English
新闻公告
More
化学进展 2020, Vol. 32 Issue (4): 423-433 DOI: 10.7536/PC190720 前一篇   后一篇

• •

SSZ-13分子筛膜的制备方法及其气体分离

王贺礼1,2, 朱美华1, 梁丽1, 吴婷1, 张飞1, 陈祥树1,**()   

  1. 1. 江西师范大学化学化工学院 先进材料研究院 分子筛膜材料国家地方联合工程实验室 南昌 330022
    2. 江西省科学院能源研究所 南昌 330096
  • 收稿日期:2019-07-18 修回日期:2019-09-27 出版日期:2020-04-05 发布日期:2020-03-30
  • 通讯作者: 陈祥树
  • 作者简介:
    * 通信作者Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(21476099); 国家国际科技合作专项(2015DFA50190); 江西省自然科学基金项目(20171BCB24005)

Preparation and Gas Separation Performance of SSZ-13 Zeolite Membranes

Heli Wang1,2, Meihua Zhu1, Li Liang1, Ting Wu1, Fei Zhang1, Xiangshu Chen1,**()   

  1. 1. Institute of Advanced Materials, State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
    2. Energy Institute, Jiangxi Academy of Sciences, Nanchang 330096, China
  • Received:2019-07-18 Revised:2019-09-27 Online:2020-04-05 Published:2020-03-30
  • Contact: Xiangshu Chen
  • Supported by:
    the National Natural Science Foundation of China(21476099); the State International Science Corporation Specific Program(2015DFA50190); the Natural Science Foundation of Jiangxi Province(20171BCB24005)

SSZ-13分子筛具有CHA构型和3维八元环孔道结构,窗口尺寸约0.38 nm×0.38 nm。相比CH4和N2,SSZ-13分子筛对CO2具有优先吸附选择性,适用于CO2/CH4、CO2/N2等体系的气体分离。SSZ-13分子筛膜的制备方法主要有原位晶化法、二次生长法、微波合成和分子筛转晶法等。高硅SSZ-13分子筛膜的疏水性随着硅铝比的增加而增加,膜层变得更加致密,缺陷减少,气体分离选择性增加。本文梳理了高硅SSZ-13分子筛膜的制备方法和气体分离的机理,分析了支撑体、合成条件、Si/Al比、测试条件和分离体系等因素对高硅SSZ-13分子筛膜气体分离的影响,展望了高硅SSZ-13分子筛膜今后的发展方向。

SSZ-13 zeolite has CHA topology and elliptical cages of large pore volume derived from its low framework density and 3-dimensional eight-membered ring windows (0.38 nm×0.38 nm). In contrast to CH4 and N2, SSZ-13 zeolite preferentially adsorbs CO2, and thus is suitable for CO2/CH4 or CO2/N2 gas separation. SSZ-13 membrane can be prepared by in situ crystallization, secondary growth method, microwave synthesis, and interzeolite conversion synthesis. The hydrophobicity increases as the rise of Si/Al ratio, and the membrane layer becomes more uniform, with less defects, and much more selectivity, which is beneficial for natural gas purification and fuel gas separation. The main processes of preparation of SSZ-13 membranes are reviewed. The mechanism of gas separation of SSZ-13 membrane is summarized. The effects of supports, the composing conditions, Si/Al ratios, test conditions, and the gas mixtures on gas separation performance of SSZ-13 membranes are evaluated in this paper. The further development of high-silica SSZ-13 membrane is forecasted.

