English
新闻公告
More
化学进展 2020, Vol. 32 Issue (2/3): 286-297 DOI: 10.7536/PC190737 前一篇   后一篇

• •

有机染料聚集在光化学传感中的应用

张鹏, 郭心洁, 张倩, 丁彩凤**()   

  1. 青岛科技大学化学与分子工程学院 光电传感与生命分析教育部重点实验室 生化分析山东省重点实验室 山东省高校生命分析化学重点实验室 青岛 266042
  • 收稿日期:2019-07-29 出版日期:2020-02-15 发布日期:2019-12-19
  • 通讯作者: 丁彩凤
  • 基金资助:
    国家自然科学基金项目(21904077); 国家自然科学基金项目(21422504); 山东省自然科学基金项目(ZR2019BB055); 厦门大学谱学分析与仪器教育部重点实验室(SCAI1702); 厦门大学谱学分析与仪器教育部重点实验室(SCAI1703)

Photochemical Sensing Based on the Aggregation of Organic Dyes

Peng Zhang, Xinjie Guo, Qian Zhang, Caifeng Ding**()   

  1. Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
  • Received:2019-07-29 Online:2020-02-15 Published:2019-12-19
  • Contact: Caifeng Ding
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21904077); National Natural Science Foundation of China(21422504); Natural Science Foundation of Shandong province(ZR2019BB055); Fund Project from Key Laboratory of Spectrochemical Analysis & Instrumentation(Xiamen University) of Ministry of Education(SCAI1702); Fund Project from Key Laboratory of Spectrochemical Analysis & Instrumentation(Xiamen University) of Ministry of Education(SCAI1703)

有机染料在可见-近红外光区具有较高的摩尔消光系数和良好的荧光发光性能,因而常被用于光谱化学传感中。通常有机染料分子含有较大的π体系,在溶液中易于通过分子间弱相互作用(氢键、卤键、亲疏水作用、π-π堆积作用、范德华力等)聚集形成具有特定结构的组装体,聚集过程往往伴有明显的颜色或光谱变化。若向染料分子中引入特定的官能团,与分析物结合诱导染料聚集/解聚产生明显的光谱变化,可用于对分析物的识别。聚集体可同时提供多个结合位点,并具有组装单元之间可调控的空间取向、较高的传感结合基团局部浓度。因此基于聚集过程的光化学传感表现出优越的传感灵敏度和选择性。本文结合本课题组近年来的研究工作综述了有机染料聚集在光化学传感中的应用,分别从诱导聚集、诱导解聚以及聚集重组三个方面展开讨论,并展望了此类荧光传感体系未来的研究与发展方向。

Organic dyes possess high molar extinction coefficient and good fluorescence emission performance in visible and NIR region, thus they are often used in spectrochemical sensing. Generally, organic dyes usually contain a large π system, and are easy to form assemblies with specific structures through weak intermolecular interactions(such as, hydrogen bonds, halogen bonds, hydrophobic interactions, π-π stacking interactions, van der Waals forces.) in solution. The aggregation process is often accompanied by obvious color or spectral changes. If a specific functional group is introduced into a dye molecule, binding with an analyte induces the aggregation or disaggregation to produce obvious spectral changes, which can be used for the detection of the analyte. Supramolecular aggregates can provide multiple binding sites simultaneously, and have adjustable spatial orientation between assembly units and higher local concentration of sensing binding groups. Therefore, photochemical sensing based on aggregation process shows superior sensing sensitivity and selectivity. In this review, the application of the aggregation of organic dyes in photochemical sensing is reviewed based on our own research work in recent years. Three aspects of induced aggregation, disaggregation and aggregation re-arrangement are discussed respectively, and the future research and development direction of such fluorescent sensing systems are also prospected.

