English
新闻公告
More
化学进展 2019, Vol. 31 Issue (11): 1615-1622 DOI: 10.7536/PC190808 前一篇   

• •

外场强化环境响应固相萃取技术

杨良嵘1,3, 邢慧芳1,3, 屈虹男1,3, 于杰淼1,3, 刘会洲1,2,3,**()   

  1. 1. 中国科学院过程工程研究所 北京 100190
    2. 中国科学院文献情报中心 北京 100190
    3. 中国科学院大学化学工程学院 北京 100049
  • 收稿日期:2019-08-08 出版日期:2019-11-15 发布日期:2019-11-06
  • 通讯作者: 刘会洲
  • 基金资助:
    国家自然科学基金项目(21922814); 国家自然科学基金项目(21676273); 国家自然科学基金项目(U1507203); 国家自然科学基金项目(31961133019); 国家自然科学基金项目(21921005); 中科院青年创新促进人才项目(2016043); 北京市自然科学基金项目(2194086)

External Field Enhanced Environmental Responsive Solid Extraction Technology

Liangrong Yang1,3, Huifang Xing1,3, Hongnan Qu1,3, Jiemiao Yu1,3, Huizhou Liu1,2,3,**()   

  1. 1. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2. National Science Library, Chinese Academy of Sciences, Beijing 100190, China
    3. College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-08-08 Online:2019-11-15 Published:2019-11-06
  • Contact: Huizhou Liu
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(21922814); National Natural Science Foundation of China(21676273); National Natural Science Foundation of China(U1507203); National Natural Science Foundation of China(31961133019); National Natural Science Foundation of China(21921005); Chinese Academy of Sciences Youth Innovation Promotion Talent Project(2016043); Beijing Natural Science Foundation Project(2194086)

低浓度大体量复杂溶液中目标物的高效、精准、可控分离是当今化工分离科学领域的世界前沿课题。固相萃取技术目前用于低浓度复杂体系工业分离面临两方面挑战:一方面是高选择性精准捕获与温和绿色解吸难以兼具。另一方面是固相萃取技术缺少规模连续化分离的高效分离工艺设备。本文综述了为解决当前固相萃取技术存在的问题,实现低浓度复杂体系的高效精准和可控分离,新型环境响应固相萃取技术,磁场响应固相萃取技术以及电场、超声场辅助固相萃取技术取得的研究进展。最后,关于该应用领域固相萃取技术的研究发展方向进行了展望。本文对外场强化环境响应固相萃取技术的关键科学问题,包括环境响应问题、可控分离问题和过程放大问题进行了深入探讨,并对相关领域的发展提出了措施与建议。

Efficient, precise and controllable separation of target compounds in low concentration and large volume complex solutions is a world frontier in the field of chemical separation science. Solid phase extraction technology currently faces two challenges in industrial separation of low-concentration complex systems. On the one hand, it is difficult to give consideration to both of the high selective precision capture and the mild green desorption. On the other hand, solid phase extraction technology lacks efficient separation process and equipment for large scaled continuous separation. This review summarizes the research progress of new environmental responsive solid phase extraction technology, magnetic field responsive solid phase extraction technology, electric field- and ultrasound field- assisted solid phase extraction technology in order to solve the problems of current solid phase extraction technology, and achieve the efficient and precise separation for low concentration complex systems. Finally, the research and development direction of solid phase extraction technology in this application field is prospected. In this review, the key scientific issues of external field enhanced environmental responsive solid phase extraction technology, including environmental responsive problems, controllable separation problems and process amplification problems, are further discussed. Besides, measures and suggestions are proposed for the development of related fields.