Contents

1 Introduction

2 Preparation of high-silica SSZ-13 zeolite membrane

2.1 In situ crystallization

2.2 Secondary growth method

2.3 Microwave synthesis

2.4 Interzeolite conversion synthesis

3 Application of high-silica SSZ-13 membrane in gas separation

3.1 Mechanism of gas separation using high-silica SSZ-13 membrane

3.2 Main parameters affecting gas separation performance of high-silica SSZ-13 membrane

4 Conclusion and outlook

()
表1 常见气体分子的特性[63]
Table 1 Properties of some gas molecules[63]
图1 孔径对选择性和膜的流量的影响及不同孔径下气体分离的机理[51]
Fig. 1 Influence of pore size on selectivity and flux of the membrane and corresponding separation mechanisms[51]
图2 在低(a)和高(b)支撑体扩散阻力下,气体通过支撑体和膜层的分压降[64]
Fig. 2 Partial pressure drops over a zeolite membrane in case of low (a) and high (b) support diffusion restitance[64]
图3 膜的理论选择性与支撑体-分子筛渗透比率的关系[64]
Fig. 3 Theoretical membrane A/B selectivity vs support-zeolite permeance ratio[64]
图4 不同Si/Al比的SSZ-13分子筛膜的CO2/CH4气体分离性能(等摩尔CO2/CH4混合气,20 ℃,进气压力600 kPa,渗透压100 kPa)[35]
Fig. 4 CO2/CH4 mixture separation by SSZ-13 membranes with varying Al content.Conditions: equimolar CO2/CH4 mixture, 20 ℃, 600 kPa feed pressure, and 100 kPa permeate pressure[35]
表2 典型高硅SSZ-13分子筛膜的气体分离性能
Table 2 Typical gas separation performance of high-silica SSZ-13 zeolite membranes
图5 干/湿条件下纯硅CHA分子筛膜的CO2/CH4分离性能(a)通量随进气压力的变化(b)选择性随进气压力的变化。(测试条件:298 K,等摩尔混合气。湿条件:注入饱和水蒸气)[48]
Fig. 5 CO2/CH4 separation performances under dry and humidified conditions: (a) permeance as a function of feed pressure, (b) selectivity as a function of feed pressure. Measurement was performed at 298 K using equimolar mixtures. Under humidified conditions, saturated water steam was supplied[48]
[1]
Pachauri R K , Reisinger A . Fourth Assessment Report on Climate Change. Geneva: IPCC, 2007.
[2]
Pachauri R K , Meyer L A , Team C W .J Rom. Stud., 2015,4:85.
[3]
Jakobson M Z. Energy Environ. Sci., 2009,2: 148.
[4]
Rufford T E , Smart S , Watson G C Y , Graham B F, Boxall J, da Costa J C D, May E F . J Pet. Sci. Eng., 2012,94:123.
[5]
Strathmann H. Ullmann’s Encycl. Ind. Chem., 2011,22:413.
[6]
Sanders D F , Smith Z P , Guo R , Robeson L M , McGrath J E , Paul D R, Freeman B D Polymer, 2013,54:4729. https://linkinghub.elsevier.com/retrieve/pii/S0032386113005399

doi: 10.1016/j.polymer.2013.05.075     URL    
[7]
Ogawa M , Nakano Y .J Membr. Sci., 2000,173:123.
[8]
Venna S R , Carreon M A .J Am. Chem. Soc., 2010,132:76.
[9]
Basu S , Cano-Odena A , Vankelecon I F . J Sep. Pur. Technol., 2011,81:31.
[10]
Robeson L M .J Membr. Sci., 2008,320:390. https://linkinghub.elsevier.com/retrieve/pii/S0376738808003347

doi: 10.1016/j.memsci.2008.04.030     URL    
[11]
Sandström L , Sjöberg E , Hedlund J .J Membr. Sci., 2011,380:232.
[12]
Wang Q , Wu A , Zhong S L , Wang B , Zhou R F .J Membr. Sci., 2017,540:50.
[13]
Zheng Y H , Hu N , Wang H M , Bu N , Zhang F , Zhou R F .J Membr. Sci., 2015,475:303. https://linkinghub.elsevier.com/retrieve/pii/S0376738814008199

doi: 10.1016/j.memsci.2014.10.048     URL    
[14]
Kalipcilar H , Bowen T C , Noble R D , Falconer J L. Chem. Mater., 2002,14(8):3458. https://pubs.acs.org/doi/10.1021/cm020248i

