English
新闻公告
More
化学进展 2019, Vol. 31 Issue (11): 1560-1575 DOI: 10.7536/PC190812 前一篇   后一篇

• •

非典型发光化合物的簇聚诱导发光

陈晓红1,2, 王允中2, 张永明2, 袁望章2,**()   

  1. 1. 华北电力大学先进材料研究院 北京 102206
    2. 上海交通大学化学化工学院 上海市电气绝缘与热老化重点实验室 上海 200240
  • 收稿日期:2019-08-12 出版日期:2019-11-15 发布日期:2019-10-23
  • 通讯作者: 袁望章
  • 基金资助:
    国家自然科学基金项目(51822303); 中国博士后创新人才支持计划(BX20190112)

Clustering-Triggered Emission of Nonconventional Luminophores

Xiaohong Chen1,2, Yunzhong Wang2, Yongming Zhang2, Wangzhang Yuan2,**()   

  1. 1. Institute for Advanced Materials, North China Electric Power University, Beijing 102206, China
    2. School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2019-08-12 Online:2019-11-15 Published:2019-10-23
  • Contact: Wangzhang Yuan
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51822303); Postdoctoral Innovative Talent Support Program of China(BX20190112)

不含大共轭结构的非典型发光化合物因其理论研究的重要性和潜在应用前景引起研究者的广泛关注。非典型发光化合物的结构通常含有N、O、S、P等杂原子,C≡N、C=O、C=C等不饱和单元,及相应的组合功能团(如羟基、胺基、酯基、酐、酰胺、脲基、肟基、砜基等)。近年来,尽管这一领域正快速发展,其发光机理仍存争议。前期,我们提出了簇聚诱导发光(CTE)机理,即含π电子和/或孤对(n)电子的非典型生色团的簇聚及其带来的空间共轭使体系离域扩展,构象刚硬化;同时,其他分子内/间相互作用也有利于簇生色团的刚硬化,从而易于受激发射。基于CTE机理,本文综述了非典型发光化合物的发光特性,包括浓度增强发光、聚集诱导发光(AIE)、激发波长依赖性及磷光发射。CTE机理可合理解释天然产物、合成化合物、生物分子等不同体系的光物理行为,并可用来指导发现和设计新的非典型发光化合物。本文总结了上述不同体系的发展,并对未来研究进行了展望。

Intrinsic emission from nonconventional luminophores without classic remarkable conjugation has aroused increasing attention due to its significant fundamental importance and promising applications. These nonconventional luminophores generally contain the heteroatoms(i.e. N, O, S, P), unsaturated units of C≡N, C=O, C=C, etc., and their grouped moieties(i.e. hydroxyl, amino, ester, anhydride, amide, uramido, oxime, sulfone). In recent years, despite great progress has been achieved, the emission mechanism still remains under debate. Previously, we proposed the clustering-triggered emission(CTE) mechanism, namely the clustering of nonconventional chromophores with π and n electrons and subsequent through space conjugation result in extended electron delocalization and conformation rigidification, to rationalize the emission. Herein, based on the CTE mechanism, we review such typical emission characteristics of nonconventional luminophores as concentration enhanced emission, aggregation-induced emission(AIE), excitation-dependent emission, and phosphorescence. It is also noted that CTE mechanism can be used to rationalize the photophysical behaviors of different types of nonconventional luminophores of natural products, synthetic compounds, and biomolecules. Furthermore, it is also helpful to guide the rational discovery or design of new nonconventional luminogens. In addition, we briefly summarize the progress of different kinds of nonconventional luminophores. Finally, the perspectives of this emerging area are also discussed.