()
图1 固相萃取示意图
Fig. 1 Schematic diagram of solid phase extraction
图2 固相萃取应用于低浓度复杂体系工业分离挑战
Fig. 2 The challenges of solid phase extraction applied in complex industrial separation systems with low concentrations
图3 新型环境响应固相萃取技术及磁场响应固相萃取技术示意图
Fig. 3 Schematic diagram of novel environmental responsive solid phase extraction technology and magnetic field responsive solid phase extraction technology
图4 二维红外同步相关光谱(a)和异步相关光谱(b)[12]
Fig. 4 Two-dimensional infrared synchronization correlation spectrum(a) and asynchronous correlation spectrum(b)[12]
图5 温度/pH响应的磁性纳米颗粒界面调控聚集解聚行为[14]
Fig. 5 Temperature /pH responsive magnetic nanoparticle and interface regulated aggregation and depolymerization behavior[14]
图6 温度响应适配体固相萃取吸附剂界面调控凝血酶分离
Fig. 6 Temperature responsive aptamer solid phase extraction adsorbent and interface regulated separation of thrombin
图7 光响应适配体固相萃取吸附剂界面调控凝血酶可控分离
Fig. 7 Light responsive aptamer solid phase extraction adsorbent and interface regulated separation of thrombin
图8 新型固相萃取技术与传统方法对比
Fig. 8 The comparation between novel solid phase extraction technology and the traditional method
图9 磁响应固相萃取技术
Fig. 9 Magnetic responsive solid phase extraction technology
图10 吸附速率慢原因分析
Fig. 10 Analysis of reasons for slow adsorption rate
表1 国内外同行比较
Table 1 Comparison of domestic and foreign counterparts
图11 磁分离装置连续放大难点
Fig. 11 Difficulties in continuous amplification of magnetic separation devices
图12 气助超顺磁性连续化萃取分离新工艺和设备
Fig. 12 Novel gas-assisted superparamagnetic continuous extraction technology and equipment
图13 气助磁分离新工艺用于蛋白连续分离纯化[46]
Fig. 13 Gas-assisted magnetic separation used for continuous separation and purification of protein[46]
[1]
(a) 陈家镛(Chen J Y) . 湿法冶金手册(Handbook of Hydrometallurgy). 北京: 冶金工业出版社 (Beijing: Metallurgical Industry Press), 2008.;
(b) 孙彦(Sun Y) . 生物分离工程(Bioseparation Engineering). 北京: 化学工业出版社 (Beijing: Chemical Industry Press), 2005.;
[2]
Sholl D S, Lively R P . Nature, 2016,533, 316. https://www.ncbi.nlm.nih.gov/pubmed/27193663

doi: 10.1038/533316a     URL     pmid: 27193663
[3]
分析化学手册-第6册(Handbook of Analytical Chemistry)(Vol.6). 北京: 化学工业出版社 (Beijing: Chemical Industry Press), 1997.
[4]
Gil E S, Hudson S M . Progress in Polymer Science, 2004,29, 1173.
[5]
(a) Bai G, Yuan P Y, Cai B L, Qiu X Y, Jin R H, Liu S Y, Li Y, Chen X . Adv. Funct. Mater., 2019,29:1904401.; https://onlinelibrary.wiley.com/toc/16163028/29/36

doi: 10.1002/adfm.v29.36     URL     pmid: 31219018
(b) Nosrati H, Mojtahedi A, Danafar H, Manjili H K . J. Biomed. Mater. Res. Part A, 2019,107:2115.; https://www.ncbi.nlm.nih.gov/pubmed/31301222

doi: 10.1002/jbm.a.36736     URL     pmid: 31219018
(c) Wan N, Zhang Y X, Hu L Z, Ma X X, Jia Y Y, Ma Y T, He W, Zhou S Y, Zhang B L . J. Biomed. Nanotechnol., 2019,15:1654. https://www.ncbi.nlm.nih.gov/pubmed/31219018

doi: 10.1166/jbn.2019.2799     URL     pmid: 31219018
[6]
Cao P, Muller T K H, Ketterer B, Ewert S, Theodosiou E, Thomas O R T, Franzreb M . J. Chromatogr. A, 2015,1403:118. https://www.ncbi.nlm.nih.gov/pubmed/26051083

doi: 10.1016/j.chroma.2015.05.039     URL     pmid: 26051083
[7]
(a) Sepehrifar R, Boysen R I, Danylec B, Yang Y Z, Saito K, Hearn M T W . Anal. Chim. Acta, 2017,963:153.; https://www.ncbi.nlm.nih.gov/pubmed/28335969

doi: 10.1016/j.aca.2017.01.061     URL     pmid: 29549873
(b) Tan S N, Saito K, Hearn M T W . Curr. Opin. Biotechnol, 2018,53:209. https://www.ncbi.nlm.nih.gov/pubmed/29549873

doi: 10.1016/j.copbio.2018.02.011     URL     pmid: 29549873
[8]
(a) Stayton P S, Shimoboji T, Long C, Chilkoti A, Chen G H, Harris J M, Hoffman A S . Nature, 1995,378:472.; https://www.ncbi.nlm.nih.gov/pubmed/7477401