doi: 10.1021/cm020248i     URL    
[15]
Kosinov N , Auffret C , Gücüyener C , Szyja B M , Gascon J , Kapteijn F , Hensen E J M . J. Mater. Chem. A, 2014,2(32):13083. http://xlink.rsc.org/?DOI=C4TA02744B

doi: 10.1039/C4TA02744B     URL    
[16]
Wu T , Wang B , Lu Z H , Zhou R F , Chen X S .J Membr. Sci., 2014,471:338.
[17]
Ng E P , Awala H , Komaty S , Mintova S. Micropor. Mesopor. Mater., 2019,280:256.
[18]
Tomita T , Nakayama K , Sakai H. Micropor. Mesopor. Mater., 2004,68(1/3):71.
[19]
Hasegawa H , Nishida K , Oguro S , Fujimura Y , Yajima K , Niino M , Isomura M , Tomita T . Energy Procedia, 2017,114:32.
[20]
Okazaki J , Hasegawa H , Chikamatsu N , Yajima K , Shimizu K , Niino M. Sep. Purif. Technol., 2019,218:200.
[21]
Zhong S L , Bu N , Zhou R F , Jin W Q , Yu M , Li S G .J Membr. Sci., 2016,520:507.
[22]
Zhu X C , Hofmann J P , Mezari B , Kosinov N , Wu L L , Qian Q Y , Weckhuysen B M , Asahina S , Ruiz-Martinez J , Hensen E J M ACS Catal., 2016,6(4):2163.
[23]
Deimund M A , Harrison L , Lunn J D , Liu Y , Malek A , Shayib R , Davis M E. ACS Catal., 2016,6(2):542.
[24]
Wu L L , Degirmenci V , Magusin P , Lousberg N , Hensen E J M . J Catal., 2013,298:27. https://linkinghub.elsevier.com/retrieve/pii/S0021951712003508

doi: 10.1016/j.jcat.2012.10.029     URL    
[25]
Xu R N , Zhang R D , Liu N , Chen B H , Qiao S Z . ChemCatChem, 2015,7(23):3842. http://doi.wiley.com/10.1002/cctc.201500771

doi: 10.1002/cctc.201500771     URL    
[26]
Ren L M , Zhu L F , Yang C G , Chen Y M , Sun Q , Zhang H Y , Li C J , Nawaz F , Meng X J , Xiao F S. Chem. Commun., 2011,47(35):9789.
[27]
Sato K , Sugimoto K , Shimotsuma N , Kikuchi T , Kyotani T , Kurata T .J Membr. Sci., 2012,409:82.
[28]
Yamanaka N , Itakura M , Kiyozumi Y , Ide Y , Sadakane M , Sano T. Micropor. Mesopor. Mater., 2012,158:141.
[29]
Caro J , Noack M. Micropor. Mesopor. Mater., 2008,115(3):215. https://linkinghub.elsevier.com/retrieve/pii/S1387181108001406

doi: 10.1016/j.micromeso.2008.03.008     URL    
[30]
Maghsoudi H , Soltanieh M , Bozorgzadeh H , Mohamadalizadeh A . Adsorption, 2013,19(5):1045. 067760f4-78d7-4949-91c8-965b8825ce09 http://link.springer.com/article/10.1007/s10450-013-9528-1

doi: 10.1007/s10450-013-9528-1     URL    
[31]
Hudson M R , Queen W L , Mason J A , Fickel D W , Lobo R F , Brown C M .J Am. Chem. Soc., 2012,134(4):1970. https://pubs.acs.org/doi/10.1021/ja210580b

doi: 10.1021/ja210580b     URL    
[32]
Ward J K , Koros W J .J Membr. Sci., 2011,377(1/2):75. https://linkinghub.elsevier.com/retrieve/pii/S0376738811002651

doi: 10.1016/j.memsci.2011.04.010     URL    
[33]
Ward J K , Koros W J .J Membr. Sci., 2011,377(1/2):82.
[34]
Hillock A M W , Miller S J , Koros W J . J Membr. Sci., 2008,314(1/2):193.
[35]
Kosinov N , Auffret C , Borghuis G J , Sripathi V G P , Hensen E J M. . J Membr. Sci., 2015,484:140. https://linkinghub.elsevier.com/retrieve/pii/S0376738815001659

