Y, Seki S, Yamanaka A . J. Power Sources, 2005,146:287. https://linkinghub.elsevier.com/retrieve/pii/S037877530500399X

doi: 10.1016/j.jpowsour.2005.03.032     URL    
[58]
Li J G, Wang L, Wang L, Luo J, Gao J, Li J J, Wang J L, He X M, Tian G Y, Fan S S . J. Power Sources, 2013,244:652. https://linkinghub.elsevier.com/retrieve/pii/S0378775313000062

doi: 10.1016/j.jpowsour.2012.12.107     URL    
[59]
Wang C C, Manthiram A . J. Mater. Chem. A, 2013,1:10209 http://xlink.rsc.org/?DOI=c3ta11703k

doi: 10.1039/c3ta11703k     URL    
[60]
Deng Z Q, Manthiram A . J. Phys. Chem. C, 2011,115:7097. https://pubs.acs.org/doi/10.1021/jp200375d

doi: 10.1021/jp200375d     URL    
[61]
Xiang X D, Knight J C, Li W S, Manthiram A . J. Phys. Chem. C, 2014,118:21826. https://pubs.acs.org/doi/10.1021/jp506731v

doi: 10.1021/jp506731v     URL    
[62]
Wang S H, Li Y X, Wu J, Zheng B Z, McDonald M J, Yang Y . Phys. Chem. Chem. Phys., 2015,17:10151. https://www.ncbi.nlm.nih.gov/pubmed/25790778

doi: 10.1039/c5cp00853k     URL     pmid: 25790778
[63]
Singh G, Thomas R, Kumar A, Katiyar R S . J. Electrochem. Soc., 2012,159(4):A410. https://iopscience.iop.org/article/10.1149/2.059204jes

doi: 10.1149/2.059204jes     URL    
[64]
Yu H J, Zhou H S . J. Mater. Chem., 2012,22:15507.
[65]
Sun Y K, Kim M G, Kang S H, Amine K . J. Mater. Chem., 2013,13:319.
[66]
Kang S H, Kim J, Stoll M E, Abraham D, Sun Y K, Amine K . J. Power Sources, 2002,112:41.
[67]
Kang S H, Amine K . J. Power Sources, 2003,150:119.
[68]
Jafta C J, Ozoemena K I, Mathe M K, Roos W D . Electrochim. Acta, 2012,85:411. https://linkinghub.elsevier.com/retrieve/pii/S0013468612013643

doi: 10.1016/j.electacta.2012.08.074     URL    
[69]
Li N, An R, Su Y F, Wu F, Bao L Y, Chen L, Zheng Y, Shou S F, Chen S . J. Mater. Chem. A, 2013,1:9760. http://xlink.rsc.org/?DOI=c3ta11665d

doi: 10.1039/c3ta11665d     URL    
[70]
Gao Y R, Ma J, Wang X F, Lu X, Bai Y, Wang Z X, Chen L Q . J. Mater. Chem. A, 2014,2:4811. http://xlink.rsc.org/?DOI=c3ta15236g

doi: 10.1039/c3ta15236g     URL    
[71]
Ma J, Zhou Y N, Gao Y R, Kong Q Y, Wang Z X, Yang X Q, Chen L Q . Chem. Eur. J., 2014,20:8723. https://www.ncbi.nlm.nih.gov/pubmed/24939463

doi: 10.1002/chem.201402727     URL     pmid: 24939463
[72]
Lee E S, Manthiram A . J. Mater. Chem. A, 2014,2:3932.
[73]
Boulineau A, Simonin L, Colin J F, Bourbon C, Patoux S . Nano Lett, 2013,13:3857. https://www.ncbi.nlm.nih.gov/pubmed/23876058

doi: 10.1021/nl4019275     URL     pmid: 23876058
[74]
Gu M, Belharouak I, Zheng J M, Wu H M, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J, Wang C M . ACS Nano, 2013,7:760. https://www.ncbi.nlm.nih.gov/pubmed/23237664

doi: 10.1021/nn305065u     URL     pmid: 23237664
[75]
Song B H, Liu Z W, Lai M O, Lu L . Phys. Chem. Chem. Phys., 2012,14:12875. https://www.ncbi.nlm.nih.gov/pubmed/22892557

