English
新闻公告
More
化学进展 2020, Vol. 32 Issue (4): 481-496 DOI: 10.7536/PC190627 前一篇   后一篇

• •

锂电池用全固态聚合物电解质

陈嘉苗1,3, 熊靖雯1, 籍少敏1,2, 霍延平1,2,**(), 赵经纬2,3,**(), 梁亮1,2,**()   

  1. 1. 广东工业大学轻工化工学院 广州 510006
    2. 中国科学院上海有机化学研究所 有机氟化学中国科学院重点实验室 上海 200032
    3. 广州天赐高新材料股份有限公司 广州 510700
  • 收稿日期:2019-06-25 修回日期:2019-09-21 出版日期:2020-04-05 发布日期:2020-03-30
  • 通讯作者: 霍延平, 赵经纬, 梁亮
  • 作者简介:
    ** 通信作者 Corresponding author e-mail: (Yanping Huo); (Jingwei Zhao); (Liang Liang)
  • 基金资助:
    国家自然科学基金项目(61671162, 21975055, 21975053); 广东省教育厅应用研究重大项目(2017KZDXM025)

All Solid Polymer Electrolytes for Lithium Batteries

Jiamiao Chen1,3, Jingwen Xiong1, Shaomin Ji1,2, Yanping Huo1,2,**(), Jingwei Zhao2,3,**(), Liang Liang1,2,**()   

  1. 1. College of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China
    2. Key Laboratory of Organofluorine Chemistry, CAS, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
    3. Guangzhou Tinci Materials Technology Co., Ltd, Guangzhou 510700, China
  • Received:2019-06-25 Revised:2019-09-21 Online:2020-04-05 Published:2020-03-30
  • Contact: Yanping Huo, Jingwei Zhao, Liang Liang
  • Supported by:
    the National Natural Science Foundation of China(61671162, 21975055, 21975053); the Key Project of Educational Commission of Guangdong Province, China(2017KZDXM025)

随着储能电源和电子产品以及电动汽车的迅速发展,开发高能量密度的锂离子电池已经成为现阶段研究的重点方向之一。目前,较广泛使用的液态锂离子电池,由于容易发生有机液态电解质的泄漏、燃烧、爆炸和短路等问题,存在非常大的安全隐患。因此,迫切需要开发能量密度更高,安全性更加好的锂离子电池。与现有的有机液态电解质相比,全固态聚合物电解质(All-solid-state polymer electrolyte,ASPE)具有理论比容量更高、结构可设计性强、易于大规模生产制造、排除了泄漏液体等体系安全性能好的优点,是一类具有广泛应用前景的电解质。ASPEs在锂离子电池中起到了主导作用,研究者们对其进行了大量的科研工作。本文结合并比较了典型的ASPEs(聚醚、聚酯、聚氨酯、聚硅氧烷)的最新科研进展以及本课题组的工作,回顾了这几种固态聚合物的发展,对高性能锂电池全固态电解质的制备设计、新型锂电池、界面调控和制备工艺成型等方面作了阐述,并对其未来的研究做出展望。

With the rapid development of energy storage power supply, electronic products and electric vehicles, the development of high energy density lithium ion battery has become one of the key research directions. At present, more widely used liquid lithium ion battery, due to the organic liquid electrolyte leakage, combustion, explosion, short circuit and other problems, poses a very big potential safety hazard. Therefore, there is an urgent need to develop lithium ion batteries with higher energy density and better safety. Compared with the existing organic liquid electrolyte, the all-solid-state polymer electrolyte (ASPE) have the advantages of higher theoretical specific capacity, stronger structural design, easier large-scale production and manufacture, and better system safety performance, which is a kind of electrolyte with wide application prospects. ASPE has played a leading role in lithium ion batteries, and researchers have done a lot of research work. This paper combines the latest scientific research progress of typical ASPE (polyether, polyester, polyurethane, polysiloxane) and the work of our group, and reviews the development of these solid polymers to develop high-performance lithium batteries. The preparation of solid electrolyte, new lithium battery, interface regulation, preparation process and other aspects have been expounded, and its future research is prospected.