doi: 10.1038/378472a0     URL     pmid: 10346869
(b) Ding Z L, Long C J, Hayashi Y, Bulmus E V, Hoffman A S, Stayton P S . Bioconjugate. Chem., 1999,10:395. https://www.ncbi.nlm.nih.gov/pubmed/10346869

doi: 10.1021/bc980108s     URL     pmid: 10346869
[9]
(a) Liu Z, Wang W, Xie R, Ju X J, Chu L Y . Chem. Soc. Rev., 2016,45:460.; https://www.ncbi.nlm.nih.gov/pubmed/26595416

doi: 10.1039/c5cs00692a     URL     pmid: 26595416
(b) Luo T, Lin S O, Xie R Ju X J, Liu Z, Wang W, Mou C L, Zhao C S, Chen Q M, Chu L Y . J. Membr. Sci., 2014,450:162. https://linkinghub.elsevier.com/retrieve/pii/S0376738813007187

doi: 10.1016/j.memsci.2013.09.002     URL     pmid: 26595416
[10]
(a) Ding Z Y, Li S P, Cao X J . Sep. Purif. Technol., 2014,138:153. 15be7770-032b-4dbe-8044-f9f59997372fhttp://dx.doi.org/10.1016/j.seppur.2014.10.021

doi: 10.1016/j.seppur.2014.10.021     URL     pmid: 26245259
(b) Ding Z Y, Li S P, Cao X J . Appl. Biochem. Biotechnol., 2015,177:253. https://www.ncbi.nlm.nih.gov/pubmed/26245259

doi: 10.1007/s12010-015-1742-8     URL     pmid: 26245259
[11]
Xiao F, Chen L, Xing R F, Zhao Y P, Dong J, Guo G, Zhang R . Colloid Surf. B-Biointerfaces, 2009,71:13. https://www.ncbi.nlm.nih.gov/pubmed/19181494

doi: 10.1016/j.colsurfb.2008.12.040     URL     pmid: 19181494
[12]
Jia L W, Guo C, Yang L R, Xiang J F, Tang Y L, Liu C Z, Liu H Z . J. Colloid Interface Sci., 2010,345:332. https://www.ncbi.nlm.nih.gov/pubmed/20156625

doi: 10.1016/j.jcis.2010.01.060     URL     pmid: 20156625
[13]
Yang L R, Guo C, Jia L W, Liang X F, Liu C Z, Liu H Z . J. Colloid Interface Sci., 2010,350:22. https://www.ncbi.nlm.nih.gov/pubmed/20621304

doi: 10.1016/j.jcis.2010.04.023     URL     pmid: 20621304
[14]
(a) Yang L R, Liu H Z . Powder Technol, 2013,240:54.; https://linkinghub.elsevier.com/retrieve/pii/S0032591012004779

doi: 10.1016/j.powtec.2012.07.007     URL    
(b) Yang L R, Guo C, Jia L W, Xie K, Shou Q H, Liu H Z . Ind. Eng. Chem. Res., 2010,49:8518. https://pubs.acs.org/doi/10.1021/ie100587e

doi: 10.1021/ie100587e     URL    
[15]
Yang L R, Guo C, Chen S, Wang F, Wang J, An Z T, Liu C Z, Liu H Z . Ind. Eng. Chem. Res., 2009,48:944. https://pubs.acs.org/doi/10.1021/ie800969q

doi: 10.1021/ie800969q     URL    
[16]
(a) Connor A C, McGown L B . Journal of Chromatography A, 2006,1111:115.; https://www.ncbi.nlm.nih.gov/pubmed/16569569

doi: 10.1016/j.chroma.2005.05.012     URL     pmid: 16569569
(b) Romig T S, Bell C, Drolet D W . Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 1999,731:275.

pmid: 16569569
[17]
Yu J M, Yang L R, Liang X F, Dong T T, Qu H N, Rong M, Liu H Z . Talanta, 2016,159:47. https://www.ncbi.nlm.nih.gov/pubmed/27474278

doi: 10.1016/j.talanta.2016.05.077     URL     pmid: 27474278
[18]
Yu J M, Yang L R, Liang X F, Dong T T, Liu H Z . Talanta, 2015,144:312. https://www.ncbi.nlm.nih.gov/pubmed/26452827

doi: 10.1016/j.talanta.2015.06.053     URL     pmid: 26452827
[19]
(a) Wang Y Q, Zou B F, Gao T, Wu X P, Lou S Y, Zhou S M . J. Mater. Chem., 2012,22:9034.; http://xlink.rsc.org/?DOI=c2jm30440f

doi: 10.1039/c2jm30440f     URL     pmid: 21684304
(b) Huang G L, Zhang H Y, Shi J X, Langrish T A G . Ind. Eng. Chem. Res., 2009, 48: 2646.;, 2009,48:2646.

