English
新闻公告
More
化学进展 2020, Vol. 32 Issue (2/3): 190-203 DOI: 10.7536/PC190613 前一篇   后一篇

所属专题: 电化学有机合成

• •

金刚烷基微孔有机聚合物的合成与性能

李梁君, 邓建辉, 郭建维**(), 岳航勃**()   

  1. 广东工业大学轻工化工学院 广州 510006
  • 收稿日期:2019-06-12 出版日期:2020-02-15 发布日期:2019-12-19
  • 通讯作者: 郭建维, 岳航勃
  • 基金资助:
    国家自然科学基金项目(21476051); 国家自然科学基金项目(21706039); 广东省自然科学基金项目(2017A030310300); 广东省自然科学基金项目(2016A030310349); 广州市科技计划项目(201704030075); 广东省学位与研究生教育改革研究项目(2017QTLXXM12)

Synthesis and Properties of Microporous Organic Polymers Based on Adamantane

Li Liangjun, Jianhui Deng, Jianwei Guo**(), Hangbo Yue**()   

  1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-06-12 Online:2020-02-15 Published:2019-12-19
  • Contact: Jianwei Guo, Hangbo Yue
  • About author:
    ** e-mail: (Jianwei Guo);
  • Supported by:
    National Natural Science Foundation of China(21476051); National Natural Science Foundation of China(21706039); Natural Science Foundation of Guangdong Province(2017A030310300); Natural Science Foundation of Guangdong Province(2016A030310349); Science and Technology Program of Guangzhou City(201704030075); Degree and Graduate Education Reform Research Program of Guangdong Province(2017QTLXXM12)

微孔有机聚合物由于具有优异的热稳定性、化学稳定性、低密度、高比表面积、分子尺度的孔径分布等优点,在气体储存、气体吸附与分离、有机蒸气吸附、异相催化剂载体、水处理、功能材料等方面引起研究者们极大的兴趣。通常,分子构筑单元特别是在平面或空间中呈对称性的单元,是合成微孔有机聚合物的核心单位。在众多的构筑单元或单体中,多取代金刚烷化合物具有高空间对称性和刚性结构特点,已被成功地用作分子“结”与其他多种类型的连接单元(分子“杆”)来构建三维微孔有机聚合物,而且此类微孔有机聚合物在合成产率、结构稳定性、孔径分布、吸附分离等方面表现出许多特殊或优异的性质。本文介绍了目前由金刚烷结构单元构建的以下几种微孔有机聚合物在合成和性能方面的研究进展:苯环连接型、席夫碱连接型、酰亚胺连接型、富氮型(苯并咪唑和三嗪),详细分析和比较了这些聚合物在合成方法、结构特点、稳定性与吸附性能等方面的异同点。此外,介绍了几种其他新型的金刚烷基聚合物。最后提出基于金刚烷的微孔有机聚合物未来的研究方向与思路。

Microporous organic polymers(MOPs) is one of the most promising new materials for many applications, such as gas capture and storage, gas separation, organic vapor adsorption, heterogeneous catalyst carrier, water treatment, functional materials and so on, making them to be a research hotspot. This is due to the fact that MOPs have shown many advantages in, for example, excellent thermal stability, chemical stability, low density, high specific surface area, and molecular pore size architecture. Generally, molecular building blocks, particularly being symmetrical in plane or space, are the core architecture in the synthesis of MOPs. Among various building molecules, multi-substituted adamantane, has been reported as a new molecular "knot" candidate for the creation of MOPs, by connecting with a "linkage" molecule, thanks to its highly stereoscopic symmetrical structure and structural rigidity. In addition, the adamantane-based MOPs have shown many advantageous and interesting properties in terms of synthetic yield, structural stability, pore size distribution, gas/vapor adsorption and separation. This mini review focuses on recent progress in the synthesis and interesting properties of the MOPs with adamantane incorporated(MOP-Ad). The MOP-Ad polymers are classified into phenyl-linkage, Schiff base linkage, imide linkage, and nitrogen-rich(benzimidazole and triazine) categories. Special attention is paid to the similarities and differences with comparison in the synthetic route, structural characteristics, stability and adsorption properties. Besides, some emerging new types of Ad-polymers are briefly introduced and an outlook is also proposed for the MOP-Ad.