doi: 10.1039/c2cp42068f     URL     pmid: 22892557
[76]
Goodenough J B, Kim Y . Chem. Mater, 2010,22:587.
[77]
Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A . J. Mater. Chem., 2007,17:3053.
[78]
He W, Yuan D, Qian J, Ai X, Yang H, Cao Y . J. Mater. Chem. A, 2013,1:11397.
[79]
Qiu B, Wang J, Xia Y G, Liu Y Z, Qin L F, Yao X Y, Liu Z P . J. Power Sources, 2013,240:530. https://linkinghub.elsevier.com/retrieve/pii/S0378775313006459

doi: 10.1016/j.jpowsour.2013.04.047     URL    
[80]
Ates M N, Jia Q Y, Shah A, Busnaina A, Mukerjee S, Abraham K M . J. Electrochem. Soc., 2014,161:A290 https://iopscience.iop.org/article/10.1149/2.040403jes

doi: 10.1149/2.040403jes     URL    
[81]
Kang K, Meng Y S, Breger J, Grey C P, Ceder G . Science, 2006,311:977. https://www.ncbi.nlm.nih.gov/pubmed/16484487

doi: 10.1126/science.1122152     URL     pmid: 16484487
[82]
Sallard S, Sheptyakov D, Villevieille C . J. Power Sources, 2017,359:27. https://linkinghub.elsevier.com/retrieve/pii/S0378775317306614

doi: 10.1016/j.jpowsour.2017.05.028     URL    
[83]
Ding X, Li Y X, Deng M M, Wang S, Aqsa Y, Hu Q, Chen C H . J. Alloys Compounds, 2019,791:100. https://linkinghub.elsevier.com/retrieve/pii/S0925838819311235

doi: 10.1016/j.jallcom.2019.03.297     URL    
[84]
Dahiya P P, Ghanty C, Sahoo K, Basu S, Majumder S B . J. Electrochem. Soc., 2018,165:A3114. https://iopscience.iop.org/article/10.1149/2.0751813jes

doi: 10.1149/2.0751813jes     URL    
[85]
Zubair M, Li G Y, Wang B Y, Wang L, Yu H J . ACS Appl. Energy Mater., 2019,2:503.
[86]
Feng X, Gao Y R, Ben L B, Yang Z Z, Wang Z X, Chen L Q . J. Power Sources, 2016,317:74. https://linkinghub.elsevier.com/retrieve/pii/S0378775316303184

doi: 10.1016/j.jpowsour.2016.03.101     URL    
[87]
Kam K C, Mehta A, Heron J T, Doeff M M . J. Electrochem. Soc., 2012,159:A1383.
[88]
Li L, Song B H, Chang Y L, Xia H, Yang J R, Lee K S, Lu L . J. Power Sources, 2015,283:162.
[89]
Zhang H Z, Qiao Q Q, Li G R, Gao X P . J. Mater. Chem. A, 2014,2:7454.
[90]
Park K S, Cho M H, Jin S J, Song C H, Nahm K S . Korean J. Chem. Eng., 2005,22:560.
[91]
Zheng J M, Gu M, Xiao J, Zuo P J, Wang C M, Zhang J G . Nano Lett., 2013,13:3824. https://www.ncbi.nlm.nih.gov/pubmed/23802657

doi: 10.1021/nl401849t     URL     pmid: 23802657
[92]
Lin R Q, Hu E Y, Liu M J, Wang Y, Cheng H, Wu J P, Zheng J C, Wu Q, Bak S, Tong X, Zhang R, Yang W L, Persson K, Yu X Q, Yang X Q, Xin H L . Nat. Commun., 2019,10:1650. https://www.ncbi.nlm.nih.gov/pubmed/30967531

doi: 10.1038/s41467-019-09248-0     URL     pmid: 30967531
[93]
Li F, Wang Y Y, Gao S L, Hou P Y, Zhang L Q . J. Mater. Chem. A, 2017,5:24758. http://xlink.rsc.org/?DOI=C7TA07659B

doi: 10.1039/C7TA07659B     URL    
[94]
Zhao Y, Liu J T, Wang S B, Ji R, Xia Q B, Ding Z P, Wei W F, Liu Y, Wang P, Ivey D G . Adv. Funct. Mater., 2016,26:4760. http://doi.wiley.com/10.1002/adfm.v26.26

doi: 10.1002/adfm.v26.26     URL    
[95]
Hou P Y, Li G R, Gao X P . J. Mater. Chem. A, 2016,4:7689. http://xlink.rsc.org/?DOI=C6TA01878E

doi: 10.1039/C6TA01878E     URL    
[96]
Qing R P, Shi J L, Xiao D D, Zhang X D, Yin Y X, Zhai Y B, Gu L, Guo Y G . Adv. Energy Mater., 2016,6:1501914.
[97]
Shang H F, Ning F H, Li B, Zuo Y X, Lu S G, Xia D G . ACS Appl. Mater. Interfaces, 2018,10:21349. https://www.ncbi.nlm.nih.gov/pubmed/29862806