()
图1 (a)大米在365 nm紫外光辐照下的照片及其发射光谱(λex=300 nm)。(b)淀粉、纤维素固体粉末在365 nm紫外光辐照下的照片[22]
Fig. 1 (a) Photograph of rice taken under 365 nm UV light and its emission spectrum(λex=300 nm).(b) Photographs of the solid powders of starch and cellulose taken under 365 nm UV light[22]. Copyright 2013, Springer
图2 (a)淀粉、纤维素及部分糖类天然产物结构式。(b)D-(+)-葡萄糖晶体结构及其分子内与分子间O…O相互作用示例。(c)D-(+)-葡萄糖晶体中3D O…O短程相互作用示例
Fig. 2 (a) Structures of starch, cellulose and some other natural saccharide products.(b) Single crystal structure of D-(+)-glucose and its schematic intra- and intermolecular O…O interactions.(c) Exampled 3D O…O short contacts in the D-(+)-glucose crystal
图3 不同浓度PAN/DMF溶液(a)在365 nm紫外光辐照下的照片及其(b)发射谱(λex=348 nm)。(c)PAN固体粉末与薄膜在365 nm紫外光辐照下的照片。(d)2 M PAN/DMF溶液在不同激发波长下的发射谱[57]
Fig. 3 (a) Photographs taken under 365 nm UV light and(b) emission spectra(λex=348 nm) of PAN/DMF solutions at varying concentrations.(c) Photographs of the solid powders and film of PAN taken under 365 nm UV light.(d) Emission spectra of 2 M PAN/DMF solution with varying λex values[57]. Copyright 2016, Wiley
图4 (a)1.25×10-4 M PAN/DMF溶液77 K时在365 nm紫外光辐照和关灯后的照片。室温下1.25×10-5 M PAN在DMF及不同DCM含量的DMF/DCM混合溶剂中时(b)在365 nm紫外光辐照下的照片及其(c)发射谱与峰位强度。(d)氰基簇中可能存在的各种电子相互作用[57]
Fig. 4 (a) Photographs of 1.25×10-4 M PAN/DMF taken at 77 K under 365 nm UV light or after ceasing the UV irradiation.(b) Photographs taken at room temperature under 365 nm UV light and(c) emission spectra and peak intensities of 1.25×10-5 M PAN in DMF and DMF/DCM mixtures.(d) Schematic illustration of possible electronic interactions in cyano clusters [57]. Copyright 2016, Wiley
图5 线形和超支化PEI结构式及其在紫外光辐照下的照片[65]
Fig. 5 Structures of hyperbranched and linear PEIs and their photographs taken under UV irradiation[65]. Copyright 2009, Wiley
图6 不同浓度超支化PEI乙醇溶液及纯PEI(a)在紫外光辐照下的照片及其(b)发射谱[14]
Fig. 6 (a) Photographs taken under UV irradiation and(b) emission spectra of hyperbranched PEI/ethanol solutions at varying concentrations[14]. Copyright 2017, Wiley
图7 不同浓度L-Lys水溶液(a)在紫外光辐照下的照片及其(b)发射谱[26]
Fig. 7 Photographs taken under UV irradiation and(b) emission spectra of aqueous L-Lys solutions at varying concentrations[26]. Copyright 2018, Springer
图8 (a)HPS结构式及其基团间相互作用示意图。不同浓度HPS/乙醇溶液(b)在365 nm紫外光辐照下的照片及其(c)激发与发射谱 [30]
Fig. 8 (a) Structure and schematic diagram of electronic interactions among different groups of HPS.(b) Photographs taken under 365 nm UV light and(c) excitation and emission spectra of HPS/ethanol solutions at varying concentrations[30].Copyright 2019, American Chemical Society
图9 (a)PMV结构式及其THF溶液与在乙酸正丁酯中的纳米悬浮液的发射谱。(b)PMV THF溶液(Ⅰ)及其0.05 wt%(Ⅱ)、0.1 wt%(Ⅲ)、1 wt%(Ⅳ)纳米悬浮液的发光照片。(c)纳米粒子的SEM图片 [53]
Fig. 9 (a) Structure and emission spectra of THF solution and nanosuspension in n-butyl acetate for PMV.(b) Luminescent photographs of THF solution(Ⅰ) and nanosuspensions of PMV with PMV concentration of 0.05 wt%(Ⅱ), 0.1 wt%(Ⅲ), and 1 wt%(Ⅳ).(c) SEM image of the nanoparticles[53]
图10 (a)不同浓度己醛肟/乙醇溶液及固体在紫外光辐照下的照片。(b)己醛肟晶体结构及其分子间非典型生色团相互作用。(c)己醛肟晶体中分子间C=N…O单元空间电子相互作用示例[24]
Fig. 10 (a) Photographs of HOX/ethanol solutions at varying concentrations and HOX solids taken under UV light.(b) Single crystal structure of HOX and intermolecular interactions among nonconventional chromophores around one molecule.(c) Exampled through space electronic communications among C=N…O units in HOX crystal[24] Copyright 2017, Royal Society of Chemistry
图11 (a)线形(l)和超支化(hb)PAMAM的合成路线。(b)l-PAMAM及(c)hb-PAMAM在稀水溶液与5/95(V/V)水/丙酮混合物中的发射谱(10 μg·mL-1,λex =380 nm)及365 nm紫外光辐照下的照片。(d)l-PAMAM及(e)hb-PAMAM薄膜在不同激发波长下的发射谱。插图:薄膜在UV(上)、蓝光(中)、绿光(下)辐照下的荧光照片[19]
Fig. 11 (a) Synthetic route to linear(l) and hyperbranched(hb) PAMAMs. Emission spectra and photographs taken under 365 nm UV light of (b) l-PAMAM and (c) hb-PAMAM in dilute aqueous solution(dash) and in 5/95(V/V) water/acetone mixture. Concentration=10 μg·mL-1, λex =380 nm. Emission spectra of (d) l-PAMAM and (e) hb-PAMAM films with different λex values as indicated. Inset: Luminescent microscopy photographs of PAMAM films taken under illumination of UV(top), blue(media), and green(bottom) lights[19]. Copyright 2015, Springer
图12 PAN/DMF[57]及(b)L-Lys/H2O[26]浓溶液77 K时在365 nm紫外光辐照下及停止光照后的照片
Fig. 12 (a) Photographs of concentrated solutions of(a) PAN/DMF[57] and(b) aqueous L-Lys[26] taken at 77 K under 365 nm UV light or after ceasing the UV irradiation(a). Copyright 2016, wiley,(b) Copyright 2018, Springer