()
图1 用于合成MOP-Ad的分子“结”和“杆”
Fig.1 Different molecular knots and rods for MOP-Ad synthesis
表1 不同连接类型的MOP-Ad的主要性能
Table 1 Properties of MOP-Ad for different linkage types
Type Material Knots & Rods BET surface
area(m2·g-1)
Pore size
(nm)
H2 uptake
(wt%)
Special Properties ref
Phenyl CMP-3 K1+K1 3108 1.4 2.34a SABET=3108 m2·g-1 23
-linkage MOP-Ad-1 K1+R1 974 0.74 1.07a Thermal stability:≈520 ℃ 28
MOP-Ad-2 K1+R2 653 0.55 0.92a Thermal stability:≈520 ℃ 28
MOP-Ad-3 K1+R3 282 0.52 0.49a Thermal stability:≈520 ℃ 28
TBPAd-T K1+R4 654 0.87 0.60a Thermal stability:≈500 ℃ 29
Trandafir’s COF K2+R5 577 0.8 0.05b Au or Pd carrier for catalyst; Thermal stability:≈300 ℃ 30
HBPBA-1 K3+R6 742 0.4~0.6 1.11~1.16a Hexaphenylbiadamantane-based unit; Thermal
stability:≈480 ℃
31
HBPBA-2 K3+R7 760 0.4~0.6 1.11~1.16a Hexaphenylbiadamantane-based unit; Thermal stability:≈480 ℃ 31
HBPBA-3 K3+R8 891 0.4~0.6 1.11~1.16a Hexaphenylbiadamantane-based unit; Thermal stability:≈480 ℃ 31
HBPBA-D K3+R9 488 0.92~1.1 - Hexaphenylbiadamantane-based unit; Thermal stability:≈480 ℃ 37
TBBPA-D K4+R9 395 0.42 - Eight-arm tetraphenyl “knots”; Thermal stability:≈372 ℃ 37
CMF-Ad-1 K4+R1 907 0.73 1.44a Eight-arm tetraphenyl “knot”; π-conjugated skeleton; high yield=95.1% 32
CMF-Ad-2 K4+R2 765 0.51 1.15a Eight-arm tetraphenyl “knot”; π-conjugated skeleton; high yield=90.8% 32
CMF-Ad-3 K4+R3 604 0.86 1.22a Eight-arm tetraphenyl “knot”; π-conjugated skeleton; high yield=87.7% 32
Type Material Knots & Rods BET surface
area(m2·g-1)
Pore size
(nm)
H2 uptake
(wt%)
Special Properties ref
Schiff base
linkage
PSN-1 K5+R10 1045 0.7 1.26a Structure-directing effect of isomers; Pore volume=0.86 cm3·g-1 40
PSN-2 K5+R11 376 2.2 0.90a Structure-directing effect of isomers; Pore size=2.2 nm 40
PSN-3 K5+K6 865 0.6 1.32a Benzene=80.5 wt%c; Cyclohexane=
63.7 wt%c; Pore volume=0.83 cm3·g-1
41
COF-MA K5+K6 813 0.57 - Long range order 42
Imide sPI-1 K6+R12 1108 0.60 2.50a CO2=23.7 wt%e, Benzene=159.7 wt%c 51
linkage PI-ADPM K6+R13 862 1.06~1.34 1.27a Benzene=99.2 wt%c; Cyclohexane
=59.7 wt%c
49
PI-ADNT K6+R14 774 0.75 - Thermal stability:=621 ℃ 50
PI-NO2-1,2,3 K6+R14 286(max) 0.57~0.75 - Nitration modification; Max selectivity
(CO2/CH4)=21f
50
Nitrogen-rich
Benzimidazole PBI-Ad-1 K5+R15 1023 0.58 1.60a Selectivity:(CO2/N2)=71f; Benzene=
98 wt%d; Cyclohexane=53.6 wt%d
36