doi: 10.1021/acsami.8b06271     URL     pmid: 29862806
[98]
Zhang X D, Shi J L, Liang J Y, Yin Y X, Zhang J N, Yu X Q, Guo Y G . Adv. Mater., 2018,30:1801751.
[99]
Vu N H, Im J C, Unithrattil S, Im W B . J. Mater. Chem. A, 2018,6:2200. http://xlink.rsc.org/?DOI=C7TA09118D

doi: 10.1039/C7TA09118D     URL    
[100]
Feng X, Yang Z Z, Tang D C, Kong Q Y, Gu L, Wang Z X, Chen L Q . Phys. Chem. Chem. Phys., 2015,17:1257. https://www.ncbi.nlm.nih.gov/pubmed/25420544

doi: 10.1039/c4cp04087b     URL     pmid: 25420544
[101]
Wu B, Yang X K, Jiang X, Zhang Y, Shu H B, Gao P, Liu L, Wang X Y . Adv. Funct. Mater., 2018,28:1803392 http://doi.wiley.com/10.1002/adfm.v28.37

doi: 10.1002/adfm.v28.37     URL    
[102]
Deng Y P, Fu F, Wu Z G, Yin Z W, Zhang T, Li J T, Huang L, Sun S G . J. Mater. Chem. A, 2016,4:257. http://xlink.rsc.org/?DOI=C5TA06945A

doi: 10.1039/C5TA06945A     URL    
[103]
Ma Y T, Liu P F, Xie Q S, Zhang G B, Zheng H F, Cai Y X, Li Z, Wang L S, Zhu Z Z, Mai L Q, Peng D L . Nano Energy, 2019,59:184. https://linkinghub.elsevier.com/retrieve/pii/S2211285519301533

doi: 10.1016/j.nanoen.2019.02.040     URL    
[104]
Zhang X H, Yu R Z, Huang Y, Wang X Y, Wang Y, Wu B, Liu Z S, Chen J C . ACS Sustainable Chem. Eng., 2018,6:12969. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b02436

doi: 10.1021/acssuschemeng.8b02436     URL    
[105]
Liu P F, Zhang H, He W, Xiong T F, ChengY, Xie Q S, Ma Y T, Zheng H F, Wang L S, Zhu Z Z, Peng Y, Mai L Q, Peng D L . J. Am. Chem. Soc., 2019,141:10876. https://www.ncbi.nlm.nih.gov/pubmed/31203612

doi: 10.1021/jacs.9b04974     URL     pmid: 31203612
[106]
Zhang X, Belharouak I, Li L, Lei Y, Elam J W, Nie A, Chen X, Yassar R S, Axelbaum R L . Adv. Energy Mater., 2013,3:1299. e885ff70-3d17-48bd-9153-6990b688a109http://onlinelibrary.wiley.com/doi/10.1002/aenm.201300269/abstract

doi: 10.1002/aenm.201300269     URL    
[107]
Guo S, Yu H, Liu P, Liu X, Chen M, Ishida M, Zhou H . J. Mater. Chem. A, 2014,2:4422. http://xlink.rsc.org/?DOI=c3ta15206e

doi: 10.1039/c3ta15206e     URL    
[108]
Wu F, Li N, Su Y F, Lu H Q, Zhang L J, An R, Wang Z, Bao L Y, Chen S . J. Mater. Chem., 2012,22:1489.
[109]
Liu J, Manthiram A . J. Mater. Chem., 2010,20:3961. http://xlink.rsc.org/?DOI=b925711j

doi: 10.1039/b925711j     URL    
[110]
Ahn J, Kim J H, Cho B W, Chung K Y, Kim S, Choi J W, Oh S H . Nano Lett., 2017,17:7869. https://www.ncbi.nlm.nih.gov/pubmed/29144142

doi: 10.1021/acs.nanolett.7b04158     URL     pmid: 29144142
[111]
Sun Y K, Lee M J, Yoon C S, Hassoun J, Amine K, Scrosati B . Adv. Mater, 2012,24:1192. https://www.ncbi.nlm.nih.gov/pubmed/22362564

doi: 10.1002/adma.201104106     URL     pmid: 22362564
[112]
Lu C, Wu H, Zhang Y, Liu H, Chen B J, Wu N T, Wang S . J. Power Sources, 2014,267:682. https://linkinghub.elsevier.com/retrieve/pii/S0378775314008155

