English
新闻公告
More
化学进展 2020, Vol. 32 Issue (1): 84-92 DOI: 10.7536/PC190621 前一篇   后一篇

所属专题: 电化学有机合成

• •

含硅功能化聚烯烃:合成及应用

张勇杰1,**(), 樊明帅1, 李晓佩2, 李化毅3, 王书唯1, 祝文亲4   

  1. 1. 大连工业大学 纺织与材料工程学院 大连 116034
    2. 大连工业大学 仪器分析中心 大连 116034
    3. 中国科学院化学研究所 北京 100190
    4. 中国石油石油化工研究院 北京 102206
  • 收稿日期:2019-06-20 出版日期:2020-01-15 发布日期:2019-12-11
  • 通讯作者: 张勇杰
  • 基金资助:
    国家自然科学基金青年项目(21704009); 辽宁省教育厅项目资助(J2017041); 辽宁省教育厅项目资助(J2019046)

Silicon-Containing Functionalized Polyolefin: Synthesis and Application

Yongjie Zhang1,**(), Mingshuai Fan1, Xiaopei Li2, Huayi Li3, Shuwei Wang1, Wenqin Zhu4   

  1. 1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
    2. Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
    3. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    4. Petrochemical Research Institute, PetroChina, Beijing 102206, China
  • Received:2019-06-20 Online:2020-01-15 Published:2019-12-11
  • Contact: Yongjie Zhang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21704009); Department of Education of Liaoning Province(J2017041); Department of Education of Liaoning Province(J2019046)

聚烯烃功能化改性是获得高性价比新材料的有效途径。含硅功能化聚烯烃(SFPO)是聚烯烃分子结构中含有机硅功能基团或有机硅聚合物链段的一类功能化聚烯烃的统称。由于有机硅功能基团及有机硅聚合物特殊的理化性质,SFPO通常具有丰富反应性或优异性能,成为一类有代表性的功能化聚烯烃。SFPO可以作为反应性中间体,用于制备具有复杂拓扑结构的功能化聚烯烃(如星型聚合物、梳型聚合物、接枝共聚物)或聚烯烃共价键接枝改性纳米材料;SFPO还可作为功能性添加剂(如增容剂、加工助剂,表面改性剂),用于开发聚烯烃新材料。近年来,研究人员在含硅功能化聚烯烃研究领域取得了系列进展,本文旨在对相关工作进行系统总结,以期引起同行注意并促进相关研究深入发展。

Functionalization of polyolefin is an efficient route to new polymer materials with high performance/price ratio. Silicon-containing functional polyolefin (SFPO) is a kind of functional polyolefin that incorporate functional silicone groups or polysiloxane segments in the structure of polyolefin. Due to special physiochemical properties of silicone groups or polysiloxane, SFPO often possesses reactivity or advanced properties and forms a new group of functional polyolefin. SFPO can function as reactive intermediates in synthesizing functional polyolefins with complex topologies (star polymer, brush polymer and graft copolymer) or preparing polyolefin covalently grafted nanomaterials. SFPO can also serve as functional additives (compatibilizer, polymer process aid and surface modifier) in developing new polyolefin materials. In recent years, researchers have obtained a series of fruitful results on the syntheses and applications of SFPO. This review aims to cover the recent progress on SFPO, which we hope may arouse the attention of related researchers and promote further achievements in related research areas.