pmid: 21684304
(c) Abou El-Reash Y G, Otto M, Kenawy I M, Ouf A M . Int. J. Biol. Macromol., 2011,49:513. https://www.ncbi.nlm.nih.gov/pubmed/21684304

doi: 10.1016/j.ijbiomac.2011.06.001     URL     pmid: 21684304
[20]
(a) Sun X T, Yang L R, Li Q, Liu Z N, Dong T T, Liu H Z . Chem. Eng. J., 2015,262:101.; https://linkinghub.elsevier.com/retrieve/pii/S1385894714012315

doi: 10.1016/j.cej.2014.09.045     URL    
(b) Sun X T, Yang L R, Xing H F, Zhao J M, Li X P, Huang Y B, Liu H Z . Chem. Eng. J., 2013,234:338. https://linkinghub.elsevier.com/retrieve/pii/S1385894713011352

doi: 10.1016/j.cej.2013.08.082     URL    
[21]
Sun X T, Yang L R, Xing H F, Zhao J M, Li X P, Huang Y B, Liu H Z . Colloid Surf. A-Physicochem. Eng. Asp., 2014,457:160. https://linkinghub.elsevier.com/retrieve/pii/S0927775714005214

doi: 10.1016/j.colsurfa.2014.05.061     URL    
[22]
Sun X T, Yang L R, Li Q, Zhao J M, Li X P, Wang X Q, Liu H Z . Chem. Eng. J., 2014,241:175. https://linkinghub.elsevier.com/retrieve/pii/S138589471301632X

doi: 10.1016/j.cej.2013.12.051     URL    
[23]
Sun X T, Li Q, Yang L R, Liu H Z . RSC Adv., 2016,6:18471. http://xlink.rsc.org/?DOI=C5RA27028F

doi: 10.1039/C5RA27028F     URL    
[24]
Sun X T, Yang L R, Dong T T, Liu Z N, Liu H Z . J. Appl. Polym. Sci., 2016,133:11.
[25]
Hu J, Lo I M C, Chen G . Separation and Purification Technology, 2007,56:249. https://linkinghub.elsevier.com/retrieve/pii/S1383586607001062

doi: 10.1016/j.seppur.2007.02.009     URL    
[26]
Huang S H, Chen D H . Journal of Hazardous Materials, 2009,163:174. https://www.ncbi.nlm.nih.gov/pubmed/18657903

doi: 10.1016/j.jhazmat.2008.06.075     URL     pmid: 18657903
[27]
Wei L S, Yang G, Wang R, Ma W J . Hazard. Mater., 2009,164:1159. https://www.ncbi.nlm.nih.gov/pubmed/18954940

doi: 10.1016/j.jhazmat.2008.09.016     URL     pmid: 18954940
[28]
Larraza I, López-Gónzalez M, Corrales T, Marcelo G . Journal of Colloid and Interface Science, 2012,385:24. https://www.ncbi.nlm.nih.gov/pubmed/22841705

doi: 10.1016/j.jcis.2012.06.050     URL     pmid: 22841705
[29]
Burks T, Uheida A, Saleemi M, Eita M, Toprak M S, Muhammed M . Separation Science and Technology, 2013,48:1243. http://www.tandfonline.com/doi/abs/10.1080/01496395.2012.734364

doi: 10.1080/01496395.2012.734364     URL    
[30]
Kuai S, Zhang Z, Nan Z . Journal of Hazardous Materials, 2013,250/251:229. https://www.ncbi.nlm.nih.gov/pubmed/23454462

doi: 10.1016/j.jhazmat.2013.01.074     URL     pmid: 23454462
[31]
(a) Zhao Y G, Shen H Y, Pan S D, Hu M Q J . Hazard. Mater., 2010,182:295.; https://www.ncbi.nlm.nih.gov/pubmed/20621418

doi: 10.1016/j.jhazmat.2010.06.029     URL     pmid: 20621418
(b) Zhao Y G, Shen H Y, Pan S D, Hu M Q, Xia Q H J . Mater. Sci., 2010,45:5291. http://link.springer.com/10.1007/s10853-010-4574-5

doi: 10.1007/s10853-010-4574-5     URL     pmid: 20621418
[32]
Bhaumik M, Maity A, Srinivasu V V, Onyango M S J . Hazard. Mater., 2011,190:381. https://www.ncbi.nlm.nih.gov/pubmed/21497438

