English
新闻公告
More
化学进展 2020, Vol. 32 Issue (2/3): 249-261 DOI: 10.7536/PC190616 前一篇   后一篇

• •

基于树枝状聚合物的无机纳米颗粒的制备及应用

陈天有1,2, 王子豪2, 许子政2, 徐祖顺2, 曹峥1,**()   

  1. 1. 江苏省环境友好高分子材料重点实验室 江苏省光伏科学与工程协同创新中心 常州大学材料科学与工程学院 常州 213164
    2. 有机化工新材料湖北省协同创新中心 功能材料绿色制备与应用教育部重点实验室 高分子材料湖北省重点实验室 湖北大学材料科学与工程学院 武汉 430062
  • 收稿日期:2019-06-17 出版日期:2020-02-15 发布日期:2019-12-19
  • 通讯作者: 曹峥
  • 基金资助:
    国家自然科学基金项目(21802035); 国家自然科学基金项目(21704008); 国家自然科学基金项目(51573039); 江苏省环境友好高分子材料重点实验室和江苏省优势学科资助()

Synthesis and Applications of Dendrimer-Based Inorganic Nanoparticles

Tianyou Chen1,2, Zihao Wang2, Zizheng Xu2, Zushun Xu2, Zheng Cao1,**()   

  1. 1. Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
    2. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
  • Received:2019-06-17 Online:2020-02-15 Published:2019-12-19
  • Contact: Zheng Cao
  • About author:
    ** e-mail:
  • Supported by:
    National Natural Science Foundation of China(21802035); National Natural Science Foundation of China(21704008); National Natural Science Foundation of China(51573039); Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)()

树枝状聚合物具有一些独特性质,包括规整且高度支化的三维结构、完美单分散尺寸、内部空腔以及表面大量的官能团等,因而其在催化、检测、生物医用领域具有潜在应用。这些应用的改进或者实现,往往需要在树枝状聚合物中引入无机纳米颗粒,从而制备得到基于树枝状聚合物的无机纳米颗粒。另一方面,树枝状聚合物的存在能够提升无机纳米颗粒在溶液中的稳定性、抑制团聚,从而长时间保留纳米颗粒的优异性能。在过去几十年,因为其优异的性质和潜在的应用,基于树枝状聚合物的无机纳米颗粒吸引了众多科研人员的关注。依据其结构特点,可以将基于树枝状聚合物的无机纳米颗粒大致分为以下三类:(1)树枝状聚合物包裹的无机纳米颗粒;(2)树枝状聚合物稳定的无机纳米颗粒;(3)树枝化基元稳定的无机纳米颗粒。本文侧重归纳并总结近五年基于树枝状聚合物的无机纳米颗粒的制备方法,以及其在催化、生物医用、检测领域的研究进展,并对其制备方法和应用发展进行了展望。

Dendrimer has several unique properties, including well-defined and highly branched three-dimension structures, uniform size, internal space, substantial number of surface groups, and so forth. Thus, dendrimer has potential applications in catalysis, sensing, and biomedical applications. To improve or achieve these applications, inorganic nanoparticles are incorporated to generate dendrimer-based inorganic nanoparticles. On the other hand, the presence of dendrimers can inhibit the aggregation and improve the stability of inorganic nanoparticles in solution, preserving the excellent properties of these nanoparticles. Over the past decades, dendrimer-based inorganic nanoparticles have attracted wide attention of many researchers owing to their excellent properties and potential applications. Based on the distinct structures, dendrimer-based inorganic nanoparticles have three categories:(1) dendrimer-encapsulated inorganic nanoparticles;(2) dendrimer-stabilized inorganic nanoparticles;(3) dendron-stabilized inorganic nanoparticles. Here we review the advances of the synthesis and applications of dendrimer-based inorganic nanoparticles mainly in recent five years, focusing on catalysis, sensing and biomedical applications. And we outlook the future development of dendrimer-based inorganic nanoparticles.