Contents

1 Introduction

2 All solid polymer electrolyte theory

3 All solid polymer electrolyte

3.1 Polyether

3.2 Polyester

3.3 Polyurethane

3.4 Polysiloxane

4 Conclusion and outlook

()
表1 全固态电解质的优势
Table 1 Solid state battery advantage
表2 目前商业化的全固态电解质的研究情况
Table 2 Research status of commercialized all-solid electrolytes
表3 全固态电解质的汇总
Table 3 Summary of all solid electrolytes
图1 锂离子在PEO聚合物基体中的离子运动[46]
Fig. 1 Ionic motion of Li ions in PEO polymer matrix[46] .Copyright 2005, Elsevier
图2 刚柔耦合CCPL固体聚合物电解质的设计[47]
Fig. 2 Design concept of rigid-flexible coupling CCPL ASPE[47]. Copyright 2014, Springer Nature
图3 PEO/LLZTO/LiTFSI在不同比例的ASPEs示意图[50]
Fig. 3 Schematic illustration for PEO-LLZTO CSE[50]. Copyright 2017, Elsevier
图4 独立交联HPE膜的合成[52]
Fig. 4 Synthesis of freestanding cross-linked HPE membrane[52].Copyright 2018, Frontiers
图5 (a)聚硅氧烷网状SPE薄膜照片;(b)组装LiNi0.8Co0.2O2/SPEs/Li电池在3.0~4.1 V的循环性能[53]
Fig. 5 (a) Photograph of polysiloxane network SPE film; (b) Specific discharge capacity of the LiNi0.8Co0.2O2/SPEs/Li cell with the voltage range of 3.0~4.1 V according to cycles[53]. Copyright 2003, Elsevier
图6 作为锂金属电池电解质的单离子导体三嵌段共聚物P(STFSILi)-b-PEO-b-P(STFSILi)的化学结构[54]
Fig. 6 Chemical structure of the single-ion conductor triblock copolymer P(STFSILi)-b-PEO-b-P(STFSILi) proposed as an electrolyte for lithium-metal-based batteries[54]
图7 PEO基复合电解质的示意图[58]
Fig. 7 Schematic diagram of PEO-based composite electrolyte[58]. Copyright 2018, American Chemical Society
图8 具有各种主体聚合物网络的基于[EMI][TFSI]的PEC的弹性模量与离子电导率的关系[64]
Fig. 8 Elastic modulus versus ionic conductivity for the [EMI][TFSI]-based PECs with various host polymer networks[64]. Copyright 2019, Elsevier
图9 由BF3引发的阳离子聚合机理[66]
Fig. 9 The cationic polymerization mechanism initiated by B F 3 [ 66 ] . Copyright 2017, Elsevier
图10 HMSE的原理图[67]
Fig. 10 Schematic diagram of the HMSE[67].Copyright 2019, Wiley
图11 (a)软包电池运行良好时和(b)软包电池被切除一个小角后给LED灯供电;(c)缺角软电池的电压检测;(d)切下来的小角给LED灯供电[71]
Fig. 11 Illustration of solid-state soft-package lithium cells(a) On the well-running and (b) Being cut away for powering a red LED lamp; (c) Voltage monitoring of obtained incomplete battery; (d) The obtained corner of the cell for lighting a LED lamp[71]. Copyright 2015, Wiley
图12 (a)WPU分散体的合成,(b)PEO和WPU共混物聚合物电解质膜的方法的示意图[75]
Fig. 12 (a) Synthesis of WPU dispersion, (b) process of PEO and WPU blend polymer electrolyte membranes[75].Copyright 2018, Elsevier
图13 并排电纺丝装置原理图[76]
Fig. 13 Schematic of apparatus side-by-side electro-spinning[76]. Copyright 2019, Wiley
图14 (a)Celgard,PEI-PU和SiO2/PEI PU复合膜的Li/LiFePO4电池以0.2 C速率的循环稳定性;(b)Celgard,PEI-PU和SiO2/PEI PU复合膜以0.2 C速率的库仑效率[78]
Fig. 14 (a) Cycling stabilities of Li/LiFePO4 cells using Celgard, PEI-PU and SiO2/PEI PU composite membranes at 0.2 C rate. (b) Coulombic efficiency as a function of cycle number at 0.2 C rate[78]. Copyright 2015, Elsevier
图15 麻风树油基聚合物电解质与LiClO4反应过程[79]
Fig. 15 Reaction of jatropha oil-based polymer electrolyte with LiClO4 in details[79]. Copyright 2016, Elsevier
图16 双官能团聚硅氧烷的合成[86]
Fig. 16 Synthesis of bifunctional polysiloxane[86]. Copyright 2014, Elsevier
图17 合成电解质的结构示意图[87]
Fig. 17 Schematic of the structure of a synthetic electrolyte[87]. Copyright 2019, Elsevier
[1]
Li W , Song B , Manthiram A. Chem. Soc. Rev., 2017,46, 3006.
[2]
Goodenough J B , Kim Y , Chemistry of Materials, 2010,22(3):587.
[3]
Feng X , Ouyang M , Xiang L , Lu L , Yong X , He X. Energy Storage Materials., 2017,10:246. https://linkinghub.elsevier.com/retrieve/pii/S2405829716303464