doi: 10.1016/j.jhazmat.2011.03.062     URL     pmid: 21497438
[33]
Bayramoğlu, G, Arıca M Y . Chem. Eng. J., 2008,143:133. https://linkinghub.elsevier.com/retrieve/pii/S1385894708000168

doi: 10.1016/j.cej.2008.01.002     URL    
[34]
Wang Q, Guan Y, Liu X, Yang M, Ren X . Chinese Journal of Chemical Engineering, 2012,20:105. 80826a34-6f3e-4c2f-87a7-3fa72aeabb97http://www.cjche.com.cn/EN/abstract/abstract12206.shtml
[35]
Hu X J, Wang J S, Liu Y G, Li X, Zeng G M, Bao Z L, Zeng X X, Chen A W, Long F . J. Hazard. Mater., 2011,185:306. https://www.ncbi.nlm.nih.gov/pubmed/20889258

doi: 10.1016/j.jhazmat.2010.09.034     URL     pmid: 20889258
[36]
Chen D M, Li W, Wu Y R, Zhu Q, Lu Z J, Du G X . Chem. Eng. J., 2013,221:8. https://linkinghub.elsevier.com/retrieve/pii/S1385894713001356

doi: 10.1016/j.cej.2013.01.089     URL    
[37]
Thinh N N, Hanh P T, Ha le T T, Anh le N, Hoang T V, Hoang V D, Dang le H, Khoi N V, Lam T D . Mater. Sci. Eng. C: Mater. Biol. Appl., 2013,33:1214. https://www.ncbi.nlm.nih.gov/pubmed/23827563

doi: 10.1016/j.msec.2012.12.013     URL     pmid: 23827563
[38]
(a) Li L L, Luo C A, Li X J, Duan H M, Wang X J . Int. J. Biol. Macromol., 2014,66:172.; https://www.ncbi.nlm.nih.gov/pubmed/24560948

doi: 10.1016/j.ijbiomac.2014.02.031     URL     pmid: 23466545
(b) Li L L, Fan L L, Sun M, Qiu H M, Li X J, Duan H M, Luo C N . Colloids Surf. B: Biointerfaces, 2013,107:76. https://www.ncbi.nlm.nih.gov/pubmed/23466545

doi: 10.1016/j.colsurfb.2013.01.074     URL     pmid: 23466545
[39]
Xiao Y Z, Liang H F, Wang Z C . Mater. Res. Bull., 2013,48:3910. https://linkinghub.elsevier.com/retrieve/pii/S0025540813004789

doi: 10.1016/j.materresbull.2013.05.099     URL    
[40]
Li H, Li Z, Liu T, Xiao X, Peng Z, Deng L . Bioresour. Technol, 2008,99:6271. https://www.ncbi.nlm.nih.gov/pubmed/18221868

doi: 10.1016/j.biortech.2007.12.002     URL     pmid: 18221868
[41]
Sun X, Yang L, Li Q, Liu Z, Dong T, Liu H . Chemical Engineering Journal, 2015,262:101. https://linkinghub.elsevier.com/retrieve/pii/S1385894714012315

doi: 10.1016/j.cej.2014.09.045     URL    
[42]
Sun X, Yang L, Xing H, Zhao J, Li X, Huang Y, Liu H . Chemical Engineering Journal, 2013,234:338. 79eb92c9-b967-44e8-ac8e-1a4ee408da99http://dx.doi.org/10.1016/j.cej.2013.08.082

doi: 10.1016/j.cej.2013.08.082     URL    
[43]
Sun X, Li Q, Yang L, Liu H . RSC Advances, 2016,6:18471. http://xlink.rsc.org/?DOI=C5RA27028F

doi: 10.1039/C5RA27028F     URL    
[44]
Sun X, Yang L, Li Q, Zhao J, Li X, Wang X, Liu H . Chemical Engineering Journal, 2014,241:175. https://linkinghub.elsevier.com/retrieve/pii/S138589471301632X

doi: 10.1016/j.cej.2013.12.051     URL    
[45]
Sun X, Yang L, Dong T, Liu Z, Liu H . Journal of Applied Polymer Science, 2016,133.
[46]
(a) Li W, Yang L, Dong T, Xing H, Wang W, Yang Y, Liu H . AICHE J., 2019,65:175.; http://doi.wiley.com/10.1002/aic.v65.1

