English
新闻公告
More
化学进展 2019, Vol. 31 Issue (12): 1712-1728 DOI: 10.7536/PC190527 前一篇   后一篇

• •

热致变色材料智能涂层

孙蕊1,2, 姚琳2, 贺军辉2,**(), 梁杰1   

  1. 1. 中国矿业大学(北京)化学与环境工程学院 北京 100083
    2. 中国科学院理化技术研究所 北京 100190
  • 收稿日期:2019-05-27 出版日期:2019-12-15 发布日期:2019-08-29
  • 通讯作者: 贺军辉
  • 基金资助:
    国家重点研发计划项目(2017YFA0207102); 国家自然科学基金资助项目(21571182); 国家自然科学基金资助项目(21271177); 中国科学院光化学转换与功能材料重点实验室资助

Thermochromic Smart Coatings

Rui Sun1,2, Lin Yao2, Junhui He2,**(), Jie Liang1   

  1. 1. College of Chemistry and Environmental Engineering, China University of Mining and Technology(Beijing),Beijing 100083, China
    2. Technical Institute of Physics and Chemistry,Chinese Academy of Sciences, Beijing 100190, China
  • Received:2019-05-27 Online:2019-12-15 Published:2019-08-29
  • Contact: Junhui He
  • About author:
  • Supported by:
    National Key Research and Development Program of China(2017YFA0207102); National Natural Science Foundation of China(21571182); National Natural Science Foundation of China(21271177); Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS

能源与环境现状迫切要求开发出具有节能特性的新一代智能建筑窗户,以有效降低建筑能源消耗。热致变色材料能够根据外界温度变化改变自身光学性质,智能地调节进入室内的太阳辐射能量,且不消耗其他能源,在建筑节能方面具有极大的应用潜力。常见的热致变色材料包括水凝胶、离子液体、钙钛矿、超材料、液晶和VO2等。其中VO2在相变前后透过率在近红外区域明显降低而在可见光范围内保持不变,是热致变色智能窗材料的理想选择之一。本综述概述了热致变色涂层相关材料的工作原理、构筑方法及最新研究进展。首先介绍了常见热致变色材料的结构特性和相变机制。之后以VO2为例,阐明了智能窗涂层表面工程设计和优化方法,讨论了不同构筑手段对光学性能的影响。最后,梳理了目前热致变色智能涂层所存在的不足及面临的困难,并对未来的研究方向进行了展望。

The current situation of energy and environment makes it urgent to develop a new generation of intelligent building windows with energy-saving features to effectively reduce building energy consumption. Thermochromic materials can change their optical characteristics according to changes in external temperature, and intelligently adjust the solar radiation energy entering the room without consuming other energy sources, which makes it a great potential application in building energy conservation. In recent years, an increasing number of research works in regard to thermochromic materials have been carried out, including hydrogels, ionic liquids, perovskites, metamaterials, liquid crystals and VO2. Among them, VO2 is one of the ideal candidates because its transmittance decreases obviously in the near infrared region before and after the phase transition and remains unchanged in the visible light range. This review outlines the principles, construction methods, and recent progress in thermochromic smart window coating related materials. Firstly, the structural characteristics, phase transition mechanism and research progress of various thermochromic materials are introduced in detail. Then, taking VO2 as a vital example, the surface engineering design and optimization of smart window coating is clarified and the influence of different construction methods on optical performance is discussed deeply. Finally, the challenges and future development direction of thermochromic smart coatings is presented.

