English
新闻公告
More
化学进展 2020, Vol. 32 Issue (2/3): 239-248 DOI: 10.7536/PC190814 前一篇   后一篇

• •

人参皂苷类化合物样品前处理及分析检测

宋志花1,**(), 李盛红3, 杨刚强1, 周娜2, 陈令新2,**()   

  1. 1. 烟台大学药学院 分子药理和药物评价教育部重点实验室 新型制剂与生物技术药物研究山东省高校协同创新中心 烟台 264005
    2. 中国科学院烟台海岸带研究所 中国科学院海岸带环境过程与生态修复重点实验室 山东省海岸带环境过程重点实验室 烟台 264003
    3. 中国科学院大连化学物理研究所 中国科学院分离分析化学重点实验室 大连 116023
  • 收稿日期:2019-08-13 出版日期:2020-02-15 发布日期:2019-11-18
  • 通讯作者: 宋志花, 陈令新
  • 基金资助:
    烟台市重点研发计划(2018ZHGY085); 药学国家级实验教学示范中心(烟台大学)()

Sample Pretreatment, Analysis and Detection of Ginsenosides

Zhihua Song1,**(), Shenghong Li3, Gangqiang Yang1, Na Zhou2, Lingxin Chen2,**()   

  1. 1. Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
    2. CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research(YIC), Chinese Academy of Sciences(CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai 264003, China
    3. CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received:2019-08-13 Online:2020-02-15 Published:2019-11-18
  • Contact: Zhihua Song, Lingxin Chen
  • About author:
    ** e-mail: (Zhihua Song);
    (Lingxin Chen)
  • Supported by:
    Key Research Project of Yantai City(2018ZHGY085); National Demonstration Center for Experimental Pharmacy Education(Yantai University)()

人参皂苷类化合物是参属类植物中的一类重要活性成分,主要包括原人参二醇、原人参三醇、齐墩果酸型、奥克梯隆型四类。最近,已发现的人参皂苷类化合物化学结构多达620余种,它们具有相似的化学结构,但药理活性具有明显差异。该类化合物所在基质复杂多样,选择简便高效的样品前处理方法及检测技术对于有效检测样品中人参皂苷含量至关重要。本文综述了测定各类样品中多种人参皂苷含量的样品前处理技术(溶剂提取、固相萃取等)及常用检测方法(高效液相色谱法、超高效液相色谱法、薄层色谱法、气相色谱法等),对各种方法的灵敏度及回收率等参数进行了总结,并评述了每种方法的优缺点及研究进展。

Ginsenosides are an important kind of active ingredients in Panax genus and can be classified into four main types: the protopanaxadiols(PPD), protopanaxatriols(PPT), oleanolic acids(OA) and ocotillol type(OT). Recently, more than 620 kinds of these compounds have been isolated. Their chemical structures are similar but have quite different medicinal functions. It is of vital importance to develop simple and facile sample pretreatment methods and detection techniques to detect the content of ginsenosides in complex matrix. This review includes many kinds of sample pretreatment methods(such as liquid phase extraction, and solid phase extraction) and detection methods(such as high performance liquid chromatography, ultra-performance liquid chromatography, thin layer chromatography, and gas chromatography), etc., summarizes the sensitivity and recovery of various methods, and reviews the advantages and disadvantages of each method and its research progress.