()
图1 基于分子激子理论的发色团排列与光谱位移关系的示意图
Fig.1 Schematic representation of the relationship between chromophore arrangement and spectral shift based on the molecular exciton theory
图2 Hg2+诱导1聚集以及聚集体在半胱氨酸存在下解离[30]
Fig.2 Hg2+ induced aggregation of 1 and dissociation of aggregates in the presence of cysteine[30]
图3 溶剂驱动下5的聚集,在CTAB胶束存在下聚集态Ⅱ的5向分子溶解态Ⅲ的转化,以及在CTAB胶束存在下通过金属离子诱导的5重组转化为状态Ⅳ[34]
Fig.3 Schematic representation of solvent driven molecular organization of 5 and transformation of aggregated State-Ⅱ of 5 to molecularly dissolved State-III in the presence of CTAB micelles, and the transformation of State-Ⅲ into State-Ⅳ via metal ion induced reorganization of 5 in the presence of CTAB micelles[34]
图4 近红外花菁染料27在临界聚集浓度的DTAB水溶液中对ATP的识别[53]
Fig.4 Recognition of ATP by near infrared cyanine dye 27 in DTAB solution with critical aggregation concentration[53]
图5 32~34的分子结构以及纳米传感器35~37对牛血清白蛋白的识别[57]
Fig.5 Molecular structures of probes 32~34 and nanosensors 35~37 for BSA[57]
图6 39对ACP的检测示意图[65]
Fig.6 Schematic illustration of working system 39 toward ACP[65]
图7 40对组氨酸检测示意图[66]
Fig.7 The schematic representation of 40 for histidine detection[66]
图8 选择性氨气传感过程中方酸染料自组装的机理[68]
Fig.8 The mechanism of concentration-dependent self-assembly of SCy dyes in the solid state for selective ammonia gas sensing[68]
图9 以G-四聚体为模板调控43超分子手性的可逆体系示意图[69]
Fig.9 Schematic representation of the reversible system for regulation of 43 supramolecular chirality by using G-quadruplex as a template[69]
[1]
Lehn J M , 超分子化学-概念和展望 (Supramolecular Chemistry-Concept and Prospect). 沈兴海等(译)(Shen X H, et al.(Trans.)). 北京: 北京大学出版社( Beijing: Peking University Press), 2002.
[2]
刘育(Liu Y) 尤长城(You C C) 张衡益(Zhang H Y) . 超分子化学-合成受体的分子识别与组装 (Supramolecular Chemistry-Molecular Recognition and Assembly of Synthetic Receptors). 天津:南开大学出版社( Tianjing: Nankai University Press), 2001.
[3]
Würthner F R, Saha-Möller C, Fimmel B, Ogi S, Leowanawat P, Schmidt D . Chem. Rev., 2016,116:962. https://www.ncbi.nlm.nih.gov/pubmed/26270260

doi: 10.1021/acs.chemrev.5b00188     URL     pmid: 26270260
[4]
Chen S, Slattum P, Wang C Y, Zang L . Chem. Rev., 2015,115:11967. https://www.ncbi.nlm.nih.gov/pubmed/26441294

doi: 10.1021/acs.chemrev.5b00312     URL     pmid: 26441294
[5]
Kim H M, Cho B R . Chem. Rev., 2015,115:5014. https://www.ncbi.nlm.nih.gov/pubmed/25938620

doi: 10.1021/cr5004425     URL     pmid: 25938620
[6]
Ashton T D, Jolliffe K A, Pfeffer F M . Chem. Soc. Rev., 2015,44:4547. https://www.ncbi.nlm.nih.gov/pubmed/25673509

doi: 10.1039/c4cs00372a     URL     pmid: 25673509
[7]
Bhatia S, Camacho L C, Haag R . J. Am. Chem. Soc., 2016,138:8654. https://www.ncbi.nlm.nih.gov/pubmed/27341003

doi: 10.1021/jacs.5b12950     URL     pmid: 27341003
[8]
Okuro K, Sasaki M, Aida T . J. Am. Chem. Soc., 2016,138:5527. https://www.ncbi.nlm.nih.gov/pubmed/27087468

doi: 10.1021/jacs.6b02664     URL     pmid: 27087468
[9]
Mogaki R, Hashim P K, Okuro K, Aida T . Chem. Soc. Rev., 2017,46:6480. https://www.ncbi.nlm.nih.gov/pubmed/29034942

doi: 10.1039/c7cs00647k     URL     pmid: 29034942
[10]
Larissa K S K, Christoph A S, Pall T . Chem. Soc. Rev., 2017,46:2622. https://www.ncbi.nlm.nih.gov/pubmed/28352870