图13 (a)ε-PLL结构式及其粉末在365 nm紫外光辐照下或停止光照后的照片。(b)ε-PLL粉末在不同激发波长下,延迟时间为0(实线)和0.1 ms(虚线)的发射谱[26]
Fig. 13 (a) Structure of ε-PLL and the photograph of its powders taken under 365 nm UV light or after ceasing the irradiation.(b) Normalized emission spectra of ε-PLL powders with td of 0(solid line) and 0.1 ms(dash line) under varying λex[26]. Copyright 2018, Springer
图14 (a)CAA固体在日光灯下、365 nm紫外光辐照或停止光照后的照片。(b)CAA晶体结构及其氰基、羧基非典型生色团分子内/间相互作用示例。(c)CAA晶体中氰基、羧基间分子内/间3D电子相互作用(空间共轭)示例[27]
Fig. 14 (a) Photographs of CAA solids taken under room light, 365 nm UV light or after ceasing the UV irradiation.(b) Single crystal structure of CAA and its schematic intra/intermolecular interactions among cyano and carboxyl groups.(c) Exampled 3D electronic interactions(through space conjugation) among cyano and carboxyl units in CAA crystals[27]. Copyright 2018, Royal Society of Chemistry
图15 (a)PEG、F127及木糖醇的结构式及(b)其粉末77 K时312 nm紫外光辐照下及停止光照后的照片。(c)室温下,木糖醇312 nm紫外光辐照关闭后的照片及其单晶中分子内与分子间O···O相互作用示例[29]
Fig. 15 (a) Structures of PEG, F127, and xylitol.(b) Photographs of the solid powders of F127, PEG, and xylitol taken under 312 nm UV light or after ceasing the UV irradiation at 77 K.(c) Photograph of xylitol powders taken at room temperature after ceasing the 312 nm UV irradiation, and partial electronic channels of O···O short contacts in xylitol crystals[29]. Copyright 2018, Royal Society of Chemistry
图16 (a) MCC、HEC、HPC、CA及C-CNC结构式及其(b)固体粉末在365 nm紫外光辐照下的照片。(c)77 K时MCC固体不同激发波长下的延迟光谱[42]
Fig. 16 (a) Structures and(b) photographs taken under 365 nm UV irradiation of MCC, HEC, HPC, CA, and C-CNC powders.(c) Delayed emission spectra of MCC solids at 77 K with different λex[42]. Copyright 2019, Springer
图17 (a)SA结构式及其固体粉末、薄膜及Ca2+交联膜在312 nm紫外光辐照或停止光照后的照片。(b)SA防伪应用示例[41]
Fig. 17 (a) Structure of SA and photographs of solid powders, cast film, and Ca2+ crosslinked film taken under 312 nm UV light or after ceasing the irradiation.(b) Demonstration of the application of SA in anticounterfeiting[41]. Copyright 2018, American Chemical Society
图18 (a)PU1~PU4[32]及(b)P1~P3[33]结构式及其固体粉末在紫外光辐照下的照片
Fig. 18 Structure and photographs of solid powders taken under UV light for(a) PU1~PU4[32] and(b) P1~P3[33]. Copyright 2019, Royal Society of Chemistry
图19 (a)含未反应羟基的HBPC及其(b~d)在不同浓度水溶液中成簇示意图。(e)5 及(f)50 mg·mL-1 HBPC TEM图及发光照片[31]
Fig. 19 (a) HBPC with unreacted hydroxyl groups and(b~d) illustration of the formation of HBPC clusters in aqueous solution. TEM and luminescent images of (e) 5 and(f) 50 mg·mL-1 HBPC aqueous solutions[31]. Copyright 2017, Wiley
图20 (a)PAA、PAM、PNIPAM结构式及其固体环境条件下紫外光辐照及关闭光照后的照片。(b)PNIPAM粉末在氮气(上)及真空(下)环境中于紫外光辐照及关闭光照后的照片[25]
Fig. 20 (a) Structures and photographs of the solids taken under UV light or after ceasing the UV irradiation of PAA, PAM, and PNIPAM at ambient conditions.(b) Photographs of PNIPAM powders taken under UV light or after ceasing the UV irradiation under nitrogen(upper) or in vacuum(lower)[25]. Copyright 2019, Royal Society of Chemistry
图21 (a)部分非芳香性氨基酸重结晶固体在365 nm紫外灯下的照片。(b)L-Ser单晶结构及其中一个分子周围的相互作用。(c)L-Ser单晶中局部3D空间电子通道[26]
Fig. 21 (a) Exampled nonaromatic amino acids and photographs of their recrystallized solids taken under 365 nm UV light.(b) Crystal structure of L-Ser with denoted intermolecular interactions around one molecule.(c) Fragmental 3D through space electronic communication channel in the L-Ser crystals [26]. Copyright 2018, Springer
图22 (a)BSA单晶结构[83]。(b)BSA水溶液、固体粉末、压片在365 nm紫外灯辐照下或停止光照后的照片。(c)BSA用作防伪及氧气检测应用示例[44]
Fig. 22 (a) Single crystal structure of BSA[83].(b) Photographs taken under 365 nm UV light or after ceasing the irradiation for aqueous solutions, solid powders, and a tablet of BSA.(c) Demonstration of the application of BSA in anticounterfeiting and oxygen sensing[44]. Copyright 2019, Wiley
图23 (a)PMVP结构式及不同分子量产物在(b)DMSO溶液(1 mg·mL-1)及(c)固态的发光照片[34]
Fig. 23 (a) Structure of PMVP and photographs taken under 365 nm UV light of(b) DMSO solutions(1 mg·mL-1) and(c) solid powders for PMVP with different molecular weights[34]. Copyright 2017, Royal Society of Chemistry
图24 PMV基多色发光聚合物的制备策略及其固体发光照片[36]
Fig. 24 Preparation strategy of new photoluminescent polymers and their luminescent photographs[36]. Copyright 2019, Royal Society of Chemistry
[1]
Mei J, Leung N L C, Kwok R T K, Lam J WY, Tang B Z . Chem. Rev., 2015,115:11718. https://www.ncbi.nlm.nih.gov/pubmed/26492387