()
图1 (a)太阳光谱图[10];(b)智能窗的作用机理[25]
Fig. 1 (a) Characteristics of solar spectrum[10];(b) intelligent window mechanism[25]
表1 常见的热致变色材料及其变色原理机理[16]
Table 1 Common thermochromic materials and their discoloration principle mechanisms[16]
图2 聚合物在水中可逆相转变的示意图[41]
Fig. 2 Schematic representation of the lower critical solution temperature(LCST) reversible demixing phase transition of polymers in water[42]
图3 (a) PNIPAm水凝胶智能窗夹层结构示意图;(b) 200 μm PNIPAm水凝胶薄膜不同温度的透射光谱;(c) 200 μm PNIPAm薄膜太阳光调控效率(ΔTsol),红外调控效率(ΔTIR)和可见光调控效率(ΔTlum);(d) 图左和右分别是20和80℃下200 μm薄膜的照片[42];(e) 25 μm HPCA, W-VO2, W-VO2-HPCA微凝胶样品透射光谱[37]
Fig. 3 (a)Schematic diagram of the PNIPAm hydrogel smart window sandwich structure;(b)transmittance spectrum of 200 μm PNIPAm hydrogel thin film;(c)optical properties of integrated visible transmittance(Tlum), calculated solar energy modulation(ΔTsol), infrared modulation(ΔTIR), and integrated visible light modulation(ΔTlum) of 200 μm PNIPAm film;(d)the insets(left and right) are the 200 μm demonstration devices at 20 and 80℃, respectively[42];(a~d) reproduced with permission;(e)optical transmittance spectra of 25 μm HPCA, W-VO2, and W-VO2 with HPCA microgel samples[37]
图4 (a)纯IL-Ni-Cl膜、VO2纳米粒子膜和VO2/IL-Ni-Cl杂化膜在20℃和80℃透射光谱;(b)纯IL-Ni-Cl膜、VO2纳米粒子膜、VO2/IL-Ni-Cl杂化膜在20℃和80℃的照片[47];(c)透光率随温度变化示意图[52]
Fig. 4 (a)Transmittance spectrum over the UV-Vis-NIR regions of pure IL-Ni-Cl film, VO2 nanoparticles, and VO2/IL-Ni-Cl hybrid film at 20 and 80 ℃;(b) demonstrations of pure IL-Ni-Cl film, VO2 nanoparticle film, and VO2/IL-Ni-Cl hybrid film at 20 and 80 ℃[47].(a、b) Reproduced with permission.(c)Schematic illustration of thermochromic optical transmittance change upon variation in temperature
图5 (a)离子凝胶在15~60 ℃不同温度下透射光谱;(b)离子凝胶加热冷却循环照片[52]
Fig. 5 (a) Transmittance spectrum over the UV-Vis-NIR region of ionogel at various temperatures ranging from 15 to 60 ℃;(b) the photographs of transparent, translucent, and opaque states of the ionogel, respectively[52]
图6 (a)Kiri-kirigami结构示意图;(b)与a单轴拉伸时变形kiri-kirigami结构光学图像;(c)不同温度下kiri-kirigami超材料的热活化和定向开关实验演示[60]
Fig. 6 (a)Schematic illustration of kiri-kirigami structure with notches on both sides. The upper part(green) has reversed patterned notches compared with the lower part(yellow).(b) Optical images of the deformed kiri-kirigami structure with identical design to(a) upon uniaxial stretching.(c) Experimental demonstrations of thermal activation and orientation switch of kiri-kirigami paper metamaterials at various temperatures[60]
图7 (a)基于(1)可重构超材料、(2)有源LSPR和(3)有源LSPR与可重构超材料集成的透光率调节方法原理图;(b)复合膜卷起过程的照片(1~6);(c)SEM模拟kirigami VO2-PDMS薄膜的应变分布,插图为放大后的应变轮廓[61]
Fig. 7 (a) Schematic of transmittance modulation methods based on(1) reconfigurable metamaterials,(2) active LSPR, and(3) the integration of active LSPR and reconfigurable metamaterials.(b)Photographs of the roll-up process of the yellow-brown composite film from figures on the left to right(1~6).(c)SEM-simulated strain distributions of the kirigami VO2-PDMS film and the magnified strain contour on a cut tip area as the inset[61]
图8 LCs分子的不同取向及其光学行为:(a)平面方向;(b)焦锥方向;(c)均质方向[64]
Fig. 8 Schematic of the orientation-dependent optical behavior of cholesteric liquid crystalline materials:(a)Planar orientation;(b) focal conic orientation;(c) homeotropic orientation[64]