doi: 10.1039/c7cs00063d     URL     pmid: 28352870
[11]
Mako T L, Racicot J M, Levine M . Chem. Rev., 2019,119:322. https://www.ncbi.nlm.nih.gov/pubmed/30507166

doi: 10.1021/acs.chemrev.8b00260     URL     pmid: 30507166
[12]
Geninatti C S, Alberti D, Szabo I, Aime S, Djanashvili K . Angew. Chem. Int. Ed., 2013,52:1161. https://www.ncbi.nlm.nih.gov/pubmed/23225599

doi: 10.1002/anie.201207131     URL     pmid: 23225599
[13]
Wasielewski M . R. Acc. Chem. Res., 2009,42:1910. https://www.ncbi.nlm.nih.gov/pubmed/19803479

doi: 10.1021/ar9001735     URL     pmid: 19803479
[14]
Jiang W, Li Y, Wang Z . Acc. Chem. Res., 2014,47:3135. https://www.ncbi.nlm.nih.gov/pubmed/25264816

doi: 10.1021/ar500240e     URL     pmid: 25264816
[15]
Hartnett P E, Timalsina A, Matte H S S R, Zhou N, Guo X, Zhao W, Facchetti A, Chang R P H, Hersam M C, Wasielewski M R, Marks T J . J. Am. Chem. Soc., 2014,136:16345. https://www.ncbi.nlm.nih.gov/pubmed/25350908

doi: 10.1021/ja508814z     URL     pmid: 25350908
[16]
Brooker L G S, Wllite F L, Heseltine D W, Keyes G H, Dent S G, Vanlare E J J . Photogr. Sci., 1953,1:173.
[17]
Jelley E E . Narure, 1936,138:1009.
[18]
Seheibe G . Angew. Chem., 1936,49:563.
[19]
Kasha M, Rawis H R, El-Bayoumi M A . Pure. Appl. Chem., 1965,11:371.
[20]
Zhang Q, Li S S, Fu C X, Xiao Y Z, Zhang P, Ding C F . J Mater. Chem. B., 2019,7:443. https://www.ncbi.nlm.nih.gov/pubmed/32254731

doi: 10.1039/c8tb02799d     URL     pmid: 32254731
[21]
Zhang P, Xiao Y Z, Zhang Q, Zhang Z X, Yu H, Ding C F . New J. Chem., 2019,43:7620.
[22]
Zhang Q, Wang Q, Chen X X, Zhang P, Ding C F, Li Z, Jiang Y B . TRAC-Trend Anal. Chem., 2018,109:32
[23]
Zhang Q, Zhang P, Gong Y, Ding C F . Sens. & Actuat. B, 2019,73.
[24]
Zhang P, Zhang Q, Li S S, Chen W H, Guo X J, Ding C F . J. Mater. Chem. B, 2019,7:1238. https://www.ncbi.nlm.nih.gov/pubmed/32255163

doi: 10.1039/c8tb03023e     URL     pmid: 32255163
[25]
Dhiman S, Jain A, Kumar M, George S J . J. Am. Chem. Soc., 2017,139:16568. https://www.ncbi.nlm.nih.gov/pubmed/28845662

doi: 10.1021/jacs.7b07469     URL     pmid: 28845662
[26]
Guo X, Facchetti A, Marks T . J. Chem. Rev., 2014,114:8943. https://www.ncbi.nlm.nih.gov/pubmed/25181005

doi: 10.1021/cr500225d     URL     pmid: 25181005
[27]
Chen Z, Wang Q, Wu X, Li Z, Jiang Y B . Chem. Soc. Rev., 2015,44:4249. https://www.ncbi.nlm.nih.gov/pubmed/25714523

doi: 10.1039/c4cs00531g     URL     pmid: 25714523
[28]
Wang Q, Li Z, Tao D D, Zhang Q, Zhang P, Guo D P, Jiang Y B . Chem. Commun., 2016,52:12929. https://www.ncbi.nlm.nih.gov/pubmed/27785482