PBI-Ad-2 K5+R16 926 0.60 1.30a Selectivity:(CO2/N2)=70f; Benzene=
76.5 wt%d; Cyclohexane=46.3 wt%d
36
Triazine PCTF-5 K7+K7 1183 1 1.24a Thermal stability: ≈500 ℃ 55
PCN-AD K8+K8 843 0.78 1.49a Selectivity:(CO2/N2)=112f; Benzene=
98 wt%c; Cyclohexane=57.4 wt%c
54
Other types Adamantane-based oxacyclophanes K9+R17 - - - Macrocyclic framework 67
TDA K10+R18 - - - Carrier for small molecules: CH3Cl, n-hexane, ethanol, etc. 68
TKDPAd K10+R19 - - - Flame retardants; PC/TKDPAd(8 wt%) UL-94 V-0 70
图2 MOP-Ad的(a)合成路线和(b)分子结构图[28]
Fig.2 (a) Synthesis of MOP-Ad networks and (b) cartoon 3D representations of the networks in each case[28].(i) Tetrakis(triphenylphosphine) palladium(0) and K2CO3(aq.) were added, degassed by purging argon, and stirred at 150 ℃ for 72 h. Copyright 2017, RSC
图3 (a)静定结构的双金刚烷核心聚合物(HBPBA)[31]和(b)超静定结构π电子骨架聚合物(CMF-Ad)[32]的合成路线图
Fig.3 Synthesis of (a) dual-adamantane frameworks with static-determined structure(HBPBA) [31] and (b) adamantane-based frameworks with conjugated π-electron skeletons(CMF-Ad)[32]. Copyright 2017&2018, Elsevier
图4 席夫碱PSN-1、PSN-2、PSN-3的合成路线图[40,41]
Fig.4 Synthesis of Schiff base PSN-1、PSN-2、PSN-3[40,41]
图5 金刚烷基聚酰亚胺微孔聚合物的合成路线图[49,50,51]
Fig.5 Synthesis of adamatane-based polyimide[49,50,51]
图6 微孔聚苯并咪唑网络(PBI-Ad)合成路线图[36]
Fig.6 Synthesis of the microporous polybenzimidazole networks(PBI-Ad)[36]. Copyright 2015, ACS
图7 多孔共价三氮基(三嗪)框架PCTF3到PCTF7的合成路线图示[55]
Fig.7 Synthesis of porous covalent triazine-based frameworks PCTF-3 to PCTF-7[55]. Copyright 2013, RSC
表2 含氮连接类型MOP-Ad的性能对比
Table 2 Performance comparison on MOP-Ad incorporating nitrogen
图8 二取代金刚烷基衍生物合成杂氧环番路线图[67]
Fig.8 Synthetic procedure of disubstituted adamantine-based oxacyclophanes[67]. Copyright 2015, ACS
图9 四取代含甲基金刚烷的合成及其包含小分子的过程[68]
Fig.9 Synthesis of tetrasubstituted adamantanes and process of incorporating small molecules[68]. Copyright 2015, Wiley
图10 多取代二苯基磷酸盐金刚烷结构[70]
Fig.10 Structure of multi-substituted diphenylphosphate adamantane[70]
[1]
林益军(Lin Y J), 朱云龙(Zhu Y L), 旷桂超(Kuang G C), 喻桂朋(Yu G M), 金日光(Jin R G) . 化学进展 (Progress in Chemistry), 2017,29(7):766.
[2]
Ding S Y, Wang W . Chemical Society Reviews, 2013,44(2):548.
[3]
Diercks C S, Yaghi O M . Science, 2017,355(6328):923
[4]
Mendoza J L, El-Kaderi H M, Hunt J R, Côté A P, Yaghi O M . Chemical Society Reviews, 2007,41(18):6010. https://www.ncbi.nlm.nih.gov/pubmed/22821129