doi: 10.1021/acs.chemrev.5b00263     URL     pmid: 26492387
[2]
Guo J, Li X L, Nie H, Luo W, Gan S, Hu S, Hu R, Qin A, Zhao Z, Su S J, Tang B Z . Adv. Funct. Mater., 2017,27:1606458. http://doi.wiley.com/10.1002/adfm.v27.13

doi: 10.1002/adfm.v27.13     URL    
[3]
Long P, Feng Y, Cao C, Li Y, Han J, Li S, Peng C, Li Z, Feng W . Adv. Funct. Mater., 2018,28:1800791. http://doi.wiley.com/10.1002/adfm.v28.37

doi: 10.1002/adfm.v28.37     URL    
[4]
Zeng W, Lai H Y, Lee W K, Jiao M, Shiu Y J, Zhong C, Gong S, Zhou T, Xie G, Sarma M, Wong K T, Wu C C, Yang C . Adv. Mater, 2018,30:1704961. http://doi.wiley.com/10.1002/adma.201704961

doi: 10.1002/adma.201704961     URL    
[5]
Ai X, Evans E W, Dong S, Gillett A J, Guo H, Chen Y, Hele T J H, Friend, R H, Li, F . Nature, 2018,563:536. https://www.ncbi.nlm.nih.gov/pubmed/30464267

doi: 10.1038/s41586-018-0695-9     URL     pmid: 30464267
[6]
Chen Y, Spiering A J H, Karthikeyan S, Peters G W M, Meijer E W, Sijbesma R P . Nat. Chem., 2012,4:559. https://www.ncbi.nlm.nih.gov/pubmed/22717441

doi: 10.1038/nchem.1358     URL     pmid: 22717441
[7]
Zhang Q, Tsang D, Kuwabara H, Hatae Y, Li B, Takahashi T, Lee S Y, Yasuda T, Adachi C . Adv. Mater, 2015,27:2096. https://www.ncbi.nlm.nih.gov/pubmed/25678335

doi: 10.1002/adma.201405474     URL     pmid: 25678335
[8]
He Z, Gao H, Zhang S, Zheng S, Wang Y, Zhao Z, Ding D, Yang B, Zhang Y, Yuan W Z . Adv. Mater., 2019,31:1807222. https://onlinelibrary.wiley.com/toc/15214095/31/18

doi: 10.1002/adma.v31.18     URL    
[9]
Xu Y, Liang X, Zhou X, Yuan P, Zhou J, Wang C, Li B, Hu D, Qiao X, Jiang X, Liu L, Su S J, Ma D, Ma Y . Adv. Mater, 2019,31:1807388. https://onlinelibrary.wiley.com/toc/15214095/31/12

doi: 10.1002/adma.v31.12     URL    
[10]
Hu J, Li Q, Wang X, Shao S, Wang L, Jing X, Wang F . Angew. Chem, 2019,131:8493.
[11]
Huang R, Wang C, Wang Y, Zhang H . Adv. Mater, 2018,30:1800814. http://doi.wiley.com/10.1002/adma.v30.21

doi: 10.1002/adma.v30.21     URL    
[12]
Birks J B . Photophysics of Aromatic Molecules. London:Wiley, 1970.
[13]
Klymchenko A S . Acc. Chem. Res., 2017,50:366. https://www.ncbi.nlm.nih.gov/pubmed/28067047

doi: 10.1021/acs.accounts.6b00517     URL     pmid: 28067047
[14]
Yuan W Z, Zhang Y . Polym. Sci. Part A: Polym. Chem., 2017,55:560. http://doi.wiley.com/10.1002/pola.28420

doi: 10.1002/pola.28420     URL    
[15]
黄田(Huang T), 汪昭旸(Wang Z Y), 秦安军(Qin A J), 孙景志(Sun J Z), 唐本忠(Tang B Z) . 化学学报(Acta Chim. Sinica), 2013,71(07):979.
[16]
Wang D, Imae T . J. Am. Chem. Soc., 2004,126:13204. https://www.ncbi.nlm.nih.gov/pubmed/15479057

doi: 10.1021/ja0454992     URL     pmid: 15479057
[17]
Lee W I, Bae Y, Bard A J . J. Am. Chem. Soc., 2004,126:8358. https://www.ncbi.nlm.nih.gov/pubmed/15237975

doi: 10.1021/ja0475914     URL     pmid: 15237975
[18]
Lin S Y, Wu T H, Jao Y C, Liu C P, Lo L W, Yang C S . Chem. Eur. J., 2011,17:7158. https://www.ncbi.nlm.nih.gov/pubmed/21560173

doi: 10.1002/chem.201100620     URL     pmid: 21560173
[19]
Wang R B, Yuan W Z, Zhu X Y . Chin. J. Polym. Sci., 2015,33:680. http://link.springer.com/10.1007/s10118-015-1635-x