doi: 10.1016/j.ensm.2017.05.013     URL    
[4]
Liu K , Liu Y Y , Lin D C , Pei A , Cui Y . Science Advances, 2018, 4: eaas9820. https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.aas9820

doi: 10.1126/sciadv.aas9820     URL    
[5]
张恒(Zhang H), 郑丽萍(Zheng L P), 聂进(Nie J), 黄学杰(Huang X J), 周志彬(Zhou Z B) 化学进展(Progress in Chemistry), 2014,26(6):1005. 560a20c2-0230-4ae8-8fad-24a42b498391 http://www.progchem.ac.cn//CN/abstract/abstract11369.shtml

doi: 10.7536/PC131233     URL    
[6]
Schmuch R , Wagner R , Hörpel G, Placke T, Winter M Nature Energy, 2018,3(4):267.
[7]
Gallagher K G , Trask S E , Bauer C , Woehrle T , Lux S F , Tschech M . Journal of the Electrochemical Society, 2016,163, A138. https://iopscience.iop.org/article/10.1149/2.0321602jes

doi: 10.1149/2.0321602jes     URL    
[8]
Fu G , Soucek M D , Kyu T . Solid State Ionics, 2018,320:310.
[9]
Sun C , Liu J , Gong Y , Wilkinson D P , Zhang J . Nano Energy, 2017,33:363.
[10]
杜奥冰(Du AB), 柴敬超(Chai J C), 张建军(Zhang J J), 刘志宏(Liu Z H), 崔光磊(Cui G L) 储能科学与技术(Energy Storage Science and Technology), 2016,5(5):627.
[11]
张建军(Zhang J J), 董甜甜(Dong T T), 杨金凤(Yang J F) . 储能科学与技术(Energy Storage Science and Technology) 2018(5):861.
[12]
程琥(Cheng H), 李涛(Li T), 杨勇(Yang Y) 化学进展(Progress in Chemistry), 2006,18(5):542.
[13]
Cao Y L , Matthew Li , Lu J , Liu J , Khalil A . Nature Nanotechnology, 2019,14(3):200.
[14]
Xu X J , Liu Z B , Ji S M , Wang Z S , Ni Z Y , Lv Y Q , Liu J W , Liu J . Chemical Engineering Journal, 2019,359:765.
[15]
Jankowski P , Dranka M , Zukowska G Z . The Journal of Physical Chemistry C, 2015,119(19):10247.
[16]
Nair J R , Imholt L , Brunklaus G , Winter M . The Electrochemical Society Interface, 2019,28(2):55.
[17]
Fenton D E , Parker J M , Wright P V . Polymer, 1973,14(11):589.
[18]
Armand M. Diffusion & Reactions. 1994,69(3/4):309.
[19]
凌志军(Ling Z J), 何向明(He X M), 李建军(Li J J), 姜长印(Jiang C Y), 万春荣(Wan C R) . 化学进展(Progress in Chemistry), 2006, (4):459.
[20]
Wu Z , Xie Z , Yoshida A , Wang Z , Hao X , Abudula A , Guan G . Renewable and Sustainable Energy Reviews, 2019,109:367.
[21]
Wilberforce T , Khatib F N , Ijaodola O S , Ogungbemi E , El-Hassan Z , Durrant A , Olabi A G . Science of The Total Environment, 2019,678:728.
[22]
Pritam A A , Sharma A L . Journal of Materials Science, 2019,54:7131. https://doi.org/10.1007/s10853-019-03381-3