doi: 10.1016/j.jpowsour.2014.05.122     URL    
[113]
Cho J, Kim Y W, Kim B, Lee J G, Park B . Angew. Chem. Int. Ed., 2003,42:1618. https://www.ncbi.nlm.nih.gov/pubmed/12698458

doi: 10.1002/anie.200250452     URL     pmid: 12698458
[114]
Park M S, Lee J W, Choi W, Im D, Doo S G, Park K S . J. Mater. Chem., 2010,20:7208. http://xlink.rsc.org/?DOI=c0jm00617c

doi: 10.1039/c0jm00617c     URL    
[115]
Wang Q, Liu J, Murugan A V, Manthiram A . J. Mater. Chem., 2009,19:4965. http://xlink.rsc.org/?DOI=b823506f

doi: 10.1039/b823506f     URL    
[116]
Qiao Q Q, Zhang H Z, Li G R, Ye S H, Wang C W, Gao X P . J. Mater. Chem. A, 2013,1:5262. http://xlink.rsc.org/?DOI=c3ta00028a

doi: 10.1039/c3ta00028a     URL    
[117]
Xiao B W, Wang B Q, Liu J, Kaliyappan K, Sun Q, Liu Y L, Dadheech G, Balogh M P, Yang L, Sham T K, Li R Y, Cai M, Sun X L . Nano Energy, 2017,34:120. https://linkinghub.elsevier.com/retrieve/pii/S2211285517300848

doi: 10.1016/j.nanoen.2017.02.015     URL    
[118]
Zhang X H, Xie X, Yu R Z, Zhou J R, Huang Y, Cao S, Wang Y, Tang K, Wu C, Wang X Y . ACS Appl. Energy Mater., 2019,2:3532. https://pubs.acs.org/doi/10.1021/acsaem.9b00287

doi: 10.1021/acsaem.9b00287     URL    
[119]
Liu Y J, Zhang Z Q, Fu Y B, Wang Q L, Pan J, Su M R, Battaglia V S . J. Alloys Compounds, 2016,685:523. https://linkinghub.elsevier.com/retrieve/pii/S0925838816316899

doi: 10.1016/j.jallcom.2016.05.329     URL    
[120]
Myung S T, Izumi K, Komaba S, Sun S K, Yashiro H, Kumagai N . Chem. Mater, 2005,17:3695. https://pubs.acs.org/doi/10.1021/cm050566s

doi: 10.1021/cm050566s     URL    
[121]
Ma J, Li B, An L, Wei H, Wang H X, Yu P G, Xia D G . J. Power Sources, 2015,277:393. https://linkinghub.elsevier.com/retrieve/pii/S037877531402000X

doi: 10.1016/j.jpowsour.2014.11.133     URL    
[122]
Wu Y Q, Ming J, Zhuo L H, Yu Y C, Zhao F Y . Electrochim. Acta, 2013,113:54. https://linkinghub.elsevier.com/retrieve/pii/S0013468613018045

doi: 10.1016/j.electacta.2013.09.042     URL    
[123]
Chen Z H, Qin Y, Amine K, Sun Y K . J. Mater. Chem., 2010,20:7606. http://xlink.rsc.org/?DOI=c0jm00154f

doi: 10.1039/c0jm00154f     URL    
[124]
Bettge M, Li Y, Sankaran B, Rago N D, Spila T, Haasch R T, Petrov I, Abraham D P . J. Power Sources, 2013,233:346. https://linkinghub.elsevier.com/retrieve/pii/S0378775313001316

doi: 10.1016/j.jpowsour.2013.01.082     URL    
[125]
Wang C C, Ling J W, Yu Y H, Lai K H, Chiu K F, Kei C C . ACS Sustainable Chem. Eng., 2018,6:16941. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b04285

doi: 10.1021/acssuschemeng.8b04285     URL    
[126]
Yu H, Gao Y, Liang X H . J. Electrochem. Soc., 2019,166:A2021.
[127]
Zhang W X, Liu Y T, Wu J L, Shao H X, Yang Y F . J. Electrochem. Soc., 2019,166:A863.
[128]
Lu J, Zhan C, Wu T P, Wen J G, Lei Y, Kropf A J, Wu H M, Miller D J, Elam J W, Sun Y K, Qiu X P, Amine K . Nat. Commun, 2014,5:5693. https://www.ncbi.nlm.nih.gov/pubmed/25514346