doi: 10.1007/s10118-015-1635-x     URL    
[20]
Cao L, Yang W, Wang C, Fu S . J. Macromol. Sci. Part A: Pure Appl. Chem., 2007,44:417. http://www.tandfonline.com/doi/abs/10.1080/10601320601188299

doi: 10.1080/10601320601188299     URL    
[21]
Tomalia D A, Klajnert-Maculewicz B, Johnson K A M, Brinkman H F, Janaszewska A, Hedstrand D M . Prog. Polym. Sci., 2018,90:35. https://linkinghub.elsevier.com/retrieve/pii/S0079670018301746

doi: 10.1016/j.progpolymsci.2018.09.004     URL    
[22]
Gong Y, Tan Y, Mei J, Zhang Y, Yuan W Z, Sun J Z, Tang B Z . Sci. China Chem., 2013,56:1178. http://link.springer.com/10.1007/s11426-013-4923-8

doi: 10.1007/s11426-013-4923-8     URL    
[23]
宾鑫 (Bin X), 罗卫剑(Luo W J), 袁望章(Yuan W Z), 张永明(Zhang Y M) . 化学学报(Acta Chim. Sinica), 2016,74:935.
[24]
Zhang Q, Mao Q, Shang C, Chen Y N, Peng X, Tan H, Wang H . J. Mater. Chem. C, 2017,5:3699. http://xlink.rsc.org/?DOI=C7TC00783C

doi: 10.1039/C7TC00783C     URL    
[25]
Zhou Q, Wang Z, Dou X, Wang Y, Liu S, Zhang Y, Yuan W Z . Mater. Chem. Front., 2019,3:257. http://xlink.rsc.org/?DOI=C8QM00528A

doi: 10.1039/C8QM00528A     URL    
[26]
Chen X, Luo W, Ma H, Peng Q, Yuan W Z, Zhang Y . Sci. China Chem., 2018,61:351. http://link.springer.com/10.1007/s11426-017-9114-4

doi: 10.1007/s11426-017-9114-4     URL    
[27]
Fang M, Yang J, Xiang X, Xie Y, Dong Y, Peng Q, Li Q, Li Z . Mater. Chem. Front., 2018,2:2124. http://xlink.rsc.org/?DOI=C8QM00396C

doi: 10.1039/C8QM00396C     URL    
[28]
Lu H, Feng L, Li S, Zhang J, Lu H, Feng S . Macromolecules, 2015,48:476. https://pubs.acs.org/doi/10.1021/ma502352x

doi: 10.1021/ma502352x     URL    
[29]
Wang Y, Bin X, Chen X, Zheng S, Zhang Y, Yuan W Z . Macromol. Rapid Commun., 2018,39:1800528. https://www.ncbi.nlm.nih.gov/pubmed/30176085

doi: 10.1002/marc.201800528     URL     pmid: 30176085
[30]
Feng Y, Bai T, Yan H, Ding F, Bai L, Feng W . Macromolecules, 2019,52:3075. https://pubs.acs.org/doi/10.1021/acs.macromol.9b00263

doi: 10.1021/acs.macromol.9b00263     URL    
[31]
Huang W, Yan H, Niu S, Du Y, Yuan L . J. Polym. Sci. Polym. Chem., 2017,55:3690. http://doi.wiley.com/10.1002/pola.v55.22

doi: 10.1002/pola.v55.22     URL    
[32]
Chen X, Liu X, Lei J, Xu L, Zhao Z, Kausar F, Xie X, Zhu X, Zhang Y, Yuan W Z . Mol. Syst. Des. Eng., 2018,3:364. http://xlink.rsc.org/?DOI=C7ME00118E

doi: 10.1039/C7ME00118E     URL    
[33]
Zhao Z, Chen X, Wang Q, Yang T, Zhang Y, Yuan W Z . Polym. Chem., 2019,10:3639. http://xlink.rsc.org/?DOI=C9PY00519F

doi: 10.1039/C9PY00519F     URL    
[34]
Shang C, Wei N, Zhuo H, Shao Y, Zhang Q, Zhang Z, Wang H . J. Mater. Chem. C, 2017,5:8082. http://xlink.rsc.org/?DOI=C7TC02381B

doi: 10.1039/C7TC02381B     URL    
[35]
Song G, Lin Y, Zhu Z, Zheng H, Qiao J, He C, Wang H Macromol . Rapid Commun., 2015,36:278. https://www.ncbi.nlm.nih.gov/pubmed/25420749

doi: 10.1002/marc.201400516     URL     pmid: 25420749
[36]
Hu C, Ru Y, Guo Z, Liu Z, Song J, Song W, Zhang X, Qiao J . J. Mater. Chem. C, 2019,7:387. http://xlink.rsc.org/?DOI=C8TC05197F

doi: 10.1039/C8TC05197F     URL    
[37]
Zhou X, Luo W, Nie H, Xu L, Hu R, Zhao Z, Qin A, Tang B Z . J. Mater. Chem. C, 2017,5:4775. http://xlink.rsc.org/?DOI=C7TC00868F

doi: 10.1039/C7TC00868F     URL    
[38]
Zhao E, Lam J W Y, Meng L, Hong Y, Deng H, Bai G, Huang X, Hao J, Tang B Z . Macromolecules, 2015,48:64. https://pubs.acs.org/doi/10.1021/ma502160w