doi: 10.1039/c2cs35157a     URL     pmid: 22821129
[5]
El-Kaderi H M, Hunt J R, Mendoza-Cortés J L, Côté A P, Taylor R E, O’Keeffe M, Yaghi O M . Science, 2007,316(5822):268. https://www.ncbi.nlm.nih.gov/pubmed/17431178

doi: 10.1126/science.1139915     URL     pmid: 17431178
[6]
Hunt J R, Doonan C J, Levangie J D, Côté A P, Yaghi O M . Journal of the American Chemical Society, 2008,130(36):11872. https://www.ncbi.nlm.nih.gov/pubmed/18707184

doi: 10.1021/ja805064f     URL     pmid: 18707184
[7]
Uriberomo F J, Hunt J R, Furukawa H, Klöck C, O’Keeffe M, Yaghi O M . Journal of the American Chemical Society, 2009,131(13):4570. https://www.ncbi.nlm.nih.gov/pubmed/19281246

doi: 10.1021/ja8096256     URL     pmid: 19281246
[8]
LuW G, Yuan D Q, Zhao D, Schilling C I, Plietzsch O, Muller T, Bräse S, Guenther J, Blümel J, Krishna R, Li Z, Zhou H C . Chemistry of Materials, 2010,22(21):5964. https://pubs.acs.org/doi/10.1021/cm1021068

doi: 10.1021/cm1021068     URL    
[9]
Yuan D Q, Lu W G, Zhao D, Zhou H C . Advanced Materials, 2011,23(32):3723. 915a4c52-33ca-471e-b837-237e2fcc432b http://dx.doi.org/10.1002/adma.201101759

doi: 10.1002/adma.201101759     URL    
[10]
Ben T, Ren H, Ma S Q, Cao D P, Lan J H, Jing X F, Wang W H, Xu J, Den F, Simmons J M, Qiu S L, Zhu G S . Angewandte Chemie, 2009,48(50):9457. https://www.ncbi.nlm.nih.gov/pubmed/19921728

doi: 10.1002/anie.200904637     URL     pmid: 19921728
[11]
Ren H, Ben T, Wang E, Jing X F, Xue M, Liu B B, Cui Y, Qiu S L, Zhu G S . Chemical Communications, 2010,46(2):291. https://www.ncbi.nlm.nih.gov/pubmed/20024355

doi: 10.1039/b914761f     URL     pmid: 20024355
[12]
Wang W, Ren H, Sun F X, Cai K, Ma H P, Du J S, Zhao H J, Zhu G S . Dalton Transactions, 2012,41(14):3933. https://www.ncbi.nlm.nih.gov/pubmed/22327171

doi: 10.1039/c2dt11996j     URL     pmid: 22327171
[13]
Ben T, Pei C Y, Zhang D L, Xu J, Deng F, Jing X F, Qiu S L . Energy & Environmental Science, 2011,4(10):3991.
[14]
Lu W G, Sculley J P, Yuan D Q, Krishna R, Wei Z W, Zhou H C . Angewandte Chemie International Edition, 2012,51(30):7480. https://www.ncbi.nlm.nih.gov/pubmed/22715127

doi: 10.1002/anie.201202176     URL     pmid: 22715127
[15]
Jing X F, Zou D L, Cui P, Ren H, Zhu G . Journal of Materials Chemistry A, 2013,1(44):13926.
[16]
Lu W G, Verdegaal W M, Yu J M, Balbuena P B, Jeong H K, Zhou H C . Energy & Environmental Science, 2013,6(12):3559.
[17]
Li G, Wang Z . Journal of Physical Chemistry C, 2015,117(46):24428.
[18]
Yue H B, Guo J W, Fu S Q, Li X, Wen W Q, Jiang W Z, Tong R, Haranczyk M . Chemical Engineering Journal, 2018,335:887.
[19]
白蕾(Bai L), 王艳凤(Wang Y F), 霍淑慧(Huo S H), 卢小泉(Lu X Q) . 化学进展 (Progress in Chemistry), 2019,31(1):191.
[20]
Wu J, Xu F, Li S M, Ma P W, Zhang X C, Liu Q H, Fu R W, Wu D C . Advanced Materials, 2018,31(4):1802922. https://www.ncbi.nlm.nih.gov/pubmed/30345562

doi: 10.1002/adma.201802922     URL     pmid: 30345562
[21]
Cao L P, Wang P P, Miao X, Dong Y H, Wang H, Duan H H, Yu Y, Li X P, Stang P . Journal of the American Chemical Society, 2018,140(22):7005. https://www.ncbi.nlm.nih.gov/pubmed/29746782