()
图1 TMS-PE与DMS-PE的合成路线及其应用[24,25]
Fig. 1 Synthetic routes and applications of TMS-PE and DMS-PE[24,25]
图2 利用TMS-PE的水解-缩合反应合成具有Si-O-Si交联核的窄分布星型PE[31]
Fig. 2 Synthesis of low dispersity star PE with a Si-O-Si crosslinking core via a hydrolytic condensation process of TMS-PE[31]
图3 在150 ℃下三氯苯中三检测器GPC分析的聚合物特性黏度与分子量的函数关系(其中α为Mark-Houwink方程[η]=KM α中的指数,M LS指光散射检测器测得的绝对分子量)[31]
Fig. 3 Polymer intrinsic viscosity as a function of molecular weight from tri-detector GPC analysis in trichlorobenzene at 150 ℃ (where α is the exponent in Mark-Houwink equation [η]=KM α,M LS refers to absolute M W determined by light scattering detectors)[31]
图4 巯基-烯加成反应与硅氧烷水解共缩合反应结合制备聚乙烯共价键接枝碳纳米管(内插图:聚乙烯接枝碳纳米管透射电镜照片;标尺:50 nm)[32]
Fig. 4 Preparation of PE covalently grafted CNT via a combination of thiol-ene addition and hydrolytic co-condensation reactions (Inset: TEM graph of PE covalently grafted CNT; Scale bar: 50 nm)[32]
图5 用于含硅功能基团聚烯烃合成的链转移剂(a)及共聚单体(b~f)[35,38,40,42~44]
Fig. 5 Chain transfer agent (a) and co-monomers (b~f) used to synthesize polyolefins containing organosilicon functional groups[35,38,40,42~44]
图6 利用马来酸酐接枝聚丙烯与单氨基丙基聚二甲基硅氧烷直接的偶联反应制备聚丙烯接枝聚二甲基硅氧烷[49]
Fig. 6 Synthesis of PP-g-PDMS via the coupling reaction between maleic anhydride grafted PP and monoaminopropyl terminated PDMS[49]
图7 不同聚合物样品的复数黏度数据:PP、PP/MA-PP及PP/PP-g-PDMS
Fig. 7 The complex viscosity curves of pure PP, PP/MA-PP blend and PP/PP-g-PDMS blend
图8 利用DMS-PE与PDMS-diol之间的异官能团缩合制备具有明确结构的PDMS-g-PE[25]
Fig. 8 Syntheses of well-defined PDMS-g-PE via a hetero-condensation reaction between DMS-PE and PDMS-diol[25]
图9 不同聚合物GPC曲线:v-PE,DMS-PE,P(DMS-PE)及PDMS-g-PE[25]
Fig. 9 GPC curves of v-PE, DMS-PE, P(DMS-PE) and PDMS-g-PE[25]
图10 聚乙烯与硅油共混体系扫描电镜照片:LDPE/silicone oil blend (100/5, ×8000, a), LDPE/silicone oil/PDMS-g-PE (100/5/1, ×8000, b), HDPE/silicone oil blend (100/10, ×1000, c)及HDPE/silicone oil/LCAS blend (100/10/1,×1000, d)[25, 54,55]
Fig. 10 SEM micrographs of fracture faces of PE/silicone oil blends: LDPE/silicone oil blend (100/5, ×8000, a), LDPE/silicone oil/PDMS-g-PE (100/5/1, ×8000, b), HDPE/silicone oil blend (100/10, ×1000, c) and HDPE/silicone oil/LCAS blend (100/10/1,×1000, d)[25, 54,55]
图11 利用商品化AMS-C30与硅羟基封端硅氧烷齐聚物之间的重排反应制备LCAS[54,55]
Fig. 11 Synthetic route to long alkyl chain silicone (LCAS) via a siloxane equilibration process between commercially available AMS-C30 and silanol terminated siloxane oligomer[54,55]
[1]
Peacock A J . Handbook of Polyethylene: Structures, Properties And Applications, Marcel Dekker: New York, 2000.
[2]
Kaminsky W . Macromolecular Chemistry and Physics, 2008,209:459.
[3]
胡友良(Hu Y L), 乔金梁(Qiao J L), 吕立新(Lv L X). 聚烯烃功能化及改性:科学与技术(Functionalization and Modification of Polyolefins: Science and Technology). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2006.
[4]
Chung T C . Functionalization of Polyolefins. London: Academic Press, 2002.
[5]
Boaen N K , Hillmyer M A . Chemical Society Reviews, 2005,34(3):267. https://www.ncbi.nlm.nih.gov/pubmed/15726162