()
图1 (A)树枝状聚合物包裹的无机纳米颗粒,(B)树枝状聚合物稳定的无机纳米颗粒,(C)树枝化基元稳定的无机纳米颗粒
Fig.1 Schematic structures of (A) dendrimer-encapsulated inorganic nanoparticles,(B) dendrimer-stabilized inorganic nanoparticles,(C) dendron-stabilized inorganic nanoparticles
图2 树枝状聚合物包裹的无机纳米颗粒的制备方法[13]
Fig.2 Synthesis of dendrimer-encapsulated inorganic nanoparticles[13]
图3 树枝状聚合物包裹的大尺寸Pt纳米颗粒的合成示意图[47]。其中(A)为树枝状聚合物PAMAM的结构示意图,(B)为烷基链封端的PAMAM,(C)为树枝状聚合物包裹的大尺寸Pt纳米颗粒
Fig.3 Schematic illustration of the synthesis of dendrimer-encapsulated Pt nanoparticles with large sizes[47]. The schematic structures of (A) a PAMAM dendrimer,(B) a PAMAM dendrimer terminated with alkyl chains, and (C) a dendrimer-encapsulated Pt nanoparticle with a large size
图4 共轭噻吩树枝化基元稳定的Au纳米颗粒的合成[61]
Fig.4 Synthesis of conjugated thiophene dendron-stabilized gold nanoparticle[61]
图5 树枝状聚合物包裹的Cu纳米颗粒作为化学选择性和可再生的加氢催化剂[29]
Fig.5 Dendrimer-encapsulated copper nanoparticles as a chemoselective and regenerable hydrogenation catalyst[29]
图式1 黄酮醇的氧化反应
Scheme 1 Oxidation of flavonol
图式1 (A)碘苯和苯乙炔的Sonogashira偶联反应;(B)Suzuki-miyaura交叉偶联反应
Scheme 2 (A) Sonogashira coupling of iodobenzene and phenylacetylene,(B) Suzuki-miyaura cross-coupling
图6 树枝状聚合物包裹的Au纳米颗粒催化的内酯化反应[129]
Fig.6 Lactonization over dendrimer-encapsulated Au nanoparticles[129]
图式3 苄基叠氮与苯乙炔的叠氮炔环加成反应
Scheme 3 Azide alkyne cycloaddition of benzyl azide and phenylacetylene
图7 叶酸改性的树枝状聚合物稳定的Au纳米颗粒的合成[55]
Fig.7 Schematic illustration of the synthesis of folic acid-modified, dendrimer-stabilized gold nanoparticle[55]
图8 用于作为硫醇化抗癌药物载体的树枝状聚合物包裹的Au纳米颗粒的合成[149]
Fig.8 Synthesis route of dendrimer-encapsulated gold nanoparticles used as carriers of thiolated anticancer drugs[149]
图9 树枝状聚合物包裹的无机纳米颗粒用于光热治疗[153]
Fig.9 Schematic illustration of dendrimer-encapsulated nanoparticle for photothermal therapy[153]
[1]
Astruc D, Deraedt C, Djeda R, Ornelas C, Liu X, Rapakousiou A, Ruiz J, Wang Y, Wang Q . Molecules, 2018,23(4):966.
[2]
杨新国(Yang X G), 张登(Zhang D), 唐瑞仁(Tang R R) . 化学进展 (Progress in Chemistry), 2009,21(12):2595.
[3]
刘军民(Liu J M), 卜建华(Bu J H), 麦健航(Mai J H), 江焕峰(Jiang H F) . 化学进展 (Progress in Chemistry), 2008,20(11):1716.
[4]
Stevelmans S, van Hest J C M, Jansen J F G A, van Boxtel D A F J, de Brabander-van den Berg E M M Meijer E W . J. Am. Chem. Soc., 1996,118(31):7398.
[5]
Chechik V, Crooks R M . J. Am. Chem. Soc., 2000,122(6):1243.
[6]
Bosman A W, Janssen H M, Meijer E W . Chem. Rev., 1999,99(7):1665. https://www.ncbi.nlm.nih.gov/pubmed/11849007

doi: 10.1021/cr970069y     URL     pmid: 11849007
[7]
Zeng F, Zimmerman S C . Chem. Rev., 1997,97(5):1681. https://www.ncbi.nlm.nih.gov/pubmed/11851463

doi: 10.1021/cr9603892     URL     pmid: 11851463
[8]
姚敏(Yao M), 王嘉骏(Wang J J), 顾雪萍(Gu X P), 冯连芳(Feng L F) . 化学进展 (Progress in Chemistry), 2012,24(0203):405.
[9]
董博(Dong B), 闫熙博(Yan X B), 牛玉洁(Niu Y J), 王欣(Wang X), 王连永(Wang L Y), 王燕铭(Wang Y M) . 化学进展 (Progress in Chemistry), 2012,24(12):2352.
[10]
Esfand R, Tomalia D A . Drug Discovery Today, 2001,6(8):427. https://www.ncbi.nlm.nih.gov/pubmed/11301287

doi: 10.1016/s1359-6446(01)01757-3     URL     pmid: 11301287
[11]
Yang J, Zhang Q, Chang H, Cheng Y . Chem. Rev., 2015,115(11):5274. https://www.ncbi.nlm.nih.gov/pubmed/25944558

doi: 10.1021/cr500542t     URL     pmid: 25944558
[12]
Li D, Wen S, Shi X . Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015,7(5):678. https://www.ncbi.nlm.nih.gov/pubmed/25641958

doi: 10.1002/wnan.1331     URL     pmid: 25641958
[13]
Myers V S, Weir M G, Carino E V, Yancey D F, Pande S, Crooks R M . Chem. Sci., 2011,2(9):1632.
[14]
Bronstein L M, Shifrina Z B . Chem. Rev., 2011,111(9):5301. https://www.ncbi.nlm.nih.gov/pubmed/21718045

doi: 10.1021/cr2000724     URL     pmid: 21718045
[15]
Cao Z, Chen Y, Zhang C, Cheng J, Wu D, Ma W, Liu C, Fu Z . Soft Matter, 2019,15(14):2950. https://www.ncbi.nlm.nih.gov/pubmed/30724317

doi: 10.1039/c8sm02635a     URL     pmid: 30724317
[16]
Cao Z, Hu Y, Yu Q, Lu Y, Wu D, Zhou A, Ma W, Xia Y, Liu C, Loos K . Advanced Engineering Materials, 2017,19(5):1600826.
[17]
Liu C, Lu Y, Xiong Y, Zhang Q, Shi A, Wu D, Liang H, Chen Y, Liu G, Cao Z . Polym. Degrad. STab., 2018,147:115. https://linkinghub.elsevier.com/retrieve/pii/S0141391017303580

doi: 10.1016/j.polymdegradstab.2017.11.015     URL    
[18]
Cao Z, Hu Y, Lu Y, Xiong Y, Zhou A, Zhang C, Wu D, Liu C . Polym. Degrad. STab., 2017,141:33.
[19]
Garcia M E, Baker L A, Crooks R M . Anal. Chem., 1999,71(1):256. https://www.ncbi.nlm.nih.gov/pubmed/21662946

doi: 10.1021/ac980588g     URL     pmid: 21662946
[20]
Esumi K, Suzuki A, Yamahira A, Torigoe K . Langmuir, 2000,16(6):2604.
[21]
Manna A, Imae T, Aoi K, Okada M, Yogo T . Chem. Mater., 2001,13(5):1674.
[22]
Scott R W J, Wilson O M, Crooks R M . J. Phys. Chem. B, 2005,109(2):692. https://www.ncbi.nlm.nih.gov/pubmed/16866429