doi: 10.1021/ma502160w     URL    
[39]
Li W, Qu J, Du J, Ren K, Wang Y, Sun J, Hu Q . Chem. Commun, 2014,50:9584. https://www.ncbi.nlm.nih.gov/pubmed/25014029

doi: 10.1039/c4cc02880e     URL     pmid: 25014029
[40]
Li M, Li X, An X, Chen Z, Xiao H . Front. Chem, 2019,7:447. https://www.ncbi.nlm.nih.gov/pubmed/31281810

doi: 10.3389/fchem.2019.00447     URL     pmid: 31281810
[41]
Dou X, Zhou Q, Chen X, Tan Y, He X, Lu P, Sui K, Tang B Z, Zhang Y, Yuan W Z . Biomacromolecules, 2018,19:2014. https://www.ncbi.nlm.nih.gov/pubmed/29558794

doi: 10.1021/acs.biomac.8b00123     URL     pmid: 29558794
[42]
Du L L, Jiang B L, Chen X H, Wang Y Z, Zou L M, Liu Y L, Gong Y Y, Wei C, Yuan W Z . Chin. J. Polym. Sci., 2019,37:409. https://doi.org/10.1007/s10118-019-2215-2

doi: 10.1007/s10118-019-2215-2     URL    
[43]
Ye R, Liu Y, Zhang H, Su H, Zhang Y, Xu L, Hu R, Kwok R T K, Wong K S, Lam J W Y, Goddard W A, Tang B Z . Polym. Chem., 2017,8:1722. http://xlink.rsc.org/?DOI=C7PY00154A

doi: 10.1039/C7PY00154A     URL    
[44]
Wang Q, Dou X, Chen X, Zhao Z, Wang S, Wang Y, Sui K, Tan Y, Gong Y, Zhang Y, Yuan W Z . Angew. Chem. Int. Ed., 2019,58:12667. https://www.ncbi.nlm.nih.gov/pubmed/31243877

doi: 10.1002/anie.201906226     URL     pmid: 31243877
[45]
Homchaudhuri L, Swaminathan R . Chem. Lett, 2001,30:844. http://www.journal.csj.jp/doi/10.1246/cl.2001.844

doi: 10.1246/cl.2001.844     URL    
[46]
Shukla A, Mukherjee S, Sharma S, Agrawal V, Radha K K V, Guptasarma P . Archives Biochem Biophys, 2004,428:144. https://www.ncbi.nlm.nih.gov/pubmed/15246870

doi: 10.1016/j.abb.2004.05.007     URL     pmid: 15246870
[47]
Chan F T S, Kaminski S G S, Kumita J R, Bertoncini C W, Dobson C M, Kaminski C F . Analyst, 2013,138:2156. https://www.ncbi.nlm.nih.gov/pubmed/23420088

doi: 10.1039/c3an36798c     URL     pmid: 23420088
[48]
Pinotsi D, Grisanti L, Mahou P, Gebauer R, Kaminski C F, Hassanali A, Kaminski S G S . J. Am. Chem. Soc., 2016,138:3046. https://www.ncbi.nlm.nih.gov/pubmed/26824778

doi: 10.1021/jacs.5b11012     URL     pmid: 26824778
[49]
Del Mercato L L, Pompa P P, Maruccio G, Della T A, Sabella S, Tamburro A M, Cingolani R, Rinaldi R . Proc. Natl. Acad. Sci. U. S. A., 2007,104:18019. https://www.ncbi.nlm.nih.gov/pubmed/17984067

doi: 10.1073/pnas.0702843104     URL     pmid: 17984067
[50]
Pucci A, Rausa R, Ciardelli F . Macromol. Chem. Phys., 2008,209:900. http://doi.wiley.com/10.1002/%28ISSN%291521-3935

doi: 10.1002/(ISSN)1521-3935     URL    
[51]
Du Y, Yan H, Huang W, Chai F, Niu S . ACS Sustainable Chem. Eng., 2017,5:6139. https://pubs.acs.org/doi/10.1021/acssuschemeng.7b01019

doi: 10.1021/acssuschemeng.7b01019     URL    
[52]
Niu S, Yan H, Chen Z, Li S, Xu P, Zhi X . Polym. Chem, 2016,7:3747. http://xlink.rsc.org/?DOI=C6PY00654J

doi: 10.1039/C6PY00654J     URL    
[53]
Xing C M, Lam J W Y, Qin A, Dong Y, Häußler M, Yang W T, Tang B Z . Polym. Mater. Sci. Eng., 2007,96:418.
[54]
Chu C C, Imae T . Macromol. Rapid Commun., 2009,30:89. https://www.ncbi.nlm.nih.gov/pubmed/21706580

doi: 10.1002/marc.200800571     URL     pmid: 21706580
[55]
Shiau S F, Juang T Y, Chou H W, Liang M . Polymer, 2013,54:623. https://linkinghub.elsevier.com/retrieve/pii/S0032386112010609

doi: 10.1016/j.polymer.2012.12.013     URL    
[56]
Bhattacharya S, Rao V N, Sarkar S, Shunmugam R . Nanoscale, 2012,4:6962. https://www.ncbi.nlm.nih.gov/pubmed/23073154