doi: 10.1016/j.memsci.2015.02.044     URL    
[36]
Maghsoudi H , Soltanieh M .J Membr. Sci., 2014,470:159.
[37]
Barrer R M . Zeolites, 1981,1(3):130. https://linkinghub.elsevier.com/retrieve/pii/S0144244981800012

doi: 10.1016/S0144-2449(81)80001-2     URL    
[38]
Zones S I . US P4544538, 1985.
[39]
Díaz-Cabañas M J , Barrett P A , Camblor M A . Chem. Commun., 1998, (17):1881.
[40]
Zhu Q J , Kondo J N , Inagaki S , Tatsumi T . Top. Catal, 2009,52(9):1272. ea9e59b0-a2d2-4e50-8128-0d6eb45b9f4a http://www.springerlink.com/content/8l3142w853673875/

doi: 10.1007/s11244-009-9272-7     URL    
[41]
Zhu Q J , Kondo J N , Ohnuma R , Kubota Y , Yamaguchi M , Tatsumi T. Micropor. Mesopor. Mater., 2008,112(1/3):153. https://linkinghub.elsevier.com/retrieve/pii/S1387181107005598

doi: 10.1016/j.micromeso.2007.09.026     URL    
[42]
Eilertsen E A , Arstad B , Svelle S , Lillerud K P. Micropor. Mesopor. Mater., 2012,153:94. https://linkinghub.elsevier.com/retrieve/pii/S138718111100624X

doi: 10.1016/j.micromeso.2011.12.026     URL    
[43]
Miyamoto M , Nakatani T , Fujioka Y , Yogo K. Micaropor. Mesopor. Mater., 2015,206:67.
[44]
Villaescusa L A , Bull I , Wheatley P S , Lightfoot P , Morris R E .J Mater. Chem., 2003,13(8):1978. http://xlink.rsc.org/?DOI=B300728F

doi: 10.1039/B300728F     URL    
[45]
朱美华(Zhu M H), 袁晓蕾(Yuan X L), 梁丽(Liang L), 吴庆喜(Wu Q X), 张世坤(Zhang S K), 王贺礼(Wang H L), 张飞(Zhang F), 陈祥树(Chen X S) . 江西师范大学学报(自然科学版)(Jiangxi Normal University (Natural Science)), 2017,41(6):562.
[46]
Liang L , Zhu M H , Chen L , Zhong C J , Yang Y M , Wu T , Wang H L , Kumakiri I , Chen X S , Kita H . Membranes, 2018,8(43):1. http://www.mdpi.com/2077-0375/8/1/1

doi: 10.3390/membranes8010001     URL    
[47]
Kida K , Maeta Y , Yogo K .J Membr. Sci., 2017,522:363.
[48]
Kida K , Maeta Y , Yogo K. Sep. Purif. Technol., 2018,197:116.
[49]
Bonaccorsi L , Proverbio E .J Crystal Growth, 2003,247(3):555.
[50]
Xu X , Bao Y , Song C , Yang W , Liu J , Lin L. Micropor. Mesopor. Mater., 2004,75(3):173.
[51]
Xu X , Yang W , Liu J , Lin L . Chinese Science Bulletin, 2000,45(13):1179.
[52]
Hu N , Li Y Q , Zhong S L , Wang B , Zhang F , Wu T , Yang Z , Zhou R F , Chen X S. Micropor. Mesopor. Mater., 2016,228:22.
[53]
Zones S I , van Nordstrand R A . Zeolites, 1988,8(3):166.
[54]
Zones S I , van Nordstrand R A . Zeolites, 1988,8(5):409.
[55]
Zones S I .J Chem. Soc. Faraday Trans., 1990,86(20):3467.
[56]
Zones S I .J Chem. Soc. Faraday Trans., 1991,87(22):3709.
[57]
Itakura M , Goto I , Takahashi A , Fujitani T , Ide Y , Sadakane M , Sano T. Micropor. Mesopor. Mater., 2011,144(1/3):91.
[58]
Imasaka S , Itakura M , Yano K , Fujita S , Okada M , Hasegawa Y , Abe C , Araki S , Yamamoto H. Sep. Purif. Technol., 2018,199:298.
[59]
Sun C H , Srivastava D J , Grandinetti P J , Dutta P K. Micropor. Mespor. Mater., 2016,230:208.
[60]
Krishna R , van Baten J . Sep. Purif. Technol., 2008,61(3):414.
[61]
Wang B , Zheng Y H , Zhang J F , Zhang W J , Zhang F , Xing W H , Zhou R F. Micropor. Mesopor. Mater., 2019,275:191.
[62]
Pham T D , Liu Q , Lobo R F . Langmuir, 2013,29:832.
[63]
Auerbach S M , Carrado K A , Dutta P K . Handbook of Zeolite Science and Technology New York: Marcel Dekker, 2003. 1063.
[64]
Kosinov N , Gascon J , Kapteijn F , Hensen E J M. . J Membr. Sci., 2016,499:65.
[65]
Chisholm N O , Funke H H , Noble R D , Falconer J L .J Membr. Sci., 2018,568:17. https://linkinghub.elsevier.com/retrieve/pii/S037673881832324X