doi: 10.1021/jp0469665     URL     pmid: 16866429
[23]
Bronstein L M, Shifrina Z B . Nanotechnologies in Russia, 2009,4(9):576. http://link.springer.com/10.1134/S1995078009090031

doi: 10.1134/S1995078009090031     URL    
[24]
Sun W, Mignani S, Shen M, Shi X . Drug Discovery Today, 2016,21(12):1873. https://www.ncbi.nlm.nih.gov/pubmed/27388223

doi: 10.1016/j.drudis.2016.06.028     URL     pmid: 27388223
[25]
Kesharwani P, Choudhury H, Meher J G, Pandey M, Gorain B . Prog. Mater. Sci., 2019,103:484.
[26]
Li X J, Kono K . Polym. Int., 2018,67(7):840.
[27]
Zhao M, Sun L, Crooks R M . J. Am. Chem. Soc., 1998,120(19):4877.
[28]
Balogh L, Tomalia D A . J. Am. Chem. Soc., 1998,120(29):7355.
[29]
Maity P, Yamazoe S, Tsukuda T . ACS Catal., 2013,3(2):182.
[30]
Knecht M R . Chem. Mater., 2007,19(5):1201.
[31]
Knecht M R, Weir M G, Myers V S, Pyrz W D, Ye H, Petkov V, Buttrey D J, Frenkel A I, Crooks R M . Chem. Mater., 2008,20(16):5218.
[32]
Ye H, Crooks R M . J. Am. Chem. Soc., 2005,127(13):4930. https://www.ncbi.nlm.nih.gov/pubmed/15796558

doi: 10.1021/ja0435900     URL     pmid: 15796558
[33]
Yeung L K, Lee C T, Johnston K P, Crooks R M . Chem. Commun., 2001,( 21):2290. https://www.ncbi.nlm.nih.gov/pubmed/12240155

URL     pmid: 12240155
[34]
Garcia-Martinez J C, Crooks R M . J. Am. Chem. Soc., 2004,126(49):16170. https://www.ncbi.nlm.nih.gov/pubmed/15584753

doi: 10.1021/ja046567n     URL     pmid: 15584753
[35]
Knecht M R, Garcia-Martinez J C, Crooks R M . Langmuir, 2005,21(25):11981. https://www.ncbi.nlm.nih.gov/pubmed/16316142

doi: 10.1021/la051475c     URL     pmid: 16316142
[36]
Gröhn F, Bauer B J, Akpalu Y A, Jackson C L, Amis E J . Macromolecules, 2000,33(16):6042. https://pubs.acs.org/doi/10.1021/ma000149v

doi: 10.1021/ma000149v     URL    
[37]
Ye H, Crooks R M . J. Am. Chem. Soc., 2007,129(12):3627. https://www.ncbi.nlm.nih.gov/pubmed/17335206

doi: 10.1021/ja068078o     URL     pmid: 17335206
[38]
Knecht M R, Weir M G, Frenkel A I, Crooks R M . Chem. Mater., 2008,20(3):1019.
[39]
Weir M G, Knecht M R, Frenkel A I, Crooks R M . Langmuir, 2010,26(2):1137. https://www.ncbi.nlm.nih.gov/pubmed/19839631

doi: 10.1021/la902233h     URL     pmid: 19839631
[40]
Scott R W J, Wilson O M, Oh S K, Kenik E A, Crooks R M . J. Am. Chem. Soc., 2004,126(47):15583. https://www.ncbi.nlm.nih.gov/pubmed/15563188

doi: 10.1021/ja0475860     URL     pmid: 15563188
[41]
Myers S V, Frenkel A I, Crooks R M . Chem. Mater., 2009,21(20):4824.
[42]
Carino E V, Crooks R M . Langmuir, 2011,27(7):4227. https://www.ncbi.nlm.nih.gov/pubmed/21384847

doi: 10.1021/la2001915     URL     pmid: 21384847
[43]
Yamamoto K, Imaoka T . Acc. Chem. Res., 2014,47(4):1127. https://www.ncbi.nlm.nih.gov/pubmed/24576189

doi: 10.1021/ar400257s     URL     pmid: 24576189
[44]
Crooks R M, Zhao M, Sun L, Chechik V, Yeung L K . Acc. Chem. Res., 2001,34(3):181. https://www.ncbi.nlm.nih.gov/pubmed/11263876

doi: 10.1021/ar000110a     URL     pmid: 11263876
[45]
Anderson R M, Yancey D F, Loussaert J A, Crooks R M . Langmuir, 2014,30(49):15009. https://www.ncbi.nlm.nih.gov/pubmed/25456853

doi: 10.1021/la503956h     URL     pmid: 25456853
[46]
Cho T, Yoon C W, Kim J . Langmuir, 2018,34(25):7436. https://www.ncbi.nlm.nih.gov/pubmed/29856918

doi: 10.1021/acs.langmuir.8b01169     URL     pmid: 29856918
[47]
Chen T, Cheng Z, Yi C, Xu Z . Chem. Commun., 2018,54(66):9143. https://www.ncbi.nlm.nih.gov/pubmed/30059083

doi: 10.1039/c8cc05106b     URL     pmid: 30059083
[48]
Lakowicz J R, Gryczynski I, Gryczynski Z, Murphy C J . J. Phys. Chem. B, 1999,103(36):7613. https://www.ncbi.nlm.nih.gov/pubmed/32267907

doi: 10.1021/jp991469n     URL     pmid: 32267907
[49]
Wisher A C, Bronstein I, Chechik V . Chem. Commun., 2006,( 15):1637. https://www.ncbi.nlm.nih.gov/pubmed/16583004