doi: 10.1021/jacs.8b03856     URL     pmid: 29746782
[22]
Cao L P, Wang P P, Miao X R, Duan H H . Inorganic Chemistry, 2019,58(9):6268. https://www.ncbi.nlm.nih.gov/pubmed/31002495

doi: 10.1021/acs.inorgchem.9b00484     URL     pmid: 31002495
[23]
Holst J R, Stöckel E, Adams D J, Cooper A I . Macromolecules, 2010,43(20):8531
[24]
Jing J X, Su F B, Trewin A, Wood C D, Campbell N L, Niu H G, Dicknson C, Ganin A Y, Rosseinsky M J, Khimyak Y Z, Cooper A I . Angewandte Chemie International Edition, 2007,46(45):8574. https://www.ncbi.nlm.nih.gov/pubmed/17899616

doi: 10.1002/anie.200701595     URL     pmid: 17899616
[25]
Jiang J X, Su F B, Trewin A, Wood C D, Niu H J, Jones J, Khimyak Y Z, Cooper A I . Journal of the American Chemical Society, 2008,130(24):7710. https://www.ncbi.nlm.nih.gov/pubmed/18500800

doi: 10.1021/ja8010176     URL     pmid: 18500800
[26]
Dawson R, Laybourn A, Khimyak Y Z, Adams D J, Cooper A I . Macromolecules, 2010,43(20):8524.
[27]
Dawson R, Laybourn A, Clowes R, Khimyak Y Z, Adams D J, Cooper A I . Macromolecules, 2009,42(22):8809.
[28]
Li X, Guo J W, Yue H B, Wang J W, Topham P D . RSC Advances, 2017,7(26):16174 http://xlink.rsc.org/?DOI=C6RA28833B

doi: 10.1039/C6RA28833B     URL    
[29]
傅淑琴(Fu S Q) . 广东工业大学博士论文 (Doctoral Dissertation of Guangdong University of Technology), 2016
[30]
Trandafir M M, Pop L, Hădade N D, Florea M, Neațu F, Teodorescu C M, Duraki b, Vanbokhoven J A, Grosu I, Pârvulescu V I, García H . Catalysis Science & Technology, 2016,6(24):8344
[31]
Guo J W, Lai X F, Fu S Q, Yue H B, Wang J W, Topham P D . Materials Letters, 2017,187:76.
[32]
Guo J W, Li X, Fu S Q, Tong R, Topham P D, Wang J W . Microporous and Mesoporous Materials, 2018,267:80.
[33]
Teng B, Li Y Q, Zhu L K, Zhang D L, Cao D P, Xiang Z H, Yao X D, Qiu S L . Energy & Environmental Science, 2012,5(8):8370.
[34]
Furukawa H, Yaghi O M . Journal of the American Chemical Society, 2009,131(25):8875. https://www.ncbi.nlm.nih.gov/pubmed/19496589

doi: 10.1021/ja9015765     URL     pmid: 19496589
[35]
Dawson R, Stöckel E, Holst J R, Adams D J, Copper A I . Energy & Environmental Science, 2011,4(10):4239.
[36]
Zhang B, Li G Y, Yan J, Wang Z G . Journal of Physical Chemistry C, 2015,119(23):13080.
[37]
Jiang W Z, YueH B, ShuttleworthP, Xie P B, Li S J, Guo J W . Polymers, 2019,11(3):486. https://www.mdpi.com/2073-4360/11/3/486

doi: 10.3390/polym11030486     URL    
[38]
Uribe-Romo F J, Hunt J R, Furukawa H, Klöck C, O'Keeffe M, Yaghi O M . Journal of the American Chemical Society, 2009,131(13):4570. https://www.ncbi.nlm.nih.gov/pubmed/19281246

doi: 10.1021/ja8096256     URL     pmid: 19281246
[39]
Lin S, Diercks C S, Zhang Y B, Kornienko N, Nichols E M, Zhao Y B, Paris A R, Kim D, Yang P D, Yaghi O M, Chang C J . Science, 2015,349(6253):1208. https://www.ncbi.nlm.nih.gov/pubmed/26292706