()
表1 四类常见人参皂苷化合物:(a)20(s)-原人参二醇、(b)20(s)-原人参三醇、(c)齐墩果酸型、(d)24(R)-奥克梯隆型[13]
Table 1 Four types of common ginsenosides:(a) 20(s)-PPD,(b) 20(s)-PPT,(c) OA,(d) 24(R)-OT[13]. Copyright 2000 American Chemical Society
表2 人参皂苷类化合物的样品前处理方法
Table 2 Sample pretreatment methods for ginsenosides
Sample pretreatment methods Principles Advantages Disadvantages
Solvent extraction method Microwave assisted extraction(MAE) Cell walls of the Chinese traditional medicine are disrupted by the microwave with energy of 300 MHz~300 GHz, and then the extracting rate is increased. Convenient operation, short extraction time, high extraction yield, less solvent consumption, and low cost[24, 25]. Some heat-sensitive
compounds are easy to be destroyed.
Ultrasonic assisted extraction(UAE) The disruption of cell walls, reduction of particle-size and enhancing mass transfer of the cell contents are caused by cavitation bubble collapse, mechanical and thermal effects. Highly efficient, low consumption of solvent, fast(tens minutes), mild conditions(20~30 ℃), simple and low cost[26]. Low degree of automation and difficult to be used on-line.
Accelerated solvent extraction(ASE) ASE is carried out in closed container with a high pressure and a temperature above the boiling point of organic solvent. The extraction rate increases with the increase of pressure and temperature. Fast(a few minutes to ten minutes), save solvent, realize automation easily. Some heat-sensitive
compounds are easy to be destroyed; the instruments are expensive; and operation skills are hard to master.
Sub-and supercritical fluid extraction The extraction process proceeds by using sub-and supercritical fluids near the critical point of temperature and pressure with the good properties of high-density, low-viscosity, and high-permeability. Non-toxic and safe, no organic solvent residual, environment friendly, low energy cost [27]. The instrument is expensive
due to high pressure
resistant.
Enzymatic dissociation method Active ingredients can beextracted from plant tissues by using suitable enzymes(cellulase, amylase, etc.) under mild conditions[28]. Furthermore, the fragmentation of cell walls will be accelerated with the increase of the pressure(100~600 MPa) [29]. Efficient and has great potential in extraction of active ingredients from traditional Chinese medicine. Susceptible to external
conditions.
Solid phase extraction (SPE) The ginsenoside compounds and impurities are separated by adsorbents according to the difference in adsorption. Simple, low cost and wide
range ofapplication.
Large amount of organic reagents consumption, only suitable for pretreatment of small batches of samples.
表3 液相色谱法检测人参皂苷类化合物
Table 3 The application of liquid chromatography for analysis of active compounds in Chinese herbs
Analyte Matrix Sample
pretreatment
Column and temperature Mobile phases and detection Recovery(%) LOD Ref
Re, Rh1, Rg2,
Rg1, Rf
White ginseng, red ginseng, American ginseng, and ginseng. Extracted by methanol Shiseido UG 80 Capcell Pak
NH2 column
(250 × 4.6 mm
i.d., 5 μm), 25 ℃
0~3 min, 89% A; 3~25 min, 89%→84% A; 25~30 min, 84%→82% A; 30~35 min, 82%→76% A; 35~40 min,89% A.
A:acetonitrile; B water. UV:203 nm
95.31%~103.85% 0.0047 ~
0.225
(mg·L-1)
12
20 (S)-Rh1, 20
(R)-Rh1, Rg6,
F4, Rk3, 20(S)-Rg3, 20(R)-Rg3, Rk1, Rg5
Roots of P. quinquefolius L. Reflux extraction by water and
methanol
Acchrom Technologies ODS-C18 type column(250 ×4.6 mm i.d., 5 μm), 30 ℃. 0~10 min, 33% B; 10~15 min, 33%→40% B; 15~40 min, 40%→60% B; 40~70 min, 60% B.
A: water; B: acetonitrile. HPLC-UV: 203 nm.
HPLC-ESI-MS
97.97%~103.24% 0.18~
0.45
(μg·mL-1)
24
ginsenosides Rb1, Rc, Rb2, Rb3;
notoginsenosides Fc, Fe, Fd
Panax notoginseng leaves Rxtracted by methanol Agilent Zorbax ODS C8 column(250 × 4.6 mm
i.d.,5 μm),
35 ℃
0~5 min, 15%→30% B; 5~15 min, 30%→32% B; 15~35 min, 32%→32% B; 35~45 min, 32%→45% B; 45~60 min, 45%→50% B. A: water; B: acetonitrile.
HPLC-UV: 203 nm
98.7%~106.1% 98 (ng) 40
Ginsenoside Rg1,
Ginsenoside Rb1,
Ginsenoside Rc,
Ginsenoside Rd,