doi: 10.1039/c2nr32391e     URL     pmid: 23073154
[57]
Zhou Q, Cao B, Zhu C, Xu S, Gong Y, Yuan W Z, Zhang Y . Small, 2016,12:6586. https://www.ncbi.nlm.nih.gov/pubmed/27608140

doi: 10.1002/smll.201601545     URL     pmid: 27608140
[58]
Yang L, Wang L, Cui C, Lei J, Zhang J . Chem. Commun, 2016,52:6154. https://www.ncbi.nlm.nih.gov/pubmed/27075518

doi: 10.1039/c6cc01917j     URL     pmid: 27075518
[59]
Miao X, Liu T, Zhang C, Geng X, Meng Y, Li X . Phys. Chem. Chem. Phys., 2016,18:4295. https://www.ncbi.nlm.nih.gov/pubmed/26804709

doi: 10.1039/c5cp07134h     URL     pmid: 26804709
[60]
Sun M, Hong C Y, Pan C Y . J. Am. Chem. Soc., 2012,134:20581. https://www.ncbi.nlm.nih.gov/pubmed/23215055

doi: 10.1021/ja310236m     URL     pmid: 23215055
[61]
Li Q, Tang Y, Hu W, Li Z . Small, 2018,14:1801560. http://doi.wiley.com/10.1002/smll.v14.38

doi: 10.1002/smll.v14.38     URL    
[62]
Shao S, Zhou Q, Si J, Tang J, Liu X, Wang M, Gao J, Wang K, Xu R, Shen Y . Nat. Biomed. Eng., 2017,1:745. https://www.ncbi.nlm.nih.gov/pubmed/31015667

doi: 10.1038/s41551-017-0130-9     URL     pmid: 31015667
[63]
Wang D, Imae T, Miki M . J. Colloid Interf. Sci., 2007,306:222. https://linkinghub.elsevier.com/retrieve/pii/S0021979706009337

doi: 10.1016/j.jcis.2006.10.025     URL    
[64]
Yu W, Wu Y, Chen J, Duan X, Jiang X F, Qiu X, Li Y . RSC Adv, 2016,6:51257. http://xlink.rsc.org/?DOI=C6RA06227J

doi: 10.1039/C6RA06227J     URL    
[65]
Pastor-Pérez L, Chen Y, Shen Z, Lahoz A, Stiriba S E . Macromol. Rapid Commun., 2007,28:1404. http://doi.wiley.com/10.1002/%28ISSN%291521-3927

doi: 10.1002/(ISSN)1521-3927     URL    
[66]
Brown G M, Levy H A . Science, 1965,147:1038.
[67]
Niu S, Yan H, Chen Z, Yuan L, Liu T, Liu C . Macromol. Rapid Commun., 2016,37:136. https://www.ncbi.nlm.nih.gov/pubmed/26524219

doi: 10.1002/marc.201500572     URL     pmid: 26524219
[68]
Hu C, Guo Z, Ru Y, Song W, Liu Z, Zhang X, Qiao J . Macromol. Rapid Commun., 2018,39:1800035. https://www.ncbi.nlm.nih.gov/pubmed/29675937

doi: 10.1002/marc.201800035     URL     pmid: 29675937
[69]
Zhu S, Song Y, Shao J, Zhao X, Yang B . Angew. Chem. Int. Ed., 2015,54:14626. https://www.ncbi.nlm.nih.gov/pubmed/26471238

doi: 10.1002/anie.201504951     URL     pmid: 26471238
[70]
Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B . Angew. Chem. Int. Ed., 2013,52:3953. https://www.ncbi.nlm.nih.gov/pubmed/23450679

doi: 10.1002/anie.201300519     URL     pmid: 23450679
[71]
Pan L, Sun S, Zhang A, Jiang K, Zhang L, Dong C, Huang Q, Wu A, Lin H . Adv. Mater, 2015,27:7782. https://www.ncbi.nlm.nih.gov/pubmed/26487302

doi: 10.1002/adma.201503821     URL     pmid: 26487302
[72]
Zhang G, Chen J, Payne S J, Kooi S E, Demas J N, Fraser C L . J. Am. Chem. Soc., 2007,129:8942. https://www.ncbi.nlm.nih.gov/pubmed/17608480

doi: 10.1021/ja0720255     URL     pmid: 17608480
[73]
Yuan W Z, Shen X Y, Zhao H, Lam J W Y, Tang L, Lu P, Wang C, Liu Y, Wang Z, Zheng Q, Sun J Z, Ma Y, Tang B Z . J. Phys. Chem. C, 2010,114:6090. https://pubs.acs.org/doi/10.1021/jp909388y

doi: 10.1021/jp909388y     URL    
[74]
Bolton O, Lee K, Kim H J, Lin K Y, Kim J . Nat. Chem, 2011,3:205. https://www.ncbi.nlm.nih.gov/pubmed/21336325

doi: 10.1038/nchem.984     URL     pmid: 21336325
[75]
Hirata S, Totani K, Zhang J, Yamashita T, Kaji H, Marder S R, Watanabe T, Adachi C . Adv. Funct. Mater., 2013,23:3386. http://doi.wiley.com/10.1002/adfm.v23.27

doi: 10.1002/adfm.v23.27     URL    
[76]
An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W . Nat. Mater, 2015,14:685. https://www.ncbi.nlm.nih.gov/pubmed/25849370