doi: 10.1039/b311405h     URL     pmid: 15726162
[6]
Pleşa I , Noţingher P , Stancu C , Wiesbrock F , Schlögl S . Polymers, 2019,11(1), 24.
[7]
Zou H , Wu S , Shen J . Chemical Reviews, 2008,108(9):3893. https://www.ncbi.nlm.nih.gov/pubmed/18720998

doi: 10.1021/cr068035q     URL     pmid: 18720998
[8]
Ciriminna R , Fidalgo A , Pandarus V , Béland F , Ilharco L M , Pagliaro M . Chemical Reviews, 2013,113(8):6592. https://www.ncbi.nlm.nih.gov/pubmed/23782155

doi: 10.1021/cr300399c     URL     pmid: 23782155
[9]
Ciriminna R , Sciortino M , Alonzo G , Schrijver Ad , Pagliaro M . Chemical Reviews, 2011,111(2):765. https://www.ncbi.nlm.nih.gov/pubmed/20726523

doi: 10.1021/cr100161x     URL     pmid: 20726523
[10]
Pagliaro M , Ciriminna R , Michel W C M , Campestrini S . The Journal of Physical Chemistry B, 2006,110(5):1976. https://www.ncbi.nlm.nih.gov/pubmed/16471772

doi: 10.1021/jp055697v     URL     pmid: 16471772
[11]
Hwang H S , Bae J H , Kim H G , Lim K T . European Polymer Journal, 2010,46(8):1654.
[12]
Walcarius A , Etienne M , Jacques B . Chemistry of Materials, 2002,14(6):2757.
[13]
Kango S , Kalia S , Celli A , Njuguna J , Habibi Y , Kumar R . Progress in Polymer Science, 2013,38(8):1232.
[14]
Rahman I A , Jafarzadeh M , Sipaut C S . Ceramics International, 2009,35(5):1883.
[15]
Brinker C . Journal of Non-Crystalline Solids, 1988,100(1):31.
[16]
Hench L L , West J K . Chemical Reviews, 1990,90(1):33.
[17]
Schmidt H J . Journal of Non-Crystalline Solids, 1988,100(1):51.
[18]
Munteanu D . Moisture Cross-Linkable Silane-Modified Polyolefins. In: Al-Malaika S, Ed. Reactive Modifiers for Polymers: Springer Netherlands, 1997. 196.
[19]
谭魁龙(Tan K L), 李振昊(Li Z H), 李志飞(Li Z F), 王永刚(Wang Y G), 义建军(Yi J J). 高分子通报(Chinese Polymer Bulletin), 2013,6:12.
[20]
Guillaume S M . Polymer Chemistry, 2018,9(15):1911.
[21]
张勇杰(Zhang Y J), 李化毅(Li H Y), 董金勇(Dong J Y), 胡友良(Hu Y L). 化学进展(Progress in Chemistry), 2014,26(01):110.
[22]
Dix A , Ptacek S , Poser S , Arnold M . Macromolecular Symposia, 2006,236(1):186.
[23]
Janiak C . Coordination Chemistry Reviews, 2006,250(1/2):66.
[24]
Zhang Y J , Li H Y , Dong J Y , Hu Y L . Polymer Chemistry, 2014,5(1):105.
[25]
Zhang Y J , Li X Y , Wang W , Wang S , Xu J , Xu L , Li H Y . Reactive and Functional Polymers, 2018,122:68.
[26]
Xia X , Ye Z , Morgan S , Lu J . Macromolecules, 2010,43(11):4889.
[27]
Zhang K , Ye Z , Subramanian R . Macromolecules, 2009,42(7):2313.
[28]
Xu L , Ye Z . Chemical Communications, 2013,49(78):8800. https://www.ncbi.nlm.nih.gov/pubmed/23959393

doi: 10.1039/c3cc45101a     URL     pmid: 23959393
[29]
Ye Z , Xu L , Dong Z , Xiang P . Chemical Communications, 2013,49(56):6235. https://www.ncbi.nlm.nih.gov/pubmed/23752687