doi: 10.1039/b518115a     URL     pmid: 16583004
[50]
Sooklal K, Hanus L H, Ploehn H J, Murphy C J . Adv. Mater., 1998,10(14):1083.
[51]
Esumi K, Suzuki A, Aihara N, Usui K, Torigoe K . Langmuir, 1998,14(12):3157. https://pubs.acs.org/doi/10.1021/la980162x

doi: 10.1021/la980162x     URL    
[52]
Ciganda R, Gu H, Hernandez R, Escobar A, Martínez A, Yates L, Moya S, Ruiz J, Astruc D . Inorg. Chem., 2017,56(5):2784. https://www.ncbi.nlm.nih.gov/pubmed/28212023

doi: 10.1021/acs.inorgchem.6b02850     URL     pmid: 28212023
[53]
Guerra J, Rodrigo A C, Merino S, Tejeda J, García-Martínez J C, Sánchez-Verdú P, Ceña V, Rodríguez-López J . Macromolecules, 2013,46(18):7316.
[54]
Kim K, Lee J, Jo G, Shin S, Kim J B, Jang J H . ACS Appl. Mater. Interfaces, 2016,8(31):20379. https://www.ncbi.nlm.nih.gov/pubmed/27403733

doi: 10.1021/acsami.6b05710     URL     pmid: 27403733
[55]
Liu H, Xu Y, Wen S, Chen Q, Zheng L, Shen M, Zhao J, Zhang G, Shi X . Chem. Eur. J., 2013,19(20):6409. https://www.ncbi.nlm.nih.gov/pubmed/23505030

doi: 10.1002/chem.201204612     URL     pmid: 23505030
[56]
Li X, Takeda K, Yuba E, Harada A, Kono K . Journal of Materials Chemistry B, 2014,2(26):4167. https://www.ncbi.nlm.nih.gov/pubmed/32261750

doi: 10.1039/c4tb00132j     URL     pmid: 32261750
[57]
Li X, Takashima M, Yuba E, Harada A, Kono K . Biomaterials, 2014,35(24):6576. https://www.ncbi.nlm.nih.gov/pubmed/24816361

doi: 10.1016/j.biomaterials.2014.04.043     URL     pmid: 24816361
[58]
Lu S, Li X, Zhang J, Peng C, Shen M, Shi X . Advanced Science, 2018,5(12):1801612. https://www.ncbi.nlm.nih.gov/pubmed/30581720

doi: 10.1002/advs.201801612     URL     pmid: 30581720
[59]
Kuchkina N V, Bronshtein L M, Rusanov A L, Shifrina Z B . Russ. Chem. Bull., 2009,58(4):862.
[60]
Bhandari R, Anderson R M, Stauffer S, Dylla A G, Henkelman G, Stevenson K J, Crooks R M . Langmuir, 2015,31(23):6570. https://www.ncbi.nlm.nih.gov/pubmed/26039456

doi: 10.1021/acs.langmuir.5b01383     URL     pmid: 26039456
[61]
Deng S, Fulghum T M, Krueger G, Patton D, Park J Y, Advincula R C . Chem. Eur. J., 2011,17(32):8929. https://www.ncbi.nlm.nih.gov/pubmed/21714015

doi: 10.1002/chem.201100246     URL     pmid: 21714015
[62]
Brunetti V, Bouchet L M, Strumia M C . Nanoscale, 2015,7(9):3808. https://www.ncbi.nlm.nih.gov/pubmed/25566989

doi: 10.1039/c4nr04438j     URL     pmid: 25566989
[63]
Park Y, Taranekar P, Park J Y, Baba A, Fulghum T, Ponnapati R, Advincula R C . Adv. Funct. Mater., 2008,18(14):2071.
[64]
Zhao Y, Li Y, Song Y, Jiang W, Wu Z, Wang Y A, Sun J, Wang J . J. Colloid Interface Sci., 2009,339(2):336. https://www.ncbi.nlm.nih.gov/pubmed/19735920

doi: 10.1016/j.jcis.2009.08.009     URL     pmid: 19735920
[65]
Elbert K C, Lee J D, Wu Y, Murray C B . Langmuir, 2018,34(44):13333. https://www.ncbi.nlm.nih.gov/pubmed/30350692

doi: 10.1021/acs.langmuir.8b02960     URL     pmid: 30350692
[66]
Elbert K C, Jishkariani D, Wu Y, Lee J D, Donnio B, Murray C B . Chem. Mater., 2017,29(20):8737.
[67]
Pandey P K, Maheshwari R, Raval N, Gondaliya P, Kalia K, Tekade R K . J. Colloid Interface Sci., 2019,544:61. https://www.ncbi.nlm.nih.gov/pubmed/30825801

doi: 10.1016/j.jcis.2019.02.073     URL     pmid: 30825801
[68]
Saha Ray A, Ghann W E, Tsoi P S, Szychowski B, Dockery L T, Pak Y J, Li W, Kane M A, Swaan P, Daniel M C . Langmuir, 2019,35(9):3391. https://www.ncbi.nlm.nih.gov/pubmed/30712354

doi: 10.1021/acs.langmuir.8b03196     URL     pmid: 30712354
[69]
Gillich T, Acikgöz C, Isa L, Schlüter A D, Spencer N D, Textor M . ACS Nano, 2013,7(1):316. https://www.ncbi.nlm.nih.gov/pubmed/23214719

doi: 10.1021/nn304045q     URL     pmid: 23214719
[70]
Zhao G, Tong L, Cao P, Nitz M, Winnik M A . Langmuir, 2014,30(23):6980. https://www.ncbi.nlm.nih.gov/pubmed/24898128

doi: 10.1021/la501142v     URL     pmid: 24898128
[71]
Xu X, Jian Y, Li Y, Zhang X, Tu Z, Gu Z . ACS Nano, 2014,8(9):9255. https://www.ncbi.nlm.nih.gov/pubmed/25184443