Ginsenoside Re,
Ginsenoside Rf,
Ginsenoside Rg3,
Ginsenoside Rh1,
Ginsenoside Rb2,
Ginsenoside Rb3
Ginsenosides in chronic
heart failure(CHF) rats
Solid-phase extraction(SPE) ACQUITY UPLC?? HSS T3 column(100 × 2.1 mm i.d.,
1.8 μm),
40 ℃
0~1 min, 30%→35% B; 1.0~5.0 min, 35%→38% B; 5.0~5.5 min, 38%→45% B; 5.5~6.0 min, 45%→80% B; 6.0~7.0 min, 80%→90% B; 7.0~7.5 min, 90%→30% B; 7.5~8.0 min, 30%→30% B. A: water with 0.1% formic acid; B: acetonitrile.
UFLC-MS/MS
60%~105% - 42
Ginsenoside Rg1,
Ginsenoside Re,
Ginsenoside Rb1
Panax quinquefolii Radix Reflux extraction by water-saturated
n-butanol
Venusil XBP
C18 column
(250 × 4.6 mm i.d., 5 μm),
30 ℃.
0.01~25 min, 19%→20% A;
25.01~60 min, 20%→40% A;
60.01~80 min, 40.1%→100% A.
A: acetonitrile; B: 0.1%
phosphoric acid solution.
UV: 203 nm
88.61%~94.29% 0.066~
0.400
(μg·mL-1)
55
notoginsenoside R1,
ginsenoside Rg1,
ginsenoside Rb1,
astragaloside Ⅳ,
ginsenoside Rd
Qishen Yiqi
Dripping Pills(QYDP)
liquid-liquid Extraction using water-
saturated n-butanol
Acquity UPLC HSS T3 column (100 × 2.1 mm i.d., 5 μm), 30 ℃ 0~1 min, 83% A; 1~14 min, 83%→56%; 14~15 min, 56% A. A: water containing 0.1% formic acid; B: acetonitrile. UPLC-ELSD 96.87%~99.97% 2.36~
7.68
(μg·mL-1)
57
Analyte Matrix Sample
pretreatment
Column and temperature Mobile phases and detection Recovery(%) LOD Ref
G-Ra1, G-Ra2,
G-Rb1, G-Rb2,
G-Rb3, G-Rc,
G-Rd, G-Re,
G-Re4, G-Rf,
G-Rg1, G-Rg2,
G-Ro, G-Rs2,
G-RoMe, 20-Glc-
G-Rf, Ma-G-Rb2,
NG-R1, NG-R2
Roots and
rhizomes of
Panax ginseng samples.
Extracted by 70% aqueous MeOH solutions Diamonsil ODS C18 column
(250 × 4.6 mm i.d., 5 μm), room temperature
0~20 min, 10%→20% A; 20~30 min, 20%→22% A; 30~40 min, 22%→31%A; 40~75 min, 31%→33% A; 75~80 min, 33%→40% A; 80~90 min, 40%→50% A; 90~100 min, 50%→60% A; 100~110 min, 60%→70% A. Flow rate: 0~32 min, 0.8 mL/min; 32.1~110 min, 0.5 mL/min.
A: MeCN; B: MeCN: H2O: 0.1% formic acid aqueous solution(5∶90∶8; v/v/v)
HPLC-ESI-MS
94.87%~102.45% 0.159~
9.052 (ng)
58
N-R1, G-Rg1,
G-Re, G-Rf,
G-F3, G-Rg2,
G-Rh1, G-Rb1,
G-Ro, G-Rc,
G-Rb2, G-Rb3,
CS-IV, CS-Iva,
G-Rd, G-Rg3
Panax japonicas(PJ), Panax japonicus var. major(PM), and Panax zingiberensis (PZ) Extracted by 60% aqueous methanol solutions Waters C18
column(150×3.9 mm i.d., 4.6 μm), room
temperature
0~3 min, 20%→23% A; 3~8 min, 30%→35% A; 8~15 min, 35% A; 15~20 min, 35%→60% A; 20~22 min, 60%→80% A; 22~24 min, 80%→95% A; 24~25 min, 95%→20% A.
A: acetonitrile; B: 0.05% formic acid aqueous solution.
HPLC-ESI-MS/MS
99.25%~104.10% 0.13~
2.22
(ng·mL-1)
59
ginsenosides Rg1, 20(S)-Rg2, Re, 20(S)-Rh, Rb1, Rb2, Rd Tissue extracts from the root and rhizome of Panax ginseng C.A. Mey. Extracted by methanol Waters C18
column(100 mm ×2.1 mm i.d., 1.7 μm), room temperature ~20 ℃.
0~3 min, 10%→20% B; 3~25 min, 20%→38% B; 25~30 min, 38%→85% B; 30~30.1 min, 85%→100% B; 30.1~32 min, 100% B; 32~32.1 min 100%→10% B. A: formic acid aqueous solution; B: acetonitrile containing 0.1% formic acid.
UPLC-QTOF-MS
- 6.08~
108.72
(ng·mL-1)
60
Rg1 and
its metabolites
Sprague-
Dawley rat
bile, urine,
and feces
Extracted by methanol Shim-Pack XR-ODS Ⅱ(75 × 2 mm, 2.3 μm) column, 40 ℃. 0~7 min, 22%→80% B; 7~7.01 min, 80%→22%; 7.01~10 min, 22%→22% B.
A: 0.05% formic acid aqueous solution; B: 0.05% formic acid in acetonitrile.
HPLC-MS/MS
Rg1, ginsenoside Rh1(Rh1), and protopanaxatriol(Ppt) in bile, urine, and feces ≥70%. The fecal excretion recoveries of Rg1, Rh1, and Ppt, 22.19%~ 40.11%. Rg1 in bile, 6.88%; Rh1 and Rg1in Urinary excretion 0.04%~0.09%. - 61
Rg1, Re, Rf,
Rg2, Rb1, Rc,
Rb2, Rd
Kang’ai
injection
Aqueous two-
phase system
based Deep
eutectic solvent
and K2HPO4
solution
Agilent Zorbax SB-C18 column(250×4.6 mm i.d., 5 μm),
30 ℃
0~34 min, 19.2% A; 34~35 min, 19.2%→28.0% A; 35~48 min, 28.0% A; 48~56 min, 28.5% A; 56~72 min, 36.0% A. A: acetonitrile; B: 0.1% phosphoric acid aqueous solution. HPLC-DAD: 203 nm 92.7%~110.8% 0.3~1.5
(μg·mL-1)
62
[1]
Gurung B, Bhardwaj P K, Rai A K, Sahoo D . Nat. Prod. Res., 2018,32:234. https://www.ncbi.nlm.nih.gov/pubmed/28649854