doi: 10.1007/s10853-019-03381-3     URL    
[23]
Wang S , Min K . Polymer, 2010,51(12):2621. 9bd4cd6e-ac13-4614-844c-de022022dcb3 http://www.sciencedirect.com/science/article/pii/S0032386110003538

doi: 10.1016/j.polymer.2010.04.038     URL    
[24]
Zhang Q , Liu K , Ding F , Liu X . Nano Research, 2017,10:4139. http://link.springer.com/10.1007/s12274-017-1763-4

doi: 10.1007/s12274-017-1763-4     URL    
[25]
Fan L , Wei S , Li S , Li Q , Lu Y . Advanced Energy Materials, 2018,8(11):1702657. http://doi.wiley.com/10.1002/aenm.201702657

doi: 10.1002/aenm.201702657     URL    
[26]
Ishizaki M , Ando H , Yamada N , Tsumoto K , Ono K , Sutoh H . Journal of Materials Chemistry A, 2019,7:4777. http://xlink.rsc.org/?DOI=C8TA11776D

doi: 10.1039/C8TA11776D     URL    
[27]
Hood Z D , Chi M . Journal of Materials Science, 2019,54:10571. https://doi.org/10.1007/s10853-019-03633-2

doi: 10.1007/s10853-019-03633-2     URL    
[28]
Ji S M , Yu L T , Xu X J , Zhang L G , Liu J . Materials Research Bulletin, 2017,96:28. https://linkinghub.elsevier.com/retrieve/pii/S0025540816319213

doi: 10.1016/j.materresbull.2016.11.002     URL    
[29]
Zhang X D , Shi J L , Liang J Y , Wang L P , Yin Y X , Jiang K C , Guo Y G . Journal of Power Sources, 2019,426:242. https://linkinghub.elsevier.com/retrieve/pii/S0378775319304094

doi: 10.1016/j.jpowsour.2019.04.017     URL    
[30]
Zheng S , Fu Z , Dai D , Zhao W . Ceramics International, 2019.
[31]
Liu Z B , Ji S M , Xu X J , Hu R Z , Liu J W , Liu J . Chemistry- A European Journal, 2018,24:1.
[32]
朱春柳(Zhu C L), 陶灿(Tao C), 鲍俊杰(Bao J J), 黄毅萍(Huang Y P), 许戈文(Xu G W) . 塑料工业(Plastic industry), 2015,43(12):132.
[33]
鲍俊杰(Bao J J) . 中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China), 2018.
[34]
Xu X J , Ji S M , Gu M Z , Liu J . ACS Applied Materials &Interfaces. 2015,7(37):20957. https://pubs.acs.org/doi/10.1021/acsami.5b06590

doi: 10.1021/acsami.5b06590     URL    
[35]
Jonas M , Sun B , Erik T , Daniel B . Journal of Power Sources, 2015,298:166. https://linkinghub.elsevier.com/retrieve/pii/S0378775315301907