doi: 10.1021/nn503118f     URL     pmid: 25184443
[72]
Jishkariani D, Wu Y, Wang D, Liu Y, van Blaaderen A, Murray C B . ACS Nano, 2017,11(8):7958. https://www.ncbi.nlm.nih.gov/pubmed/28771319

doi: 10.1021/acsnano.7b02485     URL     pmid: 28771319
[73]
Shon Y S, Choi D, Dare J, Dinh T . Langmuir, 2008,24(13):6924. https://www.ncbi.nlm.nih.gov/pubmed/18507425

doi: 10.1021/la800759n     URL     pmid: 18507425
[74]
Wu Y, Chen C, Zhou Q, Li Q X, Yuan Y, Tong Y, Wang H, Zhou X, Sun Y, Sheng X . J. Colloid Interface Sci., 2019,539:361. https://www.ncbi.nlm.nih.gov/pubmed/30594011

doi: 10.1016/j.jcis.2018.12.064     URL     pmid: 30594011
[75]
Roucoux A, Schulz J, Patin H . Chem. Rev., 2002,102(10):3757. https://www.ncbi.nlm.nih.gov/pubmed/12371901

doi: 10.1021/cr010350j     URL     pmid: 12371901
[76]
Bell A T . Science, 2003,299(5613):1688. https://www.ncbi.nlm.nih.gov/pubmed/12637733

doi: 10.1126/science.1083671     URL     pmid: 12637733
[77]
Narayanan R, El-Sayed M A . J. Phys. Chem. B, 2005,109(26):12663. https://www.ncbi.nlm.nih.gov/pubmed/16852568

doi: 10.1021/jp051066p     URL     pmid: 16852568
[78]
Somorjai G A, Contreras A M, Montano M, Rioux R M . Proc. Natl. Acad. Sci. U. S. A., 2006,103(28):10577. https://www.ncbi.nlm.nih.gov/pubmed/16740668

doi: 10.1073/pnas.0507691103     URL     pmid: 16740668
[79]
Van Santen R A . Acc. Chem. Res., 2009,42(1):57. https://www.ncbi.nlm.nih.gov/pubmed/18986176

doi: 10.1021/ar800022m     URL     pmid: 18986176
[80]
Jia C J, Schuth F . Phys. Chem. Chem. Phys., 2011,13(7):2457. https://www.ncbi.nlm.nih.gov/pubmed/21246127

doi: 10.1039/c0cp02680h     URL     pmid: 21246127
[81]
Chen T, Chen B-T, Bukhryakov K V, Rodionov V O . Chem. Commun., 2017,53(85):11638. https://www.ncbi.nlm.nih.gov/pubmed/28956878

doi: 10.1039/c7cc06146c     URL     pmid: 28956878
[82]
Balanta A, Godard C, Claver C . Chem. Soc. Rev., 2011,40(10):4973. https://www.ncbi.nlm.nih.gov/pubmed/21879073

doi: 10.1039/c1cs15195a     URL     pmid: 21879073
[83]
Astruc D . Inorg. Chem., 2007,46(6):1884. https://www.ncbi.nlm.nih.gov/pubmed/17348719

doi: 10.1021/ic062183h     URL     pmid: 17348719
[84]
Narayanan R, El-Sayed M A . J. Am. Chem. Soc., 2003,125(27):8340. https://www.ncbi.nlm.nih.gov/pubmed/12837106

doi: 10.1021/ja035044x     URL     pmid: 12837106
[85]
Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Kuwabata S, Torimoto T, Matsumura M . Angew. Chem. Int. Ed., 2006,45(42):7063. https://www.ncbi.nlm.nih.gov/pubmed/17009288

doi: 10.1002/anie.200602700     URL     pmid: 17009288
[86]
Chen T, Xu Z . ChemistrySelect, 2018,3(23):6421.
[87]
White R J, Luque R, Budarin V L, Clark J H, Macquarrie D J . Chem. Soc. Rev., 2009,38(2):481. https://www.ncbi.nlm.nih.gov/pubmed/19169462

doi: 10.1039/b802654h     URL     pmid: 19169462
[88]
Thomas J M, Johnson B F G, Raja R, Sankar G, Midgley P A . Acc. Chem. Res., 2003,36(1):20. https://www.ncbi.nlm.nih.gov/pubmed/12534301

doi: 10.1021/ar990017q     URL     pmid: 12534301
[89]
Kamat P V . J. Phys. Chem. Lett., 2010,1(2):520.
[90]
Liang Y, Li Y, Wang H, Dai H . J. Am. Chem. Soc., 2013,135(6):2013. https://www.ncbi.nlm.nih.gov/pubmed/23339685

doi: 10.1021/ja3089923     URL     pmid: 23339685
[91]
Niu Z, Li Y . Chem. Mater., 2014,26(1):72.
[92]
Azcárate J C, Corthey G, Pensa E, Vericat C, Fonticelli M H, Salvarezza R C, Carro P . J. Phys. Chem. Lett., 2013,4(18):3127.
[93]
Latham A H, Williams M E . Acc. Chem. Res., 2008,41(3):411. https://www.ncbi.nlm.nih.gov/pubmed/18251514

doi: 10.1021/ar700183b     URL     pmid: 18251514
[94]
Ford M J, Masens C, Cortie M B . Surf. Rev. Lett., 2006,13:297.
[95]
Vilé G, Albani D, Almora-Barrios N, López N, Pérez-Ramírez J . ChemCatChem, 2016,8(1):21.
[96]
Schoenbaum C A, Schwartz D K, Medlin J W . Acc. Chem. Res., 2014,47(4):1438. https://www.ncbi.nlm.nih.gov/pubmed/24635215