doi: 10.1126/science.aac8343     URL     pmid: 26292706
[40]
Li G Y, Zhang B, Yan J, Wang Z G . Chemical Communications, 2014,50(15):1897. https://www.ncbi.nlm.nih.gov/pubmed/24406818

doi: 10.1039/c3cc48593e     URL     pmid: 24406818
[41]
Li G Y, Zhang B, Wang Z G . Macromolecular Rapid Communications, 2014,35(10):971. https://www.ncbi.nlm.nih.gov/pubmed/24596274

doi: 10.1002/marc.201400013     URL     pmid: 24596274
[42]
闫骏(Yan J) . 大连理工大学博士论文 (Doctoral Dissertation of Dalian University of Technology), 2018.
[43]
Farha O K, Spokoyny A M, Hauser B G, Bae Y S, Brown S E, Snurr R Q, Mirkin C A, Hupp J T . Chemistry of Materials, 2009,21(14):3033.
[44]
Farha O K, Bae Y S, Hauser B G, Spokoyny A M, Snurr R Q, Mirkin C A, Hupp J T . Chemical Communications, 2010,46(7):1056. https://www.ncbi.nlm.nih.gov/pubmed/20126711

doi: 10.1039/b922554d     URL     pmid: 20126711
[45]
Shultz A M, Farha O K, Hupp J T, Nguyen S T . Chemical Science, 2011,2(4):686.
[46]
Wang Z G, Zhang B F, Yu H, Sun L X, Jiao C L, Liu W S . Chemical Communications, 2010,46(41):7730. https://www.ncbi.nlm.nih.gov/pubmed/20852805

doi: 10.1039/c0cc02489a     URL     pmid: 20852805
[47]
Wang Z G, Zhang B F, Yu H, Li G Y, Bao Y J . Soft Matter, 2011,7(12):5723.
[48]
Li G Y, Wang Z G . Macromolecules, 2013,46(8):3058.
[49]
Shen C J, Bao Y, Wang Z G . Chemical Communications, 2013,49(32):3321. https://www.ncbi.nlm.nih.gov/pubmed/23493785

doi: 10.1039/c3cc41012a     URL     pmid: 23493785
[50]
Shen C J, Wang Z G . Journal of Physical Chemistry C, 2014,118(31):17585.
[51]
Yan J, Zhang B, Wang Z G . Polymer Chemistry, 2016,7(47):7295.
[52]
Zhu Y, Long H, Zhang W . Chemistry of Materials, 2013,25(9):1630.
[53]
$\dot{I}$slamoğlu T, Rabbani M G, El-Kaderi H M . Journal of Materials Chemistry A, 2013,1(35):10259.
[54]
Shen C J, Yu H, Wang Z G . Chemical Communications, 2014,50(76):11238. https://www.ncbi.nlm.nih.gov/pubmed/25116703

doi: 10.1039/c4cc05021e     URL     pmid: 25116703
[55]
Bhunia A, Boldog I, Moller A, Janiak C . Journal of Materials Chemistry A, 2013,1(47):14990.
[56]
李雄(Li X) . 广东工业大学博士论文 (Doctoral Dissertation of Guangdong University of Technology), 2018.
[57]
Ma T Q, Kapustin E A, Yin S X, Liang L, Zhou Z Y, Niu J, Li L H, Wang Y Y, Su J, Li J, Wang X G, Wang W D, Wang W, Sun J L, Yaghi O M . Science, 2018,361(6397):48. https://www.ncbi.nlm.nih.gov/pubmed/29976818

doi: 10.1126/science.aat7679     URL     pmid: 29976818
[58]
Zeng S Z, Guo L M, Cui F M, Gao Z, Zhou J, Shi J L . Materials Letters, 2010,64(5):625. https://linkinghub.elsevier.com/retrieve/pii/S0167577X09009574

doi: 10.1016/j.matlet.2009.12.024     URL    
[59]
Trewin A, Cooper A I . CrystEngComm, 2009,11(9):1819.
[60]
李青音(Li Q Y) . 华中科技大学博士论文 (Doctoral Dissertation of Huazhong University of Science and Technology), 2018.
[61]
邓杲阳(Deng G Y) . 大连理工大学博士论文 (Doctoral Dissertation of Dalian University of Technology), 2018.
[62]
Wang K K, Tang Y Z, Jiang Q, Lan Y S, Huang H J, Liu D H, Zhong C L , Journal of Energy Chemistry, 2017,26(5):902. https://linkinghub.elsevier.com/retrieve/pii/S2095495617303856