doi: 10.1016/j.jpowsour.2015.08.035     URL    
[36]
Zhao Y , Huang Z , Chen S , Chen B , Yang J , Zhang Q . Solid State Ionics, 2016,295:65. https://linkinghub.elsevier.com/retrieve/pii/S0167273816303289

doi: 10.1016/j.ssi.2016.07.013     URL    
[37]
马强(Ma Q), 胡勇胜(Hu Y S), 李泓(Li H), 陈立(Chen L), 黄学杰(Huang X J), 周志彬(Zhou Z B) . 物理化学学报(Acta Physico-Chimica Sinica), 2018,34(2):213.
[38]
Jung Y C , Park M S , Kim D H , Ue M , Eftekhari A , Kim D W . Scientific Reports, 2017,7(1):17482. http://www.nature.com/articles/s41598-017-17697-0

doi: 10.1038/s41598-017-17697-0     URL    
[39]
He W , Cui Z , Liu X , Cui Y , Chai J , Zhou X . Electrochimica Acta, 2017,225:151. https://linkinghub.elsevier.com/retrieve/pii/S001346861632672X

doi: 10.1016/j.electacta.2016.12.113     URL    
[40]
Bao J , Tao C , Yu R , Gao M , Huang Y , Chen C . Journal of Applied Polymer Science, 2017,134(48):45554. http://doi.wiley.com/10.1002/app.45554

doi: 10.1002/app.45554     URL    
[41]
Shim J , Kim L , Kim H J , Jeong D , Lee J H , Lee J C . Polymer, 2017,122:222. https://linkinghub.elsevier.com/retrieve/pii/S0032386117306523

doi: 10.1016/j.polymer.2017.06.074     URL    
[42]
Sun Z , Li Y , Zhang S , Shi L , Wu H , Bu H T , Ding S . Journal of Materials Chemistry A, 2019,7(18):11069. http://xlink.rsc.org/?DOI=C9TA00634F

doi: 10.1039/C9TA00634F     URL    
[43]
Hisashi K , Eiji N , Masayoshi W . Polymers for Advanced Technologies, 2018,30(3):736.
[44]
Kallitsis K J , Nannou R , Andreopoulou A K , Daletou M K , Papaioannou D , Neophytides S G , Kallitsis J K . Journal of Power Sources, 2018,379:144. https://linkinghub.elsevier.com/retrieve/pii/S037877531830034X

doi: 10.1016/j.jpowsour.2018.01.034     URL    
[45]
Zheng X Y , Shi Q , Wang Y , Battaglia V S , Huang Y H , Zheng H H . Carbon, 2019,148:105. https://linkinghub.elsevier.com/retrieve/pii/S0008622319302611

doi: 10.1016/j.carbon.2019.03.038     URL    
[46]
Stephan A M . European Polymer Journal, 2006,42(1):21. https://linkinghub.elsevier.com/retrieve/pii/S0014305705003733

doi: 10.1016/j.eurpolymj.2005.09.017     URL    
[47]
Zhang J , Yue L , Hu P , Liu Z , Qin B , Zhang B , Wang Q , Ding G , Zhang C , Zhou X , Yao J , Cui G , Chen L . Scientific Reports, 2014,4(1):6272. https://doi.org/10.1038/srep06272

doi: 10.1038/srep06272     URL    
[48]
Tanaka R , Sakurai M , Sekiguchi H . Electrochimica Acta, 2001,46(10):1709. https://linkinghub.elsevier.com/retrieve/pii/S0013468600007751

doi: 10.1016/S0013-4686(00)00775-1     URL    
[49]
Zhang H , Liu C , Zheng L . Electrochimica Acta, 2014,133:529. d0658ad6-e323-42f7-acee-4a9052341965 http://dx.doi.org/10.1016/j.electacta.2014.04.099