doi: 10.1080/14786419.2017.1343322     URL     pmid: 28649854
[2]
Gao Y L, Wang T, Wang G F, Li G S, Sun C F, Jiang Z M, Yang J R, Li Y S, You Y L, Wu X R, Sun L Q, Wang H B, Li C M, Tian J W, Zhu J, Wang K Z . Cho S. Food Chem. Toxicol., 2019,131:110578. https://www.ncbi.nlm.nih.gov/pubmed/31201900

doi: 10.1016/j.fct.2019.110578     URL     pmid: 31201900
[3]
Wang W Y, Ni Y Y, Wang L, Che X, Liu W H, Meng Q G . Xenobiotica, 2015,45:385. https://www.ncbi.nlm.nih.gov/pubmed/25430797

doi: 10.3109/00498254.2014.986562     URL     pmid: 25430797
[4]
Ren Q W, Yang G Q, Guo M Q, Guo J W, Li Y, Lu J, Yang Q, Tang H H, Li Y, Fang X J, Sun Y X, Qi J G, Tian J W, Wang H B . Eur. J. Med. Chem., 2019,161:118. https://www.ncbi.nlm.nih.gov/pubmed/30347326

doi: 10.1016/j.ejmech.2018.10.038     URL     pmid: 30347326
[5]
Xu X F, Gao Y, Xu S Y, Liu H, Xue X, Zhang Y, Zhang H, Liu M N, Xiong H, Lin R C, Li X R . J. Ginseng Res., 2018,42:277. https://www.ncbi.nlm.nih.gov/pubmed/29983609

doi: 10.1016/j.jgr.2017.02.003     URL     pmid: 29983609
[6]
Liu Z Y, Zhang H Y, Bi Y, Liu X X, Lu J, Zhang X C, Xu J Y, Wang C Z, Yuan C S . Nat. Prod. Res., 2017,31:1523. https://www.ncbi.nlm.nih.gov/pubmed/28107791

doi: 10.1080/14786419.2017.1280488     URL     pmid: 28107791
[7]
Liu F, Ma N, Xia F B, Li P, He C W, Wu Z Q, Wan J B . J. Ginseng Res., 2019,43:105. https://www.ncbi.nlm.nih.gov/pubmed/30662299

doi: 10.1016/j.jgr.2017.09.003     URL     pmid: 30662299
[8]
Song Y Q, Zhao F, Zhang L M, Du Y, Wang T, Fu F H . Fitoterapia, 2013,91:173. https://www.ncbi.nlm.nih.gov/pubmed/24035860

doi: 10.1016/j.fitote.2013.09.001     URL     pmid: 24035860
[9]
杨刚强(Yang G Q), 李阳(Li Y), 杨青(Yang Q), 岳馨(Yue X), 姚雷(Yao L), 姜永涛(Jiang Y T) . 有机化学 (Chinese Journal of Organic Chemistry), 2017,37:1530.
[10]
An K S, Choi Y O, Lee S M, Ryu H Y, Kang S J, Yeon Y, Kim Y R, Lee J G, Kim C J, Lee Y J, Kang B J, Choi J E, Song K S . Nutrients, 2019,11:1120.
[11]
Zhang J Q, Zhang Q, Xu Y R, Li H X, Zhao F L, Wang C M, Liu Z, Liu P, Liu Y N, Meng Q G, Zhao F . Planta Med., 2019,85:292. https://www.ncbi.nlm.nih.gov/pubmed/30380571

doi: 10.1055/a-0770-0994     URL     pmid: 30380571
[12]
Zhang L N, Wang S Y, Qu B Q, Chi H J, Quan Y L, Wu X H . J. Pharmaceut. Biomed., 2019,170:48.
[13]
Chan T W D, But P P H, Cheng S W, Kwok M Y I, Lau F W, Xu H X . Anal. Chem., 2000,72:1281. https://www.ncbi.nlm.nih.gov/pubmed/10740871

doi: 10.1021/ac990819z     URL     pmid: 10740871
[14]
Chen W, Balan P, Popovich D. G ., J. Ginseng Res., 2019, DOI: 10.1016/j.jgr.2019.04.007.
[15]
Huang X, Liu Y, Zhang Y, Li S P, Yue H, Chen C B, Liu S Y . J. Ginseng Res., 2019,43:27. https://www.ncbi.nlm.nih.gov/pubmed/30662291

doi: 10.1016/j.jgr.2017.08.001     URL     pmid: 30662291
[16]
Liu J, Xu Y R, Yang J J, Wang W Z, Zhang J Q, Zhang R M, Meng Q G . J. Ginseng Res., 2017,41:373. https://www.ncbi.nlm.nih.gov/pubmed/28701880

doi: 10.1016/j.jgr.2017.01.001     URL     pmid: 28701880
[17]
Bi Y, Ma C, Zhou Z W, Zhang T T, Zhang H Y, Zhang X C, Lu J, Meng Q G, Lewis P J, Xu J Y . Rec. Nat. Prod., 2015,9:356.
[18]
Bi Y, Yang J, Ma C, Liu Z Y, Zhang T T, Zhang X C, Lu J, Meng Q G . Pharmazie, 2015,70:213. https://www.ncbi.nlm.nih.gov/pubmed/26012249