doi: 10.1016/j.jechem.2017.07.007     URL    
[63]
Ren S J, Bojdys M J, Dawson R, Laybourn A, KhimyakY Z, Adams D J, Cooper A I . Advanced Materials, 2012,24(17):2357. https://www.ncbi.nlm.nih.gov/pubmed/22488602

doi: 10.1002/adma.201200751     URL     pmid: 22488602
[64]
Zhu X, Tian C C, Mahurin S M, Chai S H, Wang C M, Brown S, Veith G M, Luo H M, Liu H, Dai S . Journal of the American Chemical Society, 2012,134(25):10478. https://www.ncbi.nlm.nih.gov/pubmed/22631446

doi: 10.1021/ja304879c     URL     pmid: 22631446
[65]
Notario R . Strong Chemical Bonds. Spain. John Wiley & Sons, Inc., 2016. 11.
[66]
Hou S S, Tan B E . Macromolecules, 2018,51(8):2923.
[67]
Tominaga M, Kunitomi N, Katagiri K, Itoh T . Organic Letters, 2015,17(4):786. https://www.ncbi.nlm.nih.gov/pubmed/25658904

doi: 10.1021/ol503466e     URL     pmid: 25658904
[68]
Schwenger A, Frey W, Richert C . Chemistry-A European Journal, 2015,21(24):8781. https://www.ncbi.nlm.nih.gov/pubmed/25925766

doi: 10.1002/chem.201406568     URL     pmid: 25925766
[69]
Guo J W, Wang Y Q, Feng L J, Zhong X, Yang C F, Liu S, Cui Y D . Polymer(Korea), 2013,37(4):437.
[70]
Fu S Q, Guo J W, Zhu D Y, Yang Z, Yang C F, Xian J X, Li X . RSC Advances, 2015,5(82):67054.
[71]
Kundu S K, Bhaumik A . ACS Sustainable Chemistry & Engineering, 2016,4(7):3697.
[72]
Jiang J X, Laybourn A, Clowes R, Khimyak Y Z, Bacsa J, Higgins S J, Adams D J, Cooper A I . Macromolecules, 2010,43(18):7577. https://pubs.acs.org/doi/10.1021/ma101468r

doi: 10.1021/ma101468r     URL    
[73]
Jing J X, Su F B, Trewin A, Wood C D, Campbell N L, Niu H J, Dickinson C, Ganin A Y, Rosseinsky M J, Khimyak Y Z, CooperA I . Angewandte Chemie International Edition, 2007,46(45):8574. https://www.ncbi.nlm.nih.gov/pubmed/17899616

doi: 10.1002/anie.200701595     URL     pmid: 17899616
[74]
Chen R F, Shi J L, Ma Y, Lin G Q, Lang X J, Wang C . Angewandte Chemie, 2019,131(19):6430.
[75]
Kawahata M, Matsuura M, Tominaga M, Katagiri K, Yamaguchi K . Journal of Molecular Structure, 2018,1164:116. https://linkinghub.elsevier.com/retrieve/pii/S0022286018302941

doi: 10.1016/j.molstruc.2018.03.011     URL    
[76]
Lee D W, Jo J, Jo D, Kim J, Min J J, Yang D H, Hyun H . Journal of Industrial and Engineering Chemistry, 2018,57:37.
[77]
Elamin K M, Yamashita Y, Higashi T, Motoyama K, Arima H . Chemical & Pharmaceutical Bulletin, 2018,66(3):277. https://www.ncbi.nlm.nih.gov/pubmed/29269686

doi: 10.1248/cpb.c17-00824     URL     pmid: 29269686
[78]
Li M, Guo J W, Wen W Q, Chen J K . Nanomaterials, 2019,9(4):547.
[79]
Yang H, Guo J, Tong R, Yang C F, Chen J K . Polymers, 2018,10(4):443.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[6] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[9] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[10] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[11] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[12] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[13] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[14] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[15] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.