doi: 10.1002/aic.v65.1     URL    
(b) Dong T T, Yang L R, Zhu M H, Liu Z N, Sun X T, Yu J M, Liu H Z . Chem. Eng. J., 2015, 280: 426.;, 2015,280:426.;
(c) Li W S, Yang L R, Liu H Z, Li X P, Liu Z N, Wang F C, Sui N, Xiao C . X. AICHE J., 2014,60:3101.;
(d) Li W S, Yang L R, Zhou H C, Li X P, Wang F C, Yang X F, Liu H Z . Ind. Eng. Chem. Res., 2013,52:16314.; https://pubs.acs.org/doi/10.1021/ie401012c

doi: 10.1021/ie401012c     URL    
(e) Li W S, Yang L R, Wang F C, Zhou H C, Xing H F, Li X P, Liu H Z . Ind. Eng. Chem. Res., 2013,52:4290.; https://pubs.acs.org/doi/10.1021/ie3031696

doi: 10.1021/ie3031696     URL    
[47]
Su X, Kulik H J, Jamison T F, Hatton T A . Adv. Funct. Mater., 2016,26:3394. http://doi.wiley.com/10.1002/adfm.v26.20

doi: 10.1002/adfm.v26.20     URL    
[48]
Bagheri H, Piri-Moghadam H, Rastegar S . RSC Adv, 2014,4:52590. http://xlink.rsc.org/?DOI=C4RA04097J

doi: 10.1039/C4RA04097J     URL    
[49]
Orlando R M, Rohwedder J J R, Rath S . Chromatographia, 2014,77:133. 82badb94-f0b2-4af3-8474-97a365cc25ebhttp://dx.doi.org/10.1007/s10337-013-2565-9

doi: 10.1007/s10337-013-2565-9     URL    
[50]
Orlando R M, Rohwedder J J R, Rath S J . Braz. Chem. Soc., 2015,26:310.
[51]
Ribeiro C C, Orlando R M, Rohwedder J J R, Reyes F G R, Rath S . Talanta, 2016,152:498. https://www.ncbi.nlm.nih.gov/pubmed/26992547

doi: 10.1016/j.talanta.2016.02.047     URL     pmid: 26992547
[52]
Ahmadi F, Mahmoudi-Yamchi T, Azizian H . J. Chromatogr. B, 2018,1077:52.
[53]
Sereshti H, Khosraviani M, Samadi S, Amini-Fazl M S . RSC Adv., 2014,4:47114. http://xlink.rsc.org/?DOI=C4RA06412G

doi: 10.1039/C4RA06412G     URL    
[1] 谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛. 外场强化电解水析氢[J]. 化学进展, 2021, 33(9): 1571-1585.
[2] 李波, 马利建, 罗宁, 李首建, 陈云明, 张劲松. 固相萃取分离铀[J]. 化学进展, 2020, 32(9): 1316-1333.
[3] 杨钰昆, 王小敏, 方国臻, 云雅光, 郭婷, 王硕. 基于分子印迹技术的电化学发光分析[J]. 化学进展, 2016, 28(9): 1351-1362.
[4] 韩强, 王宗花, 张晓琼, 丁明玉. 石墨烯及其复合材料在样品前处理中的应用[J]. 化学进展, 2014, 26(05): 820-833.
[5] 盘登芳, 叶钢, 王芳, 陈靖* . 含氮杂环化合物萃取分离三价锕系与镧系元素[J]. 化学进展, 2012, 24(11): 2167-2176.
[6] 许志刚*, 刘智敏, 杨保民, 字富庭. 替代模板分子印迹技术在样品前处理中的应用[J]. 化学进展, 2012, 24(08): 1592-1598.
[7] 陈靖, 王芳, 何喜红, 盘登芳. 二烃基二硫代膦酸萃取分离三价锕系与镧系元素研究[J]. 化学进展, 2011, 23(7): 1338-1344.
[8] 徐溢,张剑,徐平洲,卢倩,曾雪,温志渝. 微流控芯片系统中固液双相分离富集技术[J]. 化学进展, 2007, 19(01): 186-192.
[9] 胡树国,李礼,何锡文. 一种高选择性固相萃取吸附剂——分子印迹聚合物*[J]. 化学进展, 2005, 17(03): 531-543.
[10] 黄骏雄. 样品制备与处理的进展--无溶剂萃取技术[J]. 化学进展, 1997, 9(02): 179-.
阅读次数
全文


摘要

外场强化环境响应固相萃取技术