doi: 10.1039/c3cc42517g     URL     pmid: 23752687
[30]
Huang H , Niu H , Dong J . Macromolecules, 2010,43(20):8331.
[31]
Zhang Y J , Li H Y , Xu Z , Bu W , Liu C , Dong J Y , Hu Y . Polymer Chemistry, 2014,5(13):3963. https://www.ncbi.nlm.nih.gov/pubmed/22660893

doi: 10.1039/c2nr30436h     URL     pmid: 22660893
[32]
Zhang Y J , Li Q , Wang W , Guo A , Li J , Li H Y . Macromolecular Chemistry and Physics, 2016,218(4):1600449.
[33]
Peng Z , Li Q , Li H , Hu Y . Industrial & Engineering Chemistry Research, 2017,56(20):5892.
[34]
Peng Z , Yi D , Xue Z , Li H , Li Q , Hu Y . Macromolecular Chemistry and Physics, 2017,218(16):1700143. http://doi.wiley.com/10.1002/macp.v218.16

doi: 10.1002/macp.v218.16     URL    
[35]
Liu X , Niu H , Li Y , Dong J Y . Polymer Chemistry, 2018,9(24):3347.
[36]
Norsic S , Thomas C , D’Agosto F , Boisson C . Angewandte Chemie International Edition, 2015,54(15):4631. https://www.ncbi.nlm.nih.gov/pubmed/25688747

doi: 10.1002/anie.201411223     URL     pmid: 25688747
[37]
Surivet F , Thanh My L , Pascault JP , Mai C . Macromolecules, 1992,25(21):5742.
[38]
Li H , Zhao H , Zhang X , Lu Y , Hu Y . European Polymer Journal, 2007,43(1):109.
[39]
Ma P C , Siddiqui N A , Marom G , Kim J K . Composites Part A: Applied Science and Manufacturing, 2010,41(10):1345.
[40]
Kurahashi E , Wada T , Nagai T , Chammingkwan P , Terano M , Taniike T . Polymer, 2018,158:46.
[41]
Kuan C F , Kuan H C , Ma C C M , Chen C H , Wu H L . Materials Letters, 2007,61(13):2744.
[42]
Jin Z , Fan H , Li B G , Zhu S . Polymer, 2016,83:20.
[43]
Jin Z , Fan H , Li B G , Zhu S . Macromolecular Materials and Engineering, 2016,301(12):1494.
[44]
Yang T , Qin Y , Dong J Y . Macromolecules, 2018,51(22):9234.
[45]
Zhou H , Li K , Qin Y , Dong J . Acta Polymerica Sinica. DOI: 10.11777/j.issn1000-3304.2019.19078
[46]
Li H , Chen S , Zhang X , Cui N , Zhang Z , Lu Y , Hu Y . Reactive and Functional Polymers, 2005,65(3):285.
[47]
金震(Jin Z), 范宏(Fan H). 化工学报(CIESC Journal), 2016,67(2):672.
[48]
Ciolino A E , Pieroni O I , Vuano B M , Villar M A , Vallés E M . Journal of Polymer Science Part A: Polymer Chemistry, 2004,42(12):2920.
[49]
Fan M , Zhang Y , Li X , Zeng B , Chen S , Zhu W , Wang S , Xu J , Feng N . Polymers for Advanced Technologies, 2019,30(5):1226.
[50]
Jalali-Arani A , Katbab A A , Nazockdast H . Journal of Applied Polymer Science, 2005,96(1):155.
[51]
Jalali-Arani A , Katbab A A , Nazockdast H . Journal of Applied Polymer Science, 2003,90(12):3402.
[52]
Li W , Huang B . Die Makromolekulare Chemie, 1989,190(10):2373. http://doi.wiley.com/10.1002/macp.1989.021901003