URL     pmid: 26012249
[19]
Kim S J, Shin J Y, Ko S K . J. Ginseng Res., 2016,40:86. https://www.ncbi.nlm.nih.gov/pubmed/26843826

doi: 10.1016/j.jgr.2015.04.008     URL     pmid: 26843826
[20]
Xia Y G, Liang J, Li G Y, Yang B Y, Kuang H X . J. Mass Spectrom., 2016,51:947. https://www.ncbi.nlm.nih.gov/pubmed/27383264

doi: 10.1002/jms.3806     URL     pmid: 27383264
[21]
Hu Y P, Cui X M, Zhang Z J, Chen L J, Zhang Y M, Wang C X, Yang X Y, Qu Y, Xiong Y . Molecules, 2018,23:1206.
[22]
Munir M T, Kheirkhah H, Baroutian S, Quek S Y, Young B R . J. Clean. Prod., 2018,183:487.
[23]
Zhang Y, Li Y, Liu Z, Zhong L, Chi R, Yu J . Wuhan University Journal of Natural Sciences, 2015,20:247.
[24]
Zhong Z X, Li G K, Luo Z B, Zhu B H . Talanta, 2019,194:46. https://www.ncbi.nlm.nih.gov/pubmed/30609558

doi: 10.1016/j.talanta.2018.09.105     URL     pmid: 30609558
[25]
Choi P, Park J Y, Kim T, Park S. H, Kim H. K, Kang K S, Ham J . J. Funct. Foods, 2015,14:613.
[26]
Wu W, Sun L, Zhang Z, Guo Y, Liu S . J. Pharmaceut. Biomed., 2015,107:141.
[27]
Lee J H, Ko M J, Chung M S . J. Supercrit. Fluids, 2018,133:177.
[28]
Wan H D, Li D . RSC Adv., 2015,5:78874.
[29]
Palaniyandi S A, Damodharan K, Lee K W, Yang S H, Suh J W . Biotechnol. Bioprocess Eng., 2015,20:608.
[30]
Ganzler K, Salgo A, Valko K . J. Chromatogr., 1986,371:299. https://www.ncbi.nlm.nih.gov/pubmed/3558551

doi: 10.1016/s0021-9673(01)94714-4     URL     pmid: 3558551
[31]
Yao H, Li X, Liu Y, Wu Q, Jin Y . J. Ginseng Res., 2016,40:415. https://www.ncbi.nlm.nih.gov/pubmed/27746695

doi: 10.1016/j.jgr.2016.06.007     URL     pmid: 27746695
[32]
Yoon S H, Nam Y M, Hong J T, Kim S J, Ko S K . J. Ginseng Res., 2016,40:300. https://www.ncbi.nlm.nih.gov/pubmed/27616907

doi: 10.1016/j.jgr.2015.09.001     URL     pmid: 27616907
[33]
Biswas T, Ajayakumar P V, Mathur A K, Mathur A Nat . Prod. Res., 2015,29:1256. https://www.ncbi.nlm.nih.gov/pubmed/25813381

doi: 10.1080/14786419.2015.1024119     URL     pmid: 25813381
[34]
Liu Z, Xia J, Wang C Z, Zhang J Q, Ruan C C, Sun G Z, Yuan C S . J. Agr. Food Chem., 2016,64:5389. https://www.ncbi.nlm.nih.gov/pubmed/27295137

doi: 10.1021/acs.jafc.6b00963     URL     pmid: 27295137
[35]
Cui Q, Liu J, Xu W, Kang Y F, Wang X, Li Y, Fu Y J . Clean. Prod., 2019,210:1507. https://linkinghub.elsevier.com/retrieve/pii/S0959652618335455

doi: 10.1016/j.jclepro.2018.11.142     URL    
[36]
Zhang Y C, Zhang J X, Liu C M, Yu M, Li S N . J. Chromatogr. A, 2017,1483:20. https://www.ncbi.nlm.nih.gov/pubmed/28027838

doi: 10.1016/j.chroma.2016.12.068     URL     pmid: 28027838
[37]
Wang Y H, Li Y, Zhang Y, Feng G, Yang Z X, Guan Q X, Wang R, Han F J . Molecules, 2017,22:17.
[38]
Sunwoo H H, Gujral N, Huebl A C, Kim C T . Food Bioprocess Tech., 2014,7:1246. http://link.springer.com/10.1007/s11947-013-1234-1