doi: 10.1021/ar500029y     URL     pmid: 24635215
[97]
Ulman A . Chem. Rev., 1996,96(4):1533. https://www.ncbi.nlm.nih.gov/pubmed/11848802

doi: 10.1021/cr9502357     URL     pmid: 11848802
[98]
Love J C, Estroff L A, Kriebel J K, Nuzzo R G, Whitesides G M . Chem. Rev., 2005,105(4):1103. https://www.ncbi.nlm.nih.gov/pubmed/15826011

doi: 10.1021/cr0300789     URL     pmid: 15826011
[99]
Chen T, Rodionov V O . ACS Catal., 2016,6(6):4025.
[100]
Koczkur K M, Mourdikoudis S, Polavarapu L, Skrabalak S E . Dalton Trans., 2015,44(41):17883. https://www.ncbi.nlm.nih.gov/pubmed/26434727

doi: 10.1039/c5dt02964c     URL     pmid: 26434727
[101]
Lopez-Sanchez J A, Dimitratos N, Hammond C, Brett G L, Kesavan L, White S, Miedziak P, Tiruvalam R, Jenkins R L, Carley A F, Knight D, Kiely C J, Hutchings G J . Nature Chem., 2011,3:551.
[102]
Astruc D, Boisselier E, Ornelas C . Chem. Rev., 2010,110(4):1857. https://www.ncbi.nlm.nih.gov/pubmed/20356105

doi: 10.1021/cr900327d     URL     pmid: 20356105
[103]
Zhao M, Crooks R M . Angew. Chem. Int. Ed., 1999,38(3):364. https://www.ncbi.nlm.nih.gov/pubmed/29711654

doi: 10.1002/(SICI)1521-3773(19990201)38:3【-逻*辑*与-】amp;amp;lt;364::AID-ANIE364【-逻*辑*与-】amp;amp;gt;3.0.CO;2-L     URL     pmid: 29711654
[104]
Roya S, Majid M H, Shima A, Niousha N, Mohammad R N . Curr. Org. Chem., 2016,20(6):696.
[105]
Zhao P, Feng X, Huang D, Yang G, Astruc D . Coord. Chem. Rev., 2015,287:114.
[106]
Bingwa N, Meijboom R . J. Mol. Catal. A: Chem., 2015,396:1.
[107]
Bingwa N, Meijboom R . J. Phys. Chem. C, 2014,118(34):19849. https://www.ncbi.nlm.nih.gov/pubmed/25177410

doi: 10.1021/jp506234r     URL     pmid: 25177410
[108]
Wang Q, Zhang Y, Zhou Y, Zhang Z, Xu Y, Zhang C, Sheng X . New J. Chem., 2015,39(12):9942.
[109]
Wang L, Yang Q, Cui Y, Gao D, Kang J, Sun H, Zhu L, Chen S . New J. Chem., 2017,41(16):8399.
[110]
Johnson J A, Makis J J, Marvin K A, Rodenbusch S E, Stevenson K J . J. Phys. Chem. C, 2013,117(44):22644.
[111]
Ricciardi R, Huskens J, Verboom W . J. Flow. Chem., 2015,5(4):228. http://www.akademiai.com/doi/abs/10.1556/1846.2015.00018

doi: 10.1556/1846.2015.00018     URL    
[112]
Wu B, Huang H, Yang J, Zheng N, Fu G . Angew. Chem. Int. Ed., 2012,51(14):3440. https://www.ncbi.nlm.nih.gov/pubmed/22374847

doi: 10.1002/anie.201108593     URL     pmid: 22374847
[113]
Antonels N C, Meijboom R . Catal. Commun., 2014,57:148. https://www.ncbi.nlm.nih.gov/pubmed/9600207

doi: 10.1097/00005072-199802000-00006     URL     pmid: 9600207
[114]
Ficker M, Petersen J F, Gschneidtner T, Rasmussen A L, Purdy T, Hansen J S, Hansen T H, Husted S, Moth Poulsen K, Olsson E, Christensen J B . Chem. Commun., 2015,51(49):9957. https://www.ncbi.nlm.nih.gov/pubmed/25997569

doi: 10.1039/c5cc00347d     URL     pmid: 25997569
[115]
Luo L, Duan Z, Li H, Kim J, Henkelman G, Crooks R M . J. Am. Chem. Soc., 2017,139(15):5538. https://www.ncbi.nlm.nih.gov/pubmed/28387511

doi: 10.1021/jacs.7b01653     URL     pmid: 28387511
[116]
Ncube P, Hlabathe T, Meijboom R . Appl. Surf. Sci., 2015,357:1141.
[117]
Wang L, Zhang J, Guo X, Chen S, Cui Y, Yu Q, Yang L, Sun H, Gao D, Xie D . New J. Chem., 2018,42(24):19740.
[118]
Ilunga A K, Meijboom R . J. Mol. Catal. A: Chem., 2016,411:48.
[119]
Luo L, Zhang L, Henkelman G, Crooks R M . J. Phys. Chem. Lett., 2015,6(13):2562. https://www.ncbi.nlm.nih.gov/pubmed/26266734

doi: 10.1021/acs.jpclett.5b00985     URL     pmid: 26266734
[120]
Luo L, Zhang L, Duan Z, Lapp A S, Henkelman G, Crooks R M . ACS Nano, 2016,10(9):8760. https://www.ncbi.nlm.nih.gov/pubmed/27585091

doi: 10.1021/acsnano.6b04448     URL     pmid: 27585091
[121]
Staubitz A, Robertson A P M, Manners I . Chem. Rev., 2010,110(7):4079. https://www.ncbi.nlm.nih.gov/pubmed/20672860

doi: 10.1021/cr100088b     URL     pmid: 20672860
[122]
Staubitz A, Robertson A P M, Sloan M E, Manners I . Chem. Rev., 2010,110(7):4023. https://www.ncbi.nlm.nih.gov/pubmed/20672859