doi: 10.1038/ncomms6693     URL     pmid: 25514346
[129]
Yu R B, Lin Y B, Huang Z G . Electrochem. Acta, 2015,173:515.
[130]
Kim H S, Kim Y, Kim S I, Martin S W . J. Power Sources, 2006,161:623.
[131]
Zhao S Q, Sun B, Yan K, Zhang J Q, Wang C Y, Wang G X . ACS Appl. Mater. Interfaces, 2018,10:33260. https://www.ncbi.nlm.nih.gov/pubmed/30188678

doi: 10.1021/acsami.8b11471     URL     pmid: 30188678
[132]
Zhang X P, Sun S W, Wu Q, Wan N, Pan D, Bai Y . J. Power Sources, 2015,282:378.
[133]
Noh S, Kim J, Eom M, Shin D . Ceram. Int, 2013,39:8453.
[134]
Kang S H, Thackeray M M . Electrochem. Commun., 2009,11:748.
[135]
Liu B, Zhang Q, He S C, Satob Y C, Zheng J W, Li D C . Electrochim. Acta, 2011,56:6748.
[136]
Liu H, Chen C, Du C Y, He X S, Yin G P, Song B, Zuo P J, Cheng X Q, Ma Y L, Gao Y Z . J. Mater. Chem. A, 2015,3:2634.
[137]
Martha S K, Nanda J, Kim Y, Unocic R R, Pannala S, Dudney N J . J. Mater. Chem. A, 2013,1:5587.
[138]
Liu Y J, Fan X J, Huang X Z L, Liu D M, Dou A C, Su M R, Chu D W . J. Power Sources, 2018,403:27. https://linkinghub.elsevier.com/retrieve/pii/S0378775318310619

doi: 10.1016/j.jpowsour.2018.09.082     URL    
[139]
Fu Q, Du F, Bian X, Wang Y, Yan X, Zhang Y, Zhu K, Chen G, Wang C, Wei Y . J. Mater. Chem. A, 2014,2:7555. http://xlink.rsc.org/?DOI=c4ta00189c

doi: 10.1039/c4ta00189c     URL    
[140]
Cong L N, Gao X G, Ma S C, Guo X, Zeng Y P, Tai L H, Wang R S, Xie H M, Sun L Q . Electrochim. Acta, 2014,115:399. https://linkinghub.elsevier.com/retrieve/pii/S0013468613020872

doi: 10.1016/j.electacta.2013.10.117     URL    
[141]
Zhou L, Wu Y N, Huang J, Fang X, Wang T, Liu W M, Wang Y, Jin Y . J. Alloys Compounds, 2017,724:991. https://linkinghub.elsevier.com/retrieve/pii/S0925838817319540

doi: 10.1016/j.jallcom.2017.05.328     URL    
[142]
Wang D D, Xu T H, Li Y P, Pan D, Lu X, Hu Y S, Dai S, Bai Y . ACS Appl. Mater. Interfaces, 2018,10:41802. https://www.ncbi.nlm.nih.gov/pubmed/30403129

doi: 10.1021/acsami.8b16319     URL     pmid: 30403129
[143]
Wang J H, Wang Y, Guo Y Z, Ren Z Y, Liu C W . J. Mater. Chem. A, 2013,1:4879. http://xlink.rsc.org/?DOI=c3ta00064h

doi: 10.1039/c3ta00064h     URL    
[144]
Liu Y J, Wang Q L, Lu Y F, Yang B L, Su M R, Gao Y Y, Dou A C, Pan J . J. Alloys Compounds, 2015,638:1. https://linkinghub.elsevier.com/retrieve/pii/S0925838815004855

doi: 10.1016/j.jallcom.2015.02.059     URL    
[145]
Song B, Liu H, Liu Z, Xiao P, Lai M O . LuL. Sci. Rep., 2013,3:3094. https://www.ncbi.nlm.nih.gov/pubmed/24172795

doi: 10.1038/srep03094     URL     pmid: 24172795
[146]
Ban C M, Li Z, Wu Z C, Kirkham M J, Chen L, Jung Y S, Payzant E A, Yan Y F, Whittingham M S, Dillon A C . Adv. Energy Mater., 2011,1:58. 813c1640-7a3f-49c3-afa7-788df02783b3http://dx.doi.org/10.1002/aenm.201000001

doi: 10.1002/aenm.201000001     URL    
[147]
Fu L J, Yang L C, Shi Y, Wang B, Wu Y P . Micropor. Mesopor. Mater., 2009,117:515. https://linkinghub.elsevier.com/retrieve/pii/S1387181108003387