doi: 10.1007/s11947-013-1234-1     URL    
[39]
Zhong F L, Ma R, Jiang M L, Dong W W, Jiang J, Wu S Q, Li D H, Quan L H . J. Microbiol. Biotechnol., 2016,26:1661. https://www.ncbi.nlm.nih.gov/pubmed/27435543

doi: 10.4014/jmb.1605.05052     URL     pmid: 27435543
[40]
Liu F, Ma N, He C W, Hu Y J, Li P, Chen M W, Su H X, Wan J B . J. Ginseng Res., 2018,42:149. https://www.ncbi.nlm.nih.gov/pubmed/29719461

doi: 10.1016/j.jgr.2017.01.007     URL     pmid: 29719461
[41]
Wan J Y, Wang C Z, Liu Z, Zhang Q H, Musch M W, Bissonnette M, Chang E B, Li P, Qi L W, Yuan C S . J. Chromatogr. B, 2016,1015:62.
[42]
Zheng H R, Chu Y, Zhou D Z, Ju A C, Li W, Li X, Xia Y, Polachi N, Li D K, Zhou S P, Sun H, Liu C X . J. Chromatogr. B, 2018,1072:282. https://www.ncbi.nlm.nih.gov/pubmed/29202359

doi: 10.1016/j.jchromb.2017.10.056     URL     pmid: 29202359
[43]
Yang Q, Li J H, Wang X Y, Xiong H, Chen L X . Anal. Chem., 2019,91:6561. https://www.ncbi.nlm.nih.gov/pubmed/31010290

doi: 10.1021/acs.analchem.9b00082     URL     pmid: 31010290
[44]
明魏娜(Ming W N), 王晓艳(Wang X Y), 明永飞(Ming Y F), 李金花(Li J H), 陈令新(Chen L X) . 化学进展 (Progress in Chemistry), 2016,28:552.
[45]
Wang L Y, Li J H, Wang J N, Guo X T, Wang X Y, Choo J, Chen L X . J. Colloid Interf. Sci., 2019,541:376. https://www.ncbi.nlm.nih.gov/pubmed/30710820

doi: 10.1016/j.jcis.2019.01.081     URL     pmid: 30710820
[46]
Xing R R, Wen Y R, Dong Y R, Wang Y J, Zhang Q, Liu Z . Anal. Chem., 2019,91:9993. https://www.ncbi.nlm.nih.gov/pubmed/31347834

doi: 10.1021/acs.analchem.9b01826     URL     pmid: 31347834
[47]
BelBruno J J . Chem. Rev., 2019,119:94. https://www.ncbi.nlm.nih.gov/pubmed/30246529

doi: 10.1021/acs.chemrev.8b00171     URL     pmid: 30246529
[48]
Culver H R, Peppas N A . Chem. Mat., 2017,29:5753.
[49]
张伟(Zhang W), 孙成贺(Sun C H), 王绍艳(Wang S Y), 李芊(Li Q)1, 王英平(Wang Y) . 精细化工 (Fine Chemicals), 2015,32:1102.
[50]
Sun C H, Wang J H, Huang J J, Yao D D, Wang C Z, Zhang L, Hou S Y, Chen L N, Yuan C S . Polymers, 2017,9:18.
[51]
Liu Q S, He J, Zhou W B, Gu Y L, Huang H Q, Li K Q, Yin X Y . J. Sep. Sci., 2017,40:744. https://www.ncbi.nlm.nih.gov/pubmed/27935252

doi: 10.1002/jssc.201601193     URL     pmid: 27935252
[52]
Cai Q Z, Yang Z Y, Chen N, Zhou X M, Hong J L . J. Chromatogr. A, 2016,1455:65. https://www.ncbi.nlm.nih.gov/pubmed/27295967

doi: 10.1016/j.chroma.2016.05.089     URL     pmid: 27295967
[53]
李健(Li J), 官亦标(Guan Y B), 傅凯(Fu K), 苏岳锋(Su Y F), 包丽颖(Bao L Y), 吴锋(Wu F) . 化学进展( Progress in Chemistry), 2014,26:1233. 10b2a9eb-4495-4417-9d72-ab630532eba9 http://www.progchem.ac.cn//CN/abstract/abstract11392.shtml

doi: 10.7536/PC140227     URL    
[54]
韩强(Han Q), 王宗花(Wang Z), 张晓琼(Zhang X), 丁明玉(Ding M) . 化学进展( Progress in Chemistry), 2014,26:820. 758efe2b-7014-4c6e-a098-8e292f8a8cf0 http://www.progchem.ac.cn//CN/abstract/abstract11356.shtml