doi: 10.1016/j.electacta.2014.04.099     URL    
[50]
Chen L , Li Y T , Li S P , Fan L Z . Nano Energy, 2018,46:176. https://linkinghub.elsevier.com/retrieve/pii/S2211285517308133

doi: 10.1016/j.nanoen.2017.12.037     URL    
[51]
Lu J , Liu Y , Yao P , Ding Z , Tang Q , Wu J , Liu X . Chemical Engineering Journal, 2019,367:230. https://linkinghub.elsevier.com/retrieve/pii/S1385894719303870

doi: 10.1016/j.cej.2019.02.148     URL    
[52]
Zhang J F , Li X F , Li Y , Wang H Q , Ma C , Wang Y Z , Hu S L , Wei W F . Frontiers in Chemistry, 2018,6:186. https://www.frontiersin.org/article/10.3389/fchem.2018.00186/full

doi: 10.3389/fchem.2018.00186     URL    
[53]
Oh B , Vissers D , Zhang Z . Journal of Power Sources, 2003,119:442.
[54]
Bouchet R , Maria S , Meziane R . Nature Materials, 2013,12(5):452. https://doi.org/10.1038/nmat3602

doi: 10.1038/nmat3602     URL    
[55]
Ma Q , Zhang H , Zhou C W , Zheng L P , Cheng P F , Nie J , Feng W F , Hu Y S , Li H , Huang X J , Chen L Q , Michel Armand , Zhou Z B . Angewandte Chemie International Edition, 2016,55(7):2521. http://doi.wiley.com/10.1002/anie.201509299

doi: 10.1002/anie.201509299     URL    
[56]
Liu Q , Liu Y , Jiao X , Song Z , Sadd M , Xu X , Song J . Energy Storage Materials, 2019,23:105. https://linkinghub.elsevier.com/retrieve/pii/S2405829719303502

doi: 10.1016/j.ensm.2019.05.023     URL    
[57]
Nguyen H D , Kim G T , Shi J , Paillard E , Judeinstein P , Lyonnard S , Bresser D , Iojoiu C . Energy & Environmental Science, 2018,11(11):3298.
[58]
Li D , Chen L , Wang T . ACS Applied Materials and Interfaces, 2018,10(8):7069. https://pubs.acs.org/doi/10.1021/acsami.7b18123

doi: 10.1021/acsami.7b18123     URL    
[59]
Yang T , Zheng J , Cheng Q , Hu Y , Chan C K . ACS Applied Materials & Interfaces, 2017,9(26):21773. https://pubs.acs.org/doi/10.1021/acsami.7b03806

doi: 10.1021/acsami.7b03806     URL    
[60]
Li J D , Dong S M , Chen W , Hu Z L , Zhang Z Y , Zhang H , Cui G L . Journal of Materials Chemistry A, 2018,6(25):11846. http://xlink.rsc.org/?DOI=C8TA02975J

doi: 10.1039/C8TA02975J     URL    
[61]
Naji A , Krause B , Potschke P , Ameli A . Smart Materials and Structures, 2019,28(6):1.
[62]
Motokucho S , Yamada H , Suga Y , Morikawa H , Nakatani H , Urita K . Polymer, 2018,145:194. https://linkinghub.elsevier.com/retrieve/pii/S003238611830404X

doi: 10.1016/j.polymer.2018.05.010     URL    
[63]
Darensbourg D J . Chemical Reviews, 2007,107:2388. https://pubs.acs.org/doi/10.1021/cr068363q

doi: 10.1021/cr068363q     URL    
[64]
Lee S J , Yang H M , Cho K G . Organic Electronics, 2019,65:426. https://linkinghub.elsevier.com/retrieve/pii/S156611991830630X

doi: 10.1016/j.orgel.2018.11.044     URL    
[65]
Zhang X , Wang S , Xue C J . Advanced Materials, 2019,31(11):1806082. https://onlinelibrary.wiley.com/toc/15214095/31/11