doi: 10.1039/c6cc06075g     URL     pmid: 27785482
[29]
Xu Z, Jia S, Wang W, Yuan Z, Ravoo B J, Guo D S . Nat. Chem., 2019. 11:86. https://www.ncbi.nlm.nih.gov/pubmed/30455432

doi: 10.1038/s41557-018-0164-y     URL     pmid: 30455432
[30]
Ruan Y B, Li A F, Zhao J S, Shen J S, Jiang Y B . Chem. Commun., 2010,46:4938. https://www.ncbi.nlm.nih.gov/pubmed/20523936

doi: 10.1039/c0cc00630k     URL     pmid: 20523936
[31]
Che Y, Yang X M, Zang L . Chem. Commun., 2008,12:1413.
[32]
Zheng H, Yan M, Fan X X, Sun D, Yang S Y, Yang L J, Li J D, Jiang Y B . Chem. Commun., 2012,48:2243. https://www.ncbi.nlm.nih.gov/pubmed/22252219

doi: 10.1039/c2cc17388c     URL     pmid: 22252219
[33]
Zheng H, Zhang X J, Cai X, Bian Q N, Yan M, Wu G H, Lai X W, Jiang Y B . Org. Lett., 2012,14:1986. https://www.ncbi.nlm.nih.gov/pubmed/22486889

doi: 10.1021/ol3004047     URL     pmid: 22486889
[34]
Dwivedi A K, Pandeeswar M, Govindaraju T . ACS Appl. Mater. Interfaces., 2014,6:21369. https://www.ncbi.nlm.nih.gov/pubmed/25405529

doi: 10.1021/am5063844     URL     pmid: 25405529
[35]
Weißenstein A, Würthner F . Chem. Commun., 2015,51:3415. https://www.ncbi.nlm.nih.gov/pubmed/25624111

doi: 10.1039/c4cc09443c     URL     pmid: 25624111
[36]
Huang Y J, Ouyang W J, Wu X, Li Z, Fossey J S, James T D, Jiang Y B . J. Am. Chem. Soc., 2013,135:1700. https://www.ncbi.nlm.nih.gov/pubmed/23317305

doi: 10.1021/ja311442x     URL     pmid: 23317305
[37]
Ma T, Li C, Shi G Q . Langmuir, 2008,24:43. https://www.ncbi.nlm.nih.gov/pubmed/18041856

doi: 10.1021/la702559m     URL     pmid: 18041856
[38]
Wu X, Chen X X, Song B N, Huang Y J, Li Z, Chen Z, James T D, Jiang Y B . Chem. Eur. J., 2014,20:11793. https://www.ncbi.nlm.nih.gov/pubmed/25078854

doi: 10.1002/chem.201402627     URL     pmid: 25078854
[39]
Chen X X, Wu X, Zhang P, Zhang M, Song B N, Huang Y J, Li Z, Jiang Y B . Chem. Commun., 2015,51:13630. https://www.ncbi.nlm.nih.gov/pubmed/26226054

doi: 10.1039/c5cc03495g     URL     pmid: 26226054
[40]
Li X Y, Guo X D, Cao L X, Xun Z Q, Wang S Q, Li S Y, Li Y, Yang G Q . Angew. Chem. Int. Ed., 2014,53:7809. https://www.ncbi.nlm.nih.gov/pubmed/24909142

doi: 10.1002/anie.201403918     URL     pmid: 24909142
[41]
Wu N, Lan J, Yan L, You J . Chem. Commun., 2014,50:4438. https://www.ncbi.nlm.nih.gov/pubmed/24643794

doi: 10.1039/c4cc00752b     URL     pmid: 24643794
[42]
Zhang P, Zhu M S, Luo H, Li Z, Jiang Y B . ChemPlusChem, 2016,81:1326. https://www.ncbi.nlm.nih.gov/pubmed/31964073

doi: 10.1002/cplu.201600419     URL     pmid: 31964073
[43]
He Q, Fan X, Sun S, Li H, Pei Y, Xu Y . RSC Adv., 2015,5:38571.
[44]
Jin B, Zhang X, Zheng W, Liu X, Zhou J, Zhang N, Wang F, Shangguan D . Anal. Chem., 2014,86:7063. https://www.ncbi.nlm.nih.gov/pubmed/24941428