doi: 10.7536/PC131145     URL    
[55]
苗瑞(Miao R), 吴冬雪(Wu D X), 王秋颖(Wang Q Y), 赵幻希(Zhao H X), 李雪(Li X), 修洋(Xiu Y), 刘淑莹(Liu S Y) . 高等学校化学学报 (Chemical Journal of Chinese Universities), 2018,39:2178.
[56]
He Y D, Wei Y Q, Sun X J, Zhou G W, Zheng J . Anal. Methods, 2018,10:2464.
[57]
Peng J J, Li D X, Huang J Y, Tong L, Yu B Y . Chin. Herb. Med., 2017,9:267.
[58]
Wang H P, Zhang Y B, Yang X W, Zhao D Q, Wang Y P . J. Ginseng Res., 2016,40:382. https://www.ncbi.nlm.nih.gov/pubmed/27746691

doi: 10.1016/j.jgr.2015.12.001     URL     pmid: 27746691
[59]
Du Z X, Li J H, Zhang X, Pei J, Huang L F . Molecules, 2018,23:20.
[60]
Liang Z T, Chen Y J, Xu L, Qin M J, Yi T, Chen H B, Zhao Z Z . J. Pharmaceut. Biomed., 2015,105:121. https://linkinghub.elsevier.com/retrieve/pii/S0731708514006001

doi: 10.1016/j.jpba.2014.12.005     URL    
[61]
He C Y, Feng R, Sun Y P, Chu S F, Chen J, Ma C, Fu J, Zhao Z X, Huang M, Shou J W, Li X Y, Wang Y Z, Hu J F, Wang Y, Zhang J T . Acta Pharm. Sin. B, 2016,6:593. https://www.ncbi.nlm.nih.gov/pubmed/27818927

doi: 10.1016/j.apsb.2016.05.001     URL     pmid: 27818927
[62]
Li P, Zhao P Y, Liu W J, Jiang Y F, Wang W J, Bao L Y, Jin Y R, Li X W . Microchem. J., 2018,137:302.
[63]
Wang Y L, Sha C J, Liu W H, Gai Y Y, Zhang H Y, Qu H L, Wang W S . J. Pharmaceut. Biomed., 2012,62:87.
[64]
Biswas T, Kalra A, Mathur A K, Lal R K, Singh M, Mathur A . Appl. Microbiol. Biot., 2016,100:4909. https://www.ncbi.nlm.nih.gov/pubmed/26795963

doi: 10.1007/s00253-015-7264-z     URL     pmid: 26795963
[65]
Zhang J J, Su H, Zhang L, Liao B S, Xiao S M, Dong L L, Hu Z G, Wang P, Li X W, Huang Z H, Gao Z M, Zhang L J, Shen L, Cheng R Y, Xu J, Chen S L . Molecules, 2017,22:13. http://www.mdpi.com/1420-3049/22/1/13

doi: 10.3390/molecules22010013     URL    
[66]
Yunusova N, Kim J Y, Lee G J, Hong J Y, Shin B K, Cai S Q, Piao X L, Park J H, Kwon S W . Int. J. Food Sci. Tech., 2015,50:1607.
[67]
Lee G J, Shin B K, Yu Y H, Ahn J, Kwon S W, Park J H . J. Pharmaceut. Biomed., 2016,128:158. https://linkinghub.elsevier.com/retrieve/pii/S0731708516302692

doi: 10.1016/j.jpba.2016.05.030     URL    
[68]
Yu H S, Wang Y, Liu C Y, Yang J M, Xu L Q, Li G H, Song J G, Jin F X . Chem. Pharm. Bull., 2018,66:901. https://www.ncbi.nlm.nih.gov/pubmed/30175750

doi: 10.1248/cpb.c18-00426     URL     pmid: 30175750
[69]
Guo C, Li D M, Liu C M, Guo Z P, Chen Y . Anal. Bioanal. Chem., 2018,410:4293. https://www.ncbi.nlm.nih.gov/pubmed/29748756

doi: 10.1007/s00216-018-1078-7     URL     pmid: 29748756
[70]
张俊杰(Zhang J J), 贾金萍(Jia J P), 秦雪梅(Qin X M) . 分析测试学报 (Journal of Instrumental Analysis), 2017,36:579.
[71]
Cheng C S, Wu W R, Huang B M, Liu L, Luo P, Zhou H . Phytochem. Lett., 2016,17:194.
[72]
Wu W, Jiao C X, Li H, Ma Y, Jiao L L, Liu S Y . Phytochem. Anal., 2018,29:331. https://www.ncbi.nlm.nih.gov/pubmed/29460310

doi: 10.1002/pca.2752     URL     pmid: 29460310
[73]
Wang Y P, Choi H K, Brinckmann J A, Jiang X, Huang L F . J. Chromatogr. A, 2015,1426:1. https://www.ncbi.nlm.nih.gov/pubmed/26643719

doi: 10.1016/j.chroma.2015.11.012     URL     pmid: 26643719
[74]
Liu J, Liu Y, Wang Y, Abozeid A, Zu Y G, Tang Z H . J. Pharmaceut. Biomed., 2017,135:176. https://linkinghub.elsevier.com/retrieve/pii/S0731708516314613