doi: 10.1021/cr100105a     URL     pmid: 20672859
[123]
Ke D, Li Y, Wang J, Zhang L, Wang J, Zhao X, Yang S, Han S . Int. J. Hydrogen Energy, 2016,41(4):2564. https://linkinghub.elsevier.com/retrieve/pii/S0360319915311587

doi: 10.1016/j.ijhydene.2015.11.142     URL    
[124]
Wang Q, Fu F, Escobar A, Moya S, Ruiz J, Astruc D . ChemCatChem, 2018,10(12):2673.
[125]
Wang Q, Fu F, Yang S, Martinez Moro M, Ramirez M d l A, Moya S, Salmon L, Ruiz J, Astruc D . ACS Catal., 2019,9(2):1110.
[126]
Choudary B M, Madhi S, Chowdari N S, Kantam M L, Sreedhar B . J. Am. Chem. Soc., 2002,124(47):14127. https://www.ncbi.nlm.nih.gov/pubmed/12440911

doi: 10.1021/ja026975w     URL     pmid: 12440911
[127]
Astruc D, Lu F, Aranzaes J R . Angew. Chem. Int. Ed., 2005,44(48):7852. https://www.ncbi.nlm.nih.gov/pubmed/16304662

doi: 10.1002/anie.200500766     URL     pmid: 16304662
[128]
Ricciardi R, Huskens J, Verboom W . Org. Biomol. Chem., 2015,13(17):4953. https://www.ncbi.nlm.nih.gov/pubmed/25814154

doi: 10.1039/c5ob00289c     URL     pmid: 25814154
[129]
Ye R, Zhukhovitskiy A V, Kazantsev R V, Fakra S C, Wickemeyer B B, Toste F D, Somorjai G A . J. Am. Chem. Soc., 2018,140(11):4144. https://www.ncbi.nlm.nih.gov/pubmed/29506380

doi: 10.1021/jacs.8b01017     URL     pmid: 29506380
[130]
Liu X, Gregurec D, Irigoyen J, Martinez A, Moya S, Ciganda R, Hermange P, Ruiz J, Astruc D . Nat. Commun., 2016,7:13152. https://www.ncbi.nlm.nih.gov/pubmed/27759006

doi: 10.1038/ncomms13152     URL     pmid: 27759006
[131]
Ye R, Zhao J, Yuan B, Liu W C, Rodrigues De Araujo J, Faucher F F, Chang M, Deraedt C V, Toste F D, Somorjai G A . Nano Lett., 2017,17(1):584. https://www.ncbi.nlm.nih.gov/pubmed/27966991

doi: 10.1021/acs.nanolett.6b04827     URL     pmid: 27966991
[132]
Anderson M J, Ostojic N, Crooks R M . Anal. Chem., 2017,89(20):11027. https://www.ncbi.nlm.nih.gov/pubmed/28968078

doi: 10.1021/acs.analchem.7b03016     URL     pmid: 28968078
[133]
Ostojic N, Crooks R M . Langmuir, 2016,32(38):9727. https://www.ncbi.nlm.nih.gov/pubmed/27641461

doi: 10.1021/acs.langmuir.6b02578     URL     pmid: 27641461
[134]
Ostojic N, Duan Z, Galyamova A, Henkelman G, Crooks R M . J. Am. Chem. Soc., 2018,140(42):13775. https://www.ncbi.nlm.nih.gov/pubmed/30351132

doi: 10.1021/jacs.8b08036     URL     pmid: 30351132
[135]
Trindell J A, Clausmeyer J, Crooks R M . J. Am. Chem. Soc., 2017,139(45):16161. https://www.ncbi.nlm.nih.gov/pubmed/29099183

doi: 10.1021/jacs.7b06775     URL     pmid: 29099183
[136]
Xiong Z, Shen M, Shi X . Science China Materials, 2018,61(11):1387.
[137]
Fan Y, Sun W, Shi X . Small Methods, 2017,1(12):1700224.
[138]
Qiao Z, Shi X . Prog. Polym. Sci., 2015,44:1.
[139]
Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G . Biomaterials, 2013,34(2):470. https://www.ncbi.nlm.nih.gov/pubmed/23088841

doi: 10.1016/j.biomaterials.2012.09.054     URL     pmid: 23088841
[140]
Zhao L, Shi X, Zhao J . Drug Delivery, 2017,24(2):81. https://www.ncbi.nlm.nih.gov/pubmed/21410324

doi: 10.1089/jamp.2010.0831     URL     pmid: 21410324
[141]
Ma W, Fu F, Zhu J, Huang R, Zhu Y, Liu Z, Wang J, Conti P S, Shi X, Chen K . Nanoscale, 2018,10(13):6113. https://www.ncbi.nlm.nih.gov/pubmed/29547220

doi: 10.1039/C7NR09269E     URL     pmid: 29547220
[142]
Liu J, Xiong Z, Zhang J, Peng C, Klajnert-Maculewicz B, Shen M, Shi X . ACS Appl. Mater. Interfaces, 2019,11(17):15212. https://www.ncbi.nlm.nih.gov/pubmed/30964632

doi: 10.1021/acsami.8b21679     URL     pmid: 30964632
[143]
Xing Y, Zhu J, Zhao L, Xiong Z, Li Y, Wu S, Chand G, Shi X, Zhao J . Drug Delivery, 2018,25(1):1384. https://www.ncbi.nlm.nih.gov/pubmed/29869521

doi: 10.1080/10717544.2018.1474968     URL     pmid: 29869521
[144]
Xu X, Zhao L, Li X, Wang P, Zhao J, Shi X, Shen M . Biomaterials Science, 2017,5(12):2393. https://www.ncbi.nlm.nih.gov/pubmed/29038813