doi: 10.1016/j.micromeso.2008.07.008     URL    
[148]
Li X, Xu Y . Electrochem. Commun, 2007,9:2023. https://linkinghub.elsevier.com/retrieve/pii/S1388248107002123

doi: 10.1016/j.elecom.2007.05.034     URL    
[149]
Song B H, Lai M O, Liu Z W, Liu H W, Lu L . J. Mater. Chem. A, 2013,1:9954. http://xlink.rsc.org/?DOI=c3ta11580a

doi: 10.1039/c3ta11580a     URL    
[150]
Geim A K, Novoselov K S . Nat. Mater., 2007,6:183. 074d2caa-bb52-4146-b035-893ec5af5263https://www.ncbi.nlm.nih.gov/pubmed/17330084

doi: 10.1038/nmat1849     URL     pmid: 17330084
[151]
Stoller M D, Park S, Zhu Y, An J, Ruoff R S . Nano Lett., 2008,8:3498. https://www.ncbi.nlm.nih.gov/pubmed/18788793

doi: 10.1021/nl802558y     URL     pmid: 18788793
[152]
Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I . Nano Lett, 2008,8:2277. https://www.ncbi.nlm.nih.gov/pubmed/18651781

doi: 10.1021/nl800957b     URL     pmid: 18651781
[153]
Zheng F H, Deng Q, Zhong W T, Ou X, Pan Q C, Liu Y Z, Xiong X H, Yang C H, Chen Y, Liu M L . ACS Sustainable Chem. Eng., 2018,6:16399.
[154]
Zhang J, Lu Q W, Fang J H, Wang J L, Yang J, NuLi Y N . ACS Appl. Mater. Interfaces, 2014,6:17965. https://www.ncbi.nlm.nih.gov/pubmed/25229991

doi: 10.1021/am504796n     URL     pmid: 25229991
[155]
Wu C R, Fang X P, Guo X W, Mao Y, Ma J, Zhao C C, Wang Z X, Chen L Q . J. Power Sources, 2013,231:44.
[156]
Xue Q R, Li J L, Xu G F, Zhou H W, Wang X D, Kang F Y . J. Mater. Chem. A, 2014,2:18613. http://xlink.rsc.org/?DOI=C4TA04024D

doi: 10.1039/C4TA04024D     URL    
[157]
Kong J Z, Xu L P, Wang C L, Jiang Y X, Cao Y Q, Zhou F . J. Alloys Compounds, 2017,719:410.
[158]
Gao J, Manthiram A . J. Power Sources, 2009,191:644.
[159]
Martha S K, Nanda J, Veith G M, Dudney N J . J. Power Sources, 2012,199:220.
[160]
Martha S K, Nanda J, Veith G M, Dudney N J . J. Power Sources, 2012,216:179. https://linkinghub.elsevier.com/retrieve/pii/S0378775312009081

doi: 10.1016/j.jpowsour.2012.05.049     URL    
[161]
Yabuuchi N, Yoshii K, Myung S T, Nakai I, Komaba S . J. Am. Chem. Soc., 2011,133:4404. https://www.ncbi.nlm.nih.gov/pubmed/21375288

doi: 10.1021/ja108588y     URL     pmid: 21375288
[162]
Wang F X, Xiao S Y, Li M X, Wang X W, Zhu Y S, Wu Y P, Shirakawa A, Peng J . J. Power Sources, 2015,287:416. https://linkinghub.elsevier.com/retrieve/pii/S0378775315006734

doi: 10.1016/j.jpowsour.2015.04.034     URL    
[163]
Liu X Y, Huang T, Yu A S . Electrochem. Acta, 2015,163:82. https://linkinghub.elsevier.com/retrieve/pii/S0013468615004521

doi: 10.1016/j.electacta.2015.02.155     URL    
[164]
Kim I T, Knight J C, Celioa H, Manthiram A . J. Mater. Chem. A, 2014,2:8696. http://xlink.rsc.org/?DOI=c4ta00898g

doi: 10.1039/c4ta00898g     URL    
[165]
Liao J Y, Manthiram A . J. Power Sources, 2015,282:429. https://linkinghub.elsevier.com/retrieve/pii/S0378775315003122

doi: 10.1016/j.jpowsour.2015.02.078     URL    
[166]
Kraytsberg A, Ein-Eli A . Adv. Energy Mater., 2012,2:922. d9a72e6a-a0b6-439d-9a45-c2bf180a89b0http://dx.doi.org/10.1002/aenm.201200068