doi: 10.1016/j.jpba.2016.12.026     URL    
[75]
Cui S Q, Wang J, Yang L C, Wu J F, Wang X L . J. Pharmaceut. Biomed., 2015,102:64.
[76]
Yang L, Yu Q T, Ge Y Z, Zhang W S, Fan Y, Ma C W, Liu Q, Qi L W . Sci. Rep., 2016,6:11. https://www.ncbi.nlm.nih.gov/pubmed/28442704

doi: 10.1038/s41598-016-0013-4     URL     pmid: 28442704
[77]
Liu J, Liu Y, Wang Y, Abozeid A, Zu Y G, Zhang X N, Tang Z H . Molecules, 2017,22:14.
[78]
Park S E, Seo S H, Lee K I, Na C S and Son H S J . Ginseng Res., 2018,42:57. https://www.ncbi.nlm.nih.gov/pubmed/29348723

doi: 10.1016/j.jgr.2016.12.010     URL     pmid: 29348723
[79]
Sun Y F, Chen S Q, Wei R M, Xie X, Wang C C, Fan S H, Zhang X, Su J, Liu J, Jia W, Wang X Y . Food Funct., 2018,9:3547. https://www.ncbi.nlm.nih.gov/pubmed/29896600

doi: 10.1039/c8fo00025e     URL     pmid: 29896600
[80]
Chang K H, Jo M N, Kim K T, Paik H D . J. Ginseng Res., 2014,38:47. c83995f3-6a1e-4331-83a2-5319de937469 https://www.ncbi.nlm.nih.gov/pubmed/24558310

doi: 10.1016/j.jgr.2013.11.008     URL     pmid: 24558310
[81]
Yan X, Zhao Y, Zhang Y, Qu H H . Molecules, 2017,22:29.
[82]
Bai H R, Wang S J, Liu J J, Gao D, Jiang Y Y, Liu H X, Cai Z W . J. Chromatogr. B, 2016,1026:263. https://www.ncbi.nlm.nih.gov/pubmed/26520809

doi: 10.1016/j.jchromb.2015.09.024     URL     pmid: 26520809
[83]
Buchberger A R, DeLaney K, Johnson J, Li L J . Anal. Chem., 2018,90:240. https://www.ncbi.nlm.nih.gov/pubmed/29155564

doi: 10.1021/acs.analchem.7b04733     URL     pmid: 29155564
[1] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[2] 刘育坚, 刘智敏, 许志刚, 李攻科. 搅拌棒吸附萃取技术[J]. 化学进展, 2020, 32(9): 1334-1343.
[3] 王亚韡, 王莹, 江桂斌. 短链氯化石蜡的分析方法、污染现状与毒性效应[J]. 化学进展, 2017, 29(9): 919-929.
[4] 向垒, 孙腾飞, 莫测辉, 李彦文, 蔡全英, 李慧. 季铵盐类化合物环境问题研究进展[J]. 化学进展, 2016, 28(5): 727-736.
[5] 杨引, 樊梦醒, 郭智慧, 张卉, 吴萍, 蔡称心. DNA甲基化电化学分析[J]. 化学进展, 2014, 26(12): 1977-1986.
[6] 刘国瑞, 李丽, 孙素芳, 姜晓旭, 王美, 郑明辉. 多溴联苯的污染来源、分析方法和环境污染特征[J]. 化学进展, 2014, 26(08): 1434-1444.
[7] 韩强, 王宗花, 张晓琼, 丁明玉. 石墨烯及其复合材料在样品前处理中的应用[J]. 化学进展, 2014, 26(05): 820-833.
[8] 史亚利, 蔡亚岐. 全氟和多氟化合物环境问题研究[J]. 化学进展, 2014, 26(04): 665-681.
[9] 许志刚*, 刘智敏, 杨保民, 字富庭. 替代模板分子印迹技术在样品前处理中的应用[J]. 化学进展, 2012, 24(08): 1592-1598.
[10] 李卓娜, 周群芳, 刘稷燕, 史亚利, 蔡亚岐, 江桂斌. 多环麝香(PCMs)的环境行为及毒性效应[J]. 化学进展, 2012, 24(04): 606-615.
[11] 王晓伟 刘景富 阴永光. 有机磷酸酯阻燃剂污染现状与研究进展*[J]. 化学进展, 2010, 22(10): 1983-1992.
[12] 马玲玲 徐殿斗 陈扬 柴之芳. 短链氯化石蜡分析方法*[J]. 化学进展, 2010, 22(04): 720-726.
[13] 王炎,张永梅. 液相微萃取研究与应用[J]. 化学进展, 2009, 21(04): 696-704.
[14] 李瑞萍,张艺,黄应平. 环境样品中四环素类抗生素的检测技术*[J]. 化学进展, 2008, 20(12): 2075-2082.
[15] 刘永春,贺泓. 大气颗粒物化学组成分析*[J]. 化学进展, 2007, 19(10): 1620-1631.