doi: 10.1016/j.memsci.2018.09.049     URL    
[66]
Holmes S M , Markert C , Plaisted R J , Forrest J O , Agger J R , Anderson M W , Cundy C S , Dwyer J. . Chem. Mater, 1999,11:3329.
[67]
Luo Y , Pan E , Chu J , Yang J , Wang J , He G , Lu J. Chinese J. Inorg. Chem., 2018,34:1351.
[68]
张春威(Zhang C W), 杨博(Yang B), 李鹤(Li H), 曹义鸣(Cao Y M), 介兴明(Jie X M), 刘健辉(Liu J H), 张书勤(Zhang S Q), 胡耀强(Hu Y Q), 吴向阳(Wu X Y) 膜科学与技术(Membrane Science and Technology), 2018,38:93.
[69]
Shao J , Zhan Z Y , Li J G , Wang Z , Li B K , Yan Y S .J Membr. Sci., 2014,451:10.
[70]
Kosinov N , Auffret C , Sripathi V G P , Gücüyener C, Jorge G, Freek K, Hensen E J M Micropor. Mesopor. Mater., 2014,197:268.
[71]
Kosinov N , Hensen E J M. . J Membr. Sci., 2013,447:12.
[72]
Caro J , Albrecht D , Noack M. Sep. Purif. Technol., 2009,66:143.
[73]
程志林(Cheng Z L), 晁自胜(Chao Z S), 万惠霖(Wan H L) 化学进展(Progress in Chemistry),2004,16(1):61. 83a98dfc-8f8a-49cb-a298-1b3ee293c0aa http://www.progchem.ac.cn//CN/abstract/abstract8911.shtml
[74]
Barbieri G , Marigliano G , Golemme G , Drioli E. Chem. Eng. J., 2002,85:53.
[75]
Song S C , Gao F , Zhang Y , Li X P , Zhou M , Wang B , Zhou R F. Sep. Purif. Technol., 2019,209:946.
[76]
Chisholm N O , Funke H H , Noble R D , Falconer J L . J Membr. Sci., 2018,568:17.
[77]
Wu T , Diaz M C , Zheng Y H , Zhou R F , Funke H H , Falconer J L , Noble R D .J Membr. Sci., 2015,473:201.
[78]
Eunhee J , Sungwon H , Eunjoo K , Nakwon C , Sung J C , Jungkyu C .J Membr. Sci., 2018,549:46.
[79]
Mei W L , Du Y , Wu T Y , Gao F , Wang B , Duan J G , Zhou J J , Zhou R F .J Membr. Sci., 2018,565:358
[80]
Liu B , Zhou R F , Yogo K , Kita H .J Membr. Sci., 2019,573:333.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[5] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[6] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[7] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[8] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[9] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[10] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[11] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[12] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[13] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[14] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[15] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.