doi: 10.1021/ac501619v     URL     pmid: 24941428
[45]
Karpenko I A, Collot M, Richert L, Valencia C, Villa P, Mely Y, Hibert M, Bonnet D, Klymchenko A S . J. Am. Chem. Soc., 2015,137:405. https://www.ncbi.nlm.nih.gov/pubmed/25506627

doi: 10.1021/ja5111267     URL     pmid: 25506627
[46]
Chen C, Wang R, Guo L, Fu N, Dong H, Yuan Y . Org. Lett., 2011,13:1162. https://www.ncbi.nlm.nih.gov/pubmed/21306133

doi: 10.1021/ol200024g     URL     pmid: 21306133
[47]
Chen C, Dong H, Chen Y, Guo L, Wang Z, Sun J J, Fu N . Org. Biomol. Chem., 2011,9:8195. https://www.ncbi.nlm.nih.gov/pubmed/22027929

doi: 10.1039/c1ob06519j     URL     pmid: 22027929
[48]
Zhu H, Lin Y, Wang G, Chen Y, Lin X, Fu N . Sens. Actuators, B, 2014,198:201.
[49]
Zhu H, Fan J, Chen H, Tang Z, Wang G, Fu N . Dyes Pigm., 2015,113:181.
[50]
Wang K R, An H W, Rong R X, Cao Z R, Li X L . Biosens. Bioelectron., 2014,58:27. https://www.ncbi.nlm.nih.gov/pubmed/24607619

doi: 10.1016/j.bios.2014.02.038     URL     pmid: 24607619
[51]
Cheng G, Fan J, Sun W, Cao J, Hu C, Peng X . Chem. Commun., 2014,50:1018.
[52]
Oushiki D, Kojima H, Terai T, Arita M, Hanaoka K, Urano Y, Nagano T . J. Am. Chem. Soc., 2010,132:2795. https://www.ncbi.nlm.nih.gov/pubmed/20136129

doi: 10.1021/ja910090v     URL     pmid: 20136129
[53]
Zhang P, Zhu M S, Luo H, Zhang Q, Guo L E, Li Z, Jiang Y B . Anal. Chem., 2017,89:6210. https://www.ncbi.nlm.nih.gov/pubmed/28480717

doi: 10.1021/acs.analchem.7b01175     URL     pmid: 28480717
[54]
Hou T C, Wu Y Y, Chiang P Y, Tan K T . Chem. Sci., 2015,6:4643. https://www.ncbi.nlm.nih.gov/pubmed/28717479

doi: 10.1039/c5sc01330e     URL     pmid: 28717479
[55]
Jisha V S, Arun K T, Hariharan M, Ramaiah D J . Am. Chem. Soc., 2006,128:6024. https://www.ncbi.nlm.nih.gov/pubmed/16669657

doi: 10.1021/ja061301x     URL     pmid: 16669657
[56]
Xu Y, Li Z, Malkovskiy A, Sun S, Pang Y J . Phys. Chem. B, 2010,114:8574. https://www.ncbi.nlm.nih.gov/pubmed/20524700

doi: 10.1021/jp1029536     URL     pmid: 20524700
[57]
Xu Y, Malkovskiy A, Pang Y . Chem. Commun., 2011,47:6662. https://www.ncbi.nlm.nih.gov/pubmed/21559544

doi: 10.1039/c1cc11355k     URL     pmid: 21559544
[58]
Chen X, Zhou Y, Peng X, Yoon J . Chem. Soc. Rev., 2010. 39:2120 https://www.ncbi.nlm.nih.gov/pubmed/20502801

doi: 10.1039/b925092a     URL     pmid: 20502801
[59]
Zhou Y, Yoon J . Chem. Soc. Rev., 2012,41:52-67. https://www.ncbi.nlm.nih.gov/pubmed/21799954

doi: 10.1039/c1cs15159b     URL     pmid: 21799954
[60]
Jung H S, Chen X, Kim J S, Yoon J . Chem. Soc. Rev., 2013,42:6019. https://www.ncbi.nlm.nih.gov/pubmed/23689799