doi: 10.1002/adma.v31.11     URL    
[66]
Cui Y , Liang X , Chai J . Advanced Science, 2017,4:1700174. http://doi.wiley.com/10.1002/advs.201700174

doi: 10.1002/advs.201700174     URL    
[67]
Duan H , Fan M , Chen W P , Li J Y . Advanced Materials, 2019,31(12):1807789. https://onlinelibrary.wiley.com/toc/15214095/31/12

doi: 10.1002/adma.v31.12     URL    
[68]
Chai J , Zhang J , Hu P . Journal of Materials Chemistry A, 2016,4(14):5191. http://xlink.rsc.org/?DOI=C6TA00828C

doi: 10.1039/C6TA00828C     URL    
[69]
冯华君(Feng H J), 陈渊(Chen Y), 代克化(Dai K H), 宋兆爽(Song Z S), 马建伟(Ma J W), 其鲁(Qi L) . 物理化学学报(Acta Physico-Chimica Sinica), 2007,23(12):1922. 90b309b2-3ae0-4b69-beb9-0577711c9642 http://www.whxb.pku.edu.cn/CN/abstract/abstract22085.shtml

doi: 10.3866/PKU.WHXB20071217     URL    
[70]
Zhang J J , Zang X , Wen H J , Dong T T , Chai J C , Li Y , Chen B B , Zhao J W , Dong S M , Ma J , Yue L P , Liu Z H , Guo X X , Cui G L , Chen L Q . Journal of Materials Chemistry A, 2017,5(10):4940. http://xlink.rsc.org/?DOI=C6TA10066J

doi: 10.1039/C6TA10066J     URL    
[71]
Zhang J J , Zhao J H , Yue L P , Wang Q F , Chai J C , Liu Z H , Zhou X H , Li H , Guo Y G , Cui G L , Chen L Q . Advanced Energy Materials, 2015,5(24):1501082. http://doi.wiley.com/10.1002/aenm.201501082

doi: 10.1002/aenm.201501082     URL    
[72]
Huang Y , Tang Z , Liu Z , Wei J , Hu H , Zhi C . Nano -Micro Letters, 2018,10(3):38.
[73]
Cong B , Song Y , Ren N , Xie G , Tao C , Huang Y . Materials and Design, 2018,142:221. https://linkinghub.elsevier.com/retrieve/pii/S0264127518300479

doi: 10.1016/j.matdes.2018.01.039     URL    
[74]
Ibrahim S , Ahmad A , Mohamed N S . Journal of Solid State Electrochemistry, 2018,22(2):461. http://link.springer.com/10.1007/s10008-017-3775-0

doi: 10.1007/s10008-017-3775-0     URL    
[75]
Bao J J , Qu X B , Qi G . Solid State Ionics, 2018,320:55. https://linkinghub.elsevier.com/retrieve/pii/S0167273817311785

doi: 10.1016/j.ssi.2018.02.030     URL    
[76]
Cai M , Zhu J W , Yang C C . Polymer, 2019,11(1):185.
[77]
Yan C F , Huang T , Zheng X Z . Royal Society Open Science, 2018,5(8):180311. https://royalsocietypublishing.org/doi/10.1098/rsos.180311

doi: 10.1098/rsos.180311     URL    
[78]
Zhai Y , Xiao K , Yu J . Electrochimica Acta, 2015,154:219. https://linkinghub.elsevier.com/retrieve/pii/S001346861402550X

doi: 10.1016/j.electacta.2014.12.102     URL    
[79]
Mustapa S R , Aung M M , Ahmad A . Electrochimica Acta, 2016,222:293. https://linkinghub.elsevier.com/retrieve/pii/S001346861632299X

doi: 10.1016/j.electacta.2016.10.173     URL    
[80]
Miner E M , Park S S , Dinca M . Journal of the American Chemical Society, 2019,141(10):4422. https://pubs.acs.org/doi/10.1021/jacs.8b13418