doi: 10.1002/macp.1989.021901003     URL    
[53]
Ciolino A E , Barrera Galland G , Luján Ferreira M , Villar M A . Journal of Polymer Science Part A: Polymer Chemistry, 2004,42(10):2462.
[54]
Zhang Y J , Fan M S , Li X P . Polymer Bulletin, 2019, Doi: 10.1007/s00289-019-02883-z.
[55]
Zhang Y J , Li X P , Zhu W Q , Fan M S , Wang S W , Qu M J , Zhang Y , Wang S . Polymers for Advanced Technologies, 2020, DOI: 10.1002/pat.4889.
[56]
Xu Z , Jie S , Li B G . Journal of Polymer Science Part A: Polymer Chemistry, 2014,52(22):3205.
[57]
Ciolino A , Sakellariou G , Pantazis D , Villar M A , Vallés E , Hadjichristidis N . Journal of Polymer Science Part A: Polymer Chemistry, 2006,44(5):1579.
[58]
Petzetakis N , Stone G M , Balsara N P . Macromolecules, 2014,47(13):4151. https://www.ncbi.nlm.nih.gov/pubmed/18324781

doi: 10.1021/bi702528r     URL     pmid: 18324781
[1] 白阳, 阎晓晨, 刘彩萍, 姚灏. H型聚合物的合成及性质[J]. 化学进展, 2020, 32(12): 1879-1884.
[2] 陈柯睿, 胡欣, 邱江凯, 朱宁, 郭凯. 开环易位聚合合成瓶刷聚合物[J]. 化学进展, 2020, 32(1): 93-102.
[3] 张浩, 许芳, 王合营, 姜涛, 马志. 基于聚亚甲基的新型共聚物的可控合成[J]. 化学进展, 2018, 30(2/3): 179-189.
[4] 张艳, 刘雪杰, 闫南, 胡跃鑫, 李海英, 朱雨田. 嵌段共聚物三维软受限自组装[J]. 化学进展, 2018, 30(2/3): 166-178.
[5] 项青, 罗英武*. RAFT乳液聚合[J]. 化学进展, 2018, 30(1): 101-111.
[6] 王倩倩, 吴立萍, 王菁, 王力元*. 嵌段共聚物的导向自组装[J]. 化学进展, 2017, 29(4): 435-442.
[7] 张勇杰, 李化毅, 曲敏杰, 冯钠, 杨威, 张翀. 结构明确聚烯烃接枝共聚物:合成、结构与性能[J]. 化学进展, 2016, 28(11): 1634-1647.
[8] 冯雨晨, 介素云, 李伯耿. 烯烃易位聚合制备遥爪聚合物及嵌段共聚物[J]. 化学进展, 2015, 27(8): 1074-1086.
[9] 熊丽娜, 张雪勤, 孙莹, 杨洪. 全共轭嵌段共聚物的合成组装与应用[J]. 化学进展, 2015, 27(12): 1774-1783.
[10] 魏玮, 刘敬成, 李虎, 穆启道, 刘晓亚. 微电子光致抗蚀剂的发展及应用[J]. 化学进展, 2014, 26(11): 1867-1888.
[11] 杨洁心, 刘雷, 徐君庭. 嵌段共聚物结晶性胶束[J]. 化学进展, 2014, 26(11): 1811-1820.
[12] 王璐璐, 黄海瑛, 何天白. 嵌段共聚物溶液自组装制备纳米管状聚集体[J]. 化学进展, 2014, 26(05): 810-819.
[13] 盛玉萍, 闫南, 朱雨田, 安健. 嵌段共聚物在选择性溶剂中自组装过程的计算机模拟[J]. 化学进展, 2014, 26(0203): 358-365.
[14] 付超, 朱雨田, 施德安. 嵌段共聚物的临界条件液相色谱分离与表征[J]. 化学进展, 2014, 26(01): 140-151.
[15] 王志鹏, 袁金颖* . Diels-Alder反应在构建特殊结构高分子中的应用[J]. 化学进展, 2012, 24(12): 2342-2351.
阅读次数
全文


摘要