doi: 10.1039/c3cs60024f     URL     pmid: 23689799
[61]
Yin C X, Huo F J, Zhang J J, Máñez R M, Yang Y T, Lv H G, Li S D . Chem. Soc. Rev., 2013,42:6032. https://www.ncbi.nlm.nih.gov/pubmed/23703585

doi: 10.1039/c3cs60055f     URL     pmid: 23703585
[62]
Lee M H, Yang Z, Lim C W, Lee Y H, Sun D, Kang C, Kim J S . Chem. Rev., 2013,113:5071. https://www.ncbi.nlm.nih.gov/pubmed/23577659

doi: 10.1021/cr300358b     URL     pmid: 23577659
[63]
Ashton T D, Jolliffe K A, Pfeffer F M . Chem. Soc. Rev., 2015,44:4547. https://www.ncbi.nlm.nih.gov/pubmed/25673509

doi: 10.1039/c4cs00372a     URL     pmid: 25673509
[64]
Anees P, Sreejith S, Ajayaghosh A . J. Am. Chem. Soc., 2014,136:13233. https://www.ncbi.nlm.nih.gov/pubmed/25199066

doi: 10.1021/ja503850b     URL     pmid: 25199066
[65]
Xu Y, Li B, Xiao L, Ouyang J, Sun S, Pang Y . Chem. Commun., 2014,50:8677. https://www.ncbi.nlm.nih.gov/pubmed/24957006

doi: 10.1039/c3cc49254k     URL     pmid: 24957006
[66]
Zhang Q, Zhang P, Li S S, Fu C X, Ding C F , Dye. Pigm., 2019,171:107697.
[67]
Xu Y, Malkovskiy A, Wang Q, Pang Y . Org. Biomol. Chem., 2011,9:2878. https://www.ncbi.nlm.nih.gov/pubmed/21373660

doi: 10.1039/c0ob01061h     URL     pmid: 21373660
[68]
Li J, Lv B Z, Yan D P, Yan S K, Wei M, Yin M Z . Adv. Funct. Mater., 2015,25:7442.
[69]
Shi Y H, Sun H X, Xiang J F, Chen H B, Zhang S G, Guan A J, Li Q, Xu S J, Tang Y L . Chem. Commun., 2016,52:7302. https://www.ncbi.nlm.nih.gov/pubmed/27181338

doi: 10.1039/c6cc02930b     URL     pmid: 27181338
[70]
Zhang P, Guo X J, Xiao Y Z, Zhang Q, Ding C F . Spectrochim. Acta A, 2019,223:117318. https://www.ncbi.nlm.nih.gov/pubmed/31272040

doi: 10.1016/j.saa.2019.117318     URL     pmid: 31272040
[71]
Zhang P, Gong Y, Zhang Q, Guo X J, Ding C F . J. Mater. Chem. B, 2019,7:5182 https://www.ncbi.nlm.nih.gov/pubmed/31460558

doi: 10.1039/c9tb00769e     URL     pmid: 31460558
[72]
侯瑞(Hou R), 李桂群(Li G Q), 张岩(Zhang Y), 李明俊(Li M J), 周桂明(Zhou G M), 柴晓明(Chai X M) . 化学进展 (Progress in Chemistry), 2019,5:690.
[73]
Zhang P, Li S S, Fu C X, Zhang Q, Xiao Y Z Ding C F . Analyst, 2019,144:5472. https://www.ncbi.nlm.nih.gov/pubmed/31384852

doi: 10.1039/c9an01045a     URL     pmid: 31384852
[1] 边颖慧, 董徐静, 朱丽君, 周玉路, 项玉芝, 夏道宏. 石油组分及其模型化合物的超分子化学作用[J]. 化学进展, 2013, 25(08): 1260-1271.
[2] 黄辉,郑立飞,邹小伟,成义祥. 基于1,1'-联-2萘酚衍生物的手性荧光传感器*[J]. 化学进展, 2008, 20(04): 508-517.
[3] 曾振亚 何永炳 孟令芝. 阴离子荧光受体研究进展*[J]. 化学进展, 2005, 17(02): 254-265.
[4] 吴世康. 荧光化学传感器研究中的光化学与光物理问题[J]. 化学进展, 2004, 16(02): 174-.
阅读次数
全文


摘要