doi: 10.1038/nmat4259     URL     pmid: 25849370
[77]
Gong Y, Chen G, Peng Q, Yuan W Z, Xie Y, Li S, Zhang Y, Tang B Z . Adv. Mater., 2015,27:6195. https://www.ncbi.nlm.nih.gov/pubmed/26456393

doi: 10.1002/adma.201502442     URL     pmid: 26456393
[78]
Jiang N, Li G F, Zhang B H, Zhu D X, Su Z M, Bryce M R . Macromolecules, 2018,51:4178. https://pubs.acs.org/doi/10.1021/acs.macromol.8b00715

doi: 10.1021/acs.macromol.8b00715     URL    
[79]
Wang D, Wang X, Xu C, Ma X . Sci. China Chem., 2019,62:430. https://doi.org/10.1007/s11426-018-9383-2

doi: 10.1007/s11426-018-9383-2     URL    
[80]
Mathew M S, Sreenivasan K, Joseph K . RSC Adv, 2015,5:100176. http://xlink.rsc.org/?DOI=C5RA16379J

doi: 10.1039/C5RA16379J     URL    
[81]
Permyakov E. A. Luminescent Spectroscopy of Proteins, 1st Ed. Boca Raton: CRC Press, 1993.
[82]
Lakowicz J R . Principles of Fluorescence Spectroscopy, 3rd Ed. New York: Springer, 2006.
[83]
Majorek K A, Porebski P J, Dayal A . Mol. Immunol, 2012,52:174. https://www.ncbi.nlm.nih.gov/pubmed/22677715

doi: 10.1016/j.molimm.2012.05.011     URL     pmid: 22677715
[84]
Chen X, He Z, Kausar F, Chen G, Zhang Y, Yuan W Z . Macromolecules, 2018,51:9035. https://pubs.acs.org/doi/10.1021/acs.macromol.8b01743

doi: 10.1021/acs.macromol.8b01743     URL    
[85]
Chi Z, Zhang X, Xu B, Zhou X, Ma C, Zhang Y, Liu S, Xu J . Chem. Soc. Rev., 2012,41:3878. https://www.ncbi.nlm.nih.gov/pubmed/22447121

doi: 10.1039/c2cs35016e     URL     pmid: 22447121
[86]
Zhao J, Chi Z, Zhang Y, Mao Z, Yang Z, Ubba E, Chi Z . J. Mater. Chem. C, 2018,6:6327. http://xlink.rsc.org/?DOI=C8TC01648H

doi: 10.1039/C8TC01648H     URL    
[87]
Luo X, Li J, Li C, Heng L, Dong Y, Liu Z, Bo Z, Tang B Z . Adv. Mater., 2011,23:3261. 5a144c8b-95b6-424c-b847-74fb25e3fe52http://dx.doi.org/10.1002/adma.201101059

doi: 10.1002/adma.201101059     URL    
[1] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[2] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[3] 王金凤, 李爱森, 李振. 室温磷光凝胶研究进展[J]. 化学进展, 2022, 34(3): 487-498.
[4] 龚筑轲, 许辉. 晶态咔唑基有机室温磷光材料[J]. 化学进展, 2022, 34(11): 2432-2461.
[5] 何良, 谭彩萍, 曹乾, 毛宗万. 磷光环金属化铱(Ⅲ)配合物在癌症治疗方面的应用[J]. 化学进展, 2018, 30(10): 1548-1556.
[6] 梁爱辉, 黄贵, 王志平, 陈水亮, 侯豪情. 含铱配合物聚合物磷光材料及其电致发光性能[J]. 化学进展, 2016, 28(4): 471-481.
[7] 马治军, 雷霆, 裴坚*, 刘晨江*. 蓝色有机电致磷光主体材料[J]. 化学进展, 2013, 25(06): 961-974.
[8] 周丽霞, 刘淑娟, 赵强, 凌启淡, 黄维. 基于离子型铱配合物的发光电化学池[J]. 化学进展, 2011, 23(9): 1871-1882.
[9] 廖章金, 朱彤珺, 密保秀, 高志强, 范曲立, 黄维. 小分子铱配合物及其电致发光[J]. 化学进展, 2011, 23(8): 1627-1643.
[10] 成珊, 刘淑娟, 周丽霞, 许文娟, 赵强, 黄维. 基于重金属配合物的阳离子磷光化学传感器[J]. 化学进展, 2011, 23(4): 679-686.
[11] 陶然, 乔娟, 段炼, 邱勇. 蓝色磷光有机发光材料[J]. 化学进展, 2010, 22(12): 2255-2267.
[12] 应磊,张安琪,杨伟,曹镛. 电磷光发光聚合物* [J]. 化学进展, 2009, 21(6): 1275-1286.
[13] 汪磊,雷钢铁,易晓华. 基于荧光与磷光复合的有机电致白光器件*[J]. 化学进展, 2008, 20(0708): 1050-1056.
[14] 张秀菊,许运华,史华红. 以铱为内核的有机电致磷光材料*[J]. 化学进展, 2006, 18(0708): 870-882.
[15] 王传明 范曲立 霍岩丽 黄维 . 有机电致磷光材料的分子设计:从主体材料到客体材料[J]. 化学进展, 2006, 18(05): 519-525.