doi: 10.1021/jacs.8b13418     URL    
[81]
崔孟忠(Cui M Z), 李竹云(Li Z Y), 张洁(Zhang J), 冯圣玉(Feng S Y) . 化学进展(Progress in Chemistry), 2008, (12):1987. 20d24056-f7ea-4815-ad95-a4ea6e710ca0 http://www.progchem.ac.cn//CN/abstract/abstract9826.shtml
[82]
Chen L , Fan L Z . Energy Storage Materials, 2018,558S2405829718301.
[83]
Liu M , Jin B , Zhang Q , Zhan X , Chen F . Journal of Alloys and Compounds, 2018,742:619. https://linkinghub.elsevier.com/retrieve/pii/S0925838818302718

doi: 10.1016/j.jallcom.2018.01.263     URL    
[84]
Ren C , Liu M , Zhang J , Zhang Q , Zhan X , Chen F . Journal of Applied Polymer Science, 2018,135(9):45848. http://doi.wiley.com/10.1002/app.45848

doi: 10.1002/app.45848     URL    
[85]
Chen L , Fan L Z . Energy Storage Materials, 2018,15:37. https://linkinghub.elsevier.com/retrieve/pii/S2405829718301867

doi: 10.1016/j.ensm.2018.03.015     URL    
[86]
Li J , Lin Y , Yao H . Chemsuschem, 2014,7(7):1901. http://doi.wiley.com/10.1002/cssc.v7.7

doi: 10.1002/cssc.v7.7     URL    
[87]
Deka J R , Saikia D , Lou G W . Materials Research Bulletin, 2019,109:72. https://linkinghub.elsevier.com/retrieve/pii/S0025540818312819

doi: 10.1016/j.materresbull.2018.09.003     URL    
[88]
Shim J , Kim L , Kim H J . Polymer, 2017,122:222. https://linkinghub.elsevier.com/retrieve/pii/S0032386117306523

doi: 10.1016/j.polymer.2017.06.074     URL    
[89]
Boaretto N , Horn T , Popall M . Electrochimica Acta, 2017,241:477. https://linkinghub.elsevier.com/retrieve/pii/S0013468617309143

doi: 10.1016/j.electacta.2017.04.133     URL    
[90]
Yue L P , Ma J , Zhang J J . Energy Storage Materials, 2016,5:139. https://linkinghub.elsevier.com/retrieve/pii/S2405829716301349

doi: 10.1016/j.ensm.2016.07.003     URL    
[91]
Phan T N T , Issa S , Didier G . Polymer International, 2019,68(1):7. http://doi.wiley.com/10.1002/pi.2019.68.issue-1

doi: 10.1002/pi.2019.68.issue-1     URL    
[92]
Lu F Q , Pang Y P , Zhu M F , Han F D , Yang J H , Fang F , Wang C S . Advanced Functional Materials, 2019,29(15):1809219. https://onlinelibrary.wiley.com/toc/16163028/29/15

doi: 10.1002/adfm.v29.15     URL    
[1] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[2] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质[J]. 化学进展, 2021, 33(1): 124-135.
[3] 张庆凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 钠基固体电解质及其在能源上的应用[J]. 化学进展, 2019, 31(1): 210-222.
[4] 崔孟忠,李竹云,张洁,冯圣玉. 硅氧烷基聚合物电解质*[J]. 化学进展, 2008, 20(12): 1987-1997.
[5] 程琥 李涛 杨勇 . 锂/聚合物电解质电化学固/固界面的研究[J]. 化学进展, 2006, 18(05): 542-549.
[6] 凌志军,何向明,李建军,姜长印,万春荣. 锂离子聚合物常温固体电解质的研究进展[J]. 化学进展, 2006, 18(04): 459-466.
[7] 王庆伟,谢德民. 凝胶电解质的研究进展[J]. 化学进展, 2002, 14(03): 167-.
阅读次数
全文


摘要

锂电池用全固态聚合物电解质