doi: 10.1039/c7bm00826k     URL     pmid: 29038813
[145]
Wen S, Zhao L, Zhao Q, Li D, Liu C, Yu Z, Shen M, Majoral J P, Mignani S, Zhao J, Shi X . Journal of Materials Chemistry B, 2017,5(21):3810. https://www.ncbi.nlm.nih.gov/pubmed/32264242

doi: 10.1039/c7tb00543a     URL     pmid: 32264242
[146]
Li X, Xiong Z, Xu X, Luo Y, Peng C, Shen M, Shi X . ACS Appl. Mater. Interfaces, 2016,8(31):19883. https://www.ncbi.nlm.nih.gov/pubmed/27434031

doi: 10.1021/acsami.6b04827     URL     pmid: 27434031
[147]
Wolfbeis O S . Chem. Soc. Rev., 2015,44(14):4743. https://www.ncbi.nlm.nih.gov/pubmed/25620543

doi: 10.1039/c4cs00392f     URL     pmid: 25620543
[148]
Yang L, Wang H, Li D, Li L, Lou X, Liu H . Chem. Mater., 2018,30(15):5507.
[149]
Wang X, Cai X, Hu J, Shao N, Wang F, Zhang Q, Xiao J, Cheng Y . J. Am. Chem. Soc., 2013,135(26):9805. https://www.ncbi.nlm.nih.gov/pubmed/23789713

doi: 10.1021/ja402903h     URL     pmid: 23789713
[150]
Zhu J, Wang G, Alves C S, Tomás H, Xiong Z, Shen M, Rodrigues J, Shi X . Langmuir, 2018,34(41):12428. https://www.ncbi.nlm.nih.gov/pubmed/30251859

doi: 10.1021/acs.langmuir.8b02901     URL     pmid: 30251859
[151]
Kong L, Shi X . Supramolecular Chemistry of Biomimetic Systems, Springer Singapore, Singapore, 2017,285.
[152]
Shan Y, Luo T, Peng C, Sheng R, Cao A, Cao X, Shen M, Guo R, Tomás H, Shi X . Biomaterials, 2012,33(10):3025. https://www.ncbi.nlm.nih.gov/pubmed/22248990

doi: 10.1016/j.biomaterials.2011.12.045     URL     pmid: 22248990
[153]
Zhou Z, Wang Y, Yan Y, Zhang Q, Cheng Y . ACS Nano, 2016,10(4):4863. https://www.ncbi.nlm.nih.gov/pubmed/27054555

doi: 10.1021/acsnano.6b02058     URL     pmid: 27054555
[154]
Yan Y, Gao X, Zhang S, Wang Y, Zhou Z, Xiao J, Zhang Q, Cheng Y . ACS Appl. Mater. Interfaces, 2019,11(1):160. https://www.ncbi.nlm.nih.gov/pubmed/30525391

doi: 10.1021/acsami.8b15827     URL     pmid: 30525391
[155]
Yuan X, Wen S, Shen M, Shi X . Analytical Methods, 2013,5(20):5486.
[156]
Yang L, Lou X, Yu F, Liu H . Analyst, 2019,144(8):2765. https://www.ncbi.nlm.nih.gov/pubmed/30869682

doi: 10.1039/c9an00132h     URL     pmid: 30869682
[157]
Ning D, Zhang H, Zheng J . J. Electroanal. Chem., 2014, 717-718:29. https://www.ncbi.nlm.nih.gov/pubmed/24926227

doi: 10.1016/j.jelechem.2014.01.020     URL     pmid: 24926227
[158]
Ding R, Fan X, Xue L, Ma X, Chen S, Luo Z . Anal. Lett., 2015,48(11):1686.
[159]
Baghayeri M, Alinezhad H, Tarahomi M, Fayazi M, Ghanei-Motlagh M, Maleki B . Appl. Surf. Sci., 2019,478:87. https://linkinghub.elsevier.com/retrieve/pii/S0169433219302326

doi: 10.1016/j.apsusc.2019.01.201     URL    
[160]
Wang L, Zhu L, Yu Q, Chen S, Cui Y, Sun H, Gao D, Lan X, Yang Q, Xiao H . J. Biomater. Sci., Polym. Ed., 2018,29(18):2267. https://www.ncbi.nlm.nih.gov/pubmed/30382000

doi: 10.1080/09205063.2018.1541499     URL     pmid: 30382000
[161]
Cui Y, Zhang J, Yu Q, Guo X, Chen S, Sun H, Liu S, Wang L, Lai X, Gao D . New J. Chem., 2019.
[162]
Niu X, Huang L, Zhao J, Yin M, Luo D, Yang Y . Analytical Methods, 2016,8(5):1091. https://www.ncbi.nlm.nih.gov/pubmed/11891896

doi: 10.1002/1521-3765(20020301)8:5【-逻*辑*与-】amp;amp;lt;1091::aid-chem1091【-逻*辑*与-】amp;amp;gt;3.0.co;2-y     URL     pmid: 11891896
[163]
Zhao M, Huang D, Zhuo Y, Chai Y Q, Yuan R . Electrochim. Acta, 2016,212:734.
[164]
Kavosi B, Navaee A, Salimi A . J. Lumin., 2018,204:368. https://linkinghub.elsevier.com/retrieve/pii/S0022231318304381

doi: 10.1016/j.jlumin.2018.08.012     URL    
[165]
Tan L, Ge J, Jiao M, Jie G, Niu S . Talanta, 2018,183:108. https://www.ncbi.nlm.nih.gov/pubmed/29567151

doi: 10.1016/j.talanta.2018.02.063     URL     pmid: 29567151
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[5] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[6] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[7] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[8] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[9] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[10] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[11] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[12] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[13] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[14] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[15] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.