doi: 10.1002/aenm.201200068     URL    
[167]
Wu F, Li N, Su Y, Shou H, Bao L, Yang W, Zhang L, An R, Chen S . Adv. Mater, 2013,25:3722. https://www.ncbi.nlm.nih.gov/pubmed/23740661

doi: 10.1002/adma.201300598     URL     pmid: 23740661
[168]
Wang D, Belharouak I, Zhou G, Amine K . Adv. Funct. Mater., 2013,23:1070. http://doi.wiley.com/10.1002/adfm.v23.8

doi: 10.1002/adfm.v23.8     URL    
[169]
Luo D, Li G, Fu C, Zheng J, Fan J, Li Q, Li L . Adv. Energy Mater., 2014,4:1400062. http://doi.wiley.com/10.1002/aenm.201400062

doi: 10.1002/aenm.201400062     URL    
[170]
Yu Dedis Y W, Yanagida K, Nakamura H . J. Electrochem. Soc., 2010,157:A1177. https://iopscience.iop.org/article/10.1149/1.3479382

doi: 10.1149/1.3479382     URL    
[171]
Xia Q B, Zhao X F, Xu M Q, Ding Z P, Liu J T, Chen L B, Ivey D G, Wei W F . J. Mater. Chem. A, 2015,3:3995. http://xlink.rsc.org/?DOI=C4TA05848H

doi: 10.1039/C4TA05848H     URL    
[172]
Liu Y J, Fan X J, Zhang Z Q, Wu H H, Liu D M, Dou A C, Su M R, Zhang Q B, Chu D W . ACS Sustainable Chem. Eng., 2019,7:2225. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b04905

doi: 10.1021/acssuschemeng.8b04905     URL    
[173]
Liu S Y, Wang Z L, Huang Y K, Ni Z J, Bai J R, Kang S F, Wang Y G, Li X . J. Alloys Compounds, 2018,731:636. https://linkinghub.elsevier.com/retrieve/pii/S0925838817334035

doi: 10.1016/j.jallcom.2017.09.341     URL    
[174]
Zhang S M, Gu H T, Pan H G, Yang S H, Du W B, Li X, Gao M X, Liu Y F, Zhu M, Ouyang L Z, Jian D C, Pan F.Adv . Energy Mater, 2017,7:1601066.
[175]
Ding X, Li Y X, Wang S, Dong J M, Yasmin A, Hu Q, Wen Z Y, Chen C H . Nano Energy, 2019,61:411. https://linkinghub.elsevier.com/retrieve/pii/S2211285519303799

doi: 10.1016/j.nanoen.2019.04.078     URL    
[176]
Zhang Q G, Peng T Y, Zhan D, Hu X H . J. Power Sources, 2014,250:40. https://linkinghub.elsevier.com/retrieve/pii/S0378775313018077

doi: 10.1016/j.jpowsour.2013.10.139     URL    
[177]
Yang M C, Hu B, Geng F S, Li C, Lou X B, Hu B W . Electrochem. Acta, 2018,291:278. https://linkinghub.elsevier.com/retrieve/pii/S0013468618321303

doi: 10.1016/j.electacta.2018.09.134     URL    
[178]
Kim S, Cho W, Zhang X, Oshima Y, Choi J W . Nat. Commun. 2016,7:13598. https://www.ncbi.nlm.nih.gov/pubmed/27886178

doi: 10.1038/ncomms13598     URL     pmid: 27886178
[179]
Li X, Zhang K J, Mitlin D, Yang Z Z, Wang M S, Tang Y, Jiang F, Du Y G, Zheng J M . Chem. Mater., 2018,30:2566. https://pubs.acs.org/doi/10.1021/acs.chemmater.7b04861

doi: 10.1021/acs.chemmater.7b04861     URL    
[180]
Huang J J, Liu H D, Hu T, Meng Y S, Luo J . J. Power Sources, 2018,375:21. https://linkinghub.elsevier.com/retrieve/pii/S037877531731515X

doi: 10.1016/j.jpowsour.2017.11.048     URL    
[181]
Liu S, Liu Z P, Shen X, Li W H, Gao Y R, Banis M N, Li M S, Chen K, Zhu L, Yu R C, Wang Z X, Sun X L, Lu G, Kong Q Y, Bai X D, Chen L Q . Adv. Energy Mater., 2018,8:1802105. http://doi.wiley.com/10.1002/aenm.v8.31

doi: 10.1002/aenm.v8.31     URL    
[182]
James A C W P, Goodenough J B . J. Solid State Chem., 1988,76:87. https://linkinghub.elsevier.com/retrieve/pii/0022459688901946

doi: 10.1016/0022-4596(88)90194-6     URL    
[183]
Park M S, Lim Y G, Kim J H, Kim K J, Cho J, Kim J S . Adv. Energy Mater., 2011,1:1002. 56f52d82-0a9d-4193-919f-fc8f9de03125http://dx.doi.org/10.1002/aenm.201100270

doi: 10.1002/aenm.201100270     URL    
[184]
Ma J, Gao Y R, Wang Z X, Chen L Q . J. Power Sources, 2014,258:314 https://linkinghub.elsevier.com/retrieve/pii/S0378775314002493

doi: 10.1016/j.jpowsour.2014.02.056     URL    
[185]
Zhou Y N, Ma J, Hu E Y, Yu X Q, Nam K W, Gu L, Chen L Q, Wang Z X, Yang X Q . Nat. Commun., 2014,5:5381. https://www.ncbi.nlm.nih.gov/pubmed/25451540

doi: 10.1038/ncomms6381     URL     pmid: 25451540
[186]
Liu S, Feng X, Wang X L, Shen X, Hu E Y, Xiao R J, Yu R C, Yang H T, Song N N, Wang Z X, Yang X Q, Chen L Q . Adv. Energy Mater., 2018,8:1703092. http://doi.wiley.com/10.1002/aenm.201703092

doi: 10.1002/aenm.201703092     URL    
[187]
Liu S, Liu Z P, Shen X, Wang X L, Liao S C, Yu R C, Wang Z X, Hu Z W, Chen C T, Yu X Q, Yang X Q, Chen L Q . Adv. Energy Mater., 2019,9:1901530. https://onlinelibrary.wiley.com/toc/16146840/9/32

doi: 10.1002/aenm.v9.32     URL    
[188]
Yabuuchi N, Takeuchi M, Nakayama M, Shiiba H, Ogawa M, Nakayama K, Ohta T, Endo D, Ozaki T, Inamasu T, Sato K, Komaba S . Proc. Natl. Acad. Sci. U. S. A., 2015,112:7650. https://www.ncbi.nlm.nih.gov/pubmed/26056288

doi: 10.1073/pnas.1504901112     URL     pmid: 26056288
[189]
Yabuuchi N, Nakayama M, Takeuchi M, Komaba S, Hashimoto Y, Mukai T, Shiiba H, Sato K, Kobayashi Y, Nakao A, Yonemura M, Yamanaka K, Mitsuhara K, Ohta T . Nat. Commun, 2016,7:13814. https://www.ncbi.nlm.nih.gov/pubmed/28008955

doi: 10.1038/ncomms13814     URL     pmid: 28008955
[190]
Li B, Jiang N, Huang W, Yan H, Zuo Y, Xia D . Adv. Funct. Mater., 2018,28:1704864.
[191]
Shigemura H, Tabuchi M, Sakaebe H, Kobayashi H, Kageyama H . J. Electrochem. Soc., 2003,150:A638. https://iopscience.iop.org/article/10.1149/1.1565135

doi: 10.1149/1.1565135     URL    
[192]
Urban A, Abdellahi A, Dacek S, Artrith N, Ceder G . Phys. Rev. Lett., 2017,119:176402. https://www.ncbi.nlm.nih.gov/pubmed/29219459

doi: 10.1103/PhysRevLett.119.176402     URL     pmid: 29219459
[193]
Fell C R, Qian D, Carroll K J, Chi M, Jones J L, Meng Y S . Chem. Mater., 2013,25:1621. https://pubs.acs.org/doi/10.1021/cm4000119

doi: 10.1021/cm4000119     URL    
[194]
Li Y J, Wang X F, Gao Y R, Zhang Q H, Tan G Q, Kong Q Y, Bak S, Lu G, Yang X Q, Gu L, Lu J, Amine K, Wang Z X, Chen L Q . Adv. Energy Mater., 2019,9:1803087.
[195]
Maitra U, House R A, Somerville J, Tapia-Ruiz N, Lozano J G, Guerrini N, Hao R, Luo K, Jin L Y, Perez-Osorio M A, Massel F, Pickup D M, Ramos S, Lu X Y, McNally D E, Chadwick A V, Giustino F, Schmitt T, DudaL C, Roberts M R, Bruce P G . Nat. Chem., 2018,7:288.
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[3] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[4] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[5] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[6] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[7] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[8] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[9] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[10] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[11] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[12] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[13] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[14] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[15] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.