图9 (a)含有LCs和ITO NCs的晶胞中近晶相(SmA)向手性向列相(N*)转变的示意图;(b)薄膜随温度透明和不透明状态之间可逆改变;(c)初始膜(黑线)和300次循环后膜(红线)的透射光谱;(d)不含和含5.0 wt% ITO/SiO2的智能薄膜透光率随温度的变化关系[68]
Fig. 9 (a)Schematic of the smectic A(SmA) to chiral nematic(N*) phase transition in a cell containing the LCs and ITO NCs;(b)the as-made film can reversibly change between transparent and opaque state in response to temperature;(c) the transmittance spectra of the initial film(black line) and the film after 300 cycles(red line);(d) temperature dependence of the transmittance of the smart films containing 0% ITO/SiO2 and 5.0 wt% ITO/SiO2[68]
图10 (a)高温金属正方相R和低温绝缘单斜相M的原子结构示意图[74];(b)标准太阳能光谱[94];(c)几种温度下具有代表性的XRD峰;(d) 由图c的XRD衍射峰估算相对单斜部分温度的函数[75]
Fig. 10 (a)The structure of rutile VO2(left) and monoclinic VO2(right)[73];(b)Standard solar spectra[92];(c) Representative XRD peaks at several temperatures.(d) Relative monoclinic portion as a function of temperature, estimated from XRD peak analysis in(c)[75]
图11 不同温度下制备的样品SEM图像(a) 160℃,(b)180℃;不同钒前驱体浓度下产物的FE-SEM图像:(c) 0.17 M,(d) 0.25 M,(e) 1.0 M[93]
Fig. 11 SEM images of samples prepared at different temperatures(a) 160℃ and(b) 180℃.Typical FE-SEM images of products obtained with different vanadium precursor concentrations.(c) 0.17 M,(d) 0.25 M,(e) 1.0 M[93]
图12 (a) 六角形排列的圆形抛物面锥的纳米表面的侧面和正面图;(b)VO2涂层锥形阵列三维示意图;(c)基于FDTD参数计算得到的ΔTsol变化图[96];(d)不同周期的抗反射样品AFM图;(e)25 ℃和90 ℃测得的样品透射光谱[112]
Fig. 12 (a)Side and top elevations of a nanotextured surface with hexagonally arranged circular paraboloid cones;(b) Three-dimensional illustration of the VO2-coated nipple arrays used in the simulation;(c) the calculated ΔTsol map based on the FDTD parameter search[96]. Reproduced with permission from Ref[96]Copyright The Optical Society;(d) AFM images of AR samples with different periods;(e) Transmittance spectra measured at 25/90 ℃ for planner and AR samples with 140 nm thickness[112]
图13 (a)VO2纳米结构的制备工艺和由直径160 nm的PS球对应制备的VO2薄膜SEM图像;(b)67、125和287 nm的纳米颗粒阵列的计算和实测透射光谱[114];(c)在20和95 ℃下的透射光谱;(d)自模板制备高度有序蜂窝状结构过程[116]
Fig. 13 (a) The preparation process of different periodical VO2 nanostructures; SEM images of patterned VO2 film prepared by the PS sphere with diameter of 160 nm;(b) Calculated(dashed lines) and measured(solid lines) transmittance spectra of nanoparticle arrays with diameters of 67, 125, and 287 nm, respectively;(c) the transmittance spectra at 20 and 95 ℃[114].(d) The preparation process of hollow-structured honeycomb-structured VO2 films via fully solution-based spontaneous self-template and assembly during the dual-phase transformation process[116]
图14 (a)VO2@TiO2复合工艺[120];(b) TLHNs结构的TEM图像[121];(c) VO2@ZnO核壳结构的TEM图像[122];(d) VO2@ZnS核壳纳米粒子结构示意图[123];(e,f)有/无良好色散的VO2及其相应的透射光谱[124];(g,h) VO2@SiO2纳米粒子和纳米棒的透射光谱[125]
Fig. 14 (a) VO2@TiO2 composite[120];(b)TEM images of TLHNs structure[121].(c) TEM images of VO2@ZnO core-shell structure[122]. Reproduced with permission from Ref[120~122]. Copyright(2013) Nature,(2018)Wiley,(2017) ACS;(d) Schematic diagram of VO2 @ZnS core-shell nanoparticles[123];(e,f) VO2 with /without good dispersion and their corresponding transmittance spectra, respectively[124];(g,h)Transmittance spectra of VO2@SiO2 nanoparticles and nanorods, respectively[125].Reproduced with Permission from Ref[123~125]. Copyright(2017)Elsevier,(2015)ACS,(2013)Nanoscale
图15 (a)由 V2O5合成VO2纳米粒子;(b)大尺寸VO2-PVP涂层照片[129];(c)不同W-VO2纳米粒子含量的混合样品在20和55 ℃下透射光谱;(d)复合薄膜在不同刺激下的光调节方式;(e)不同W-VO2纳米粒子含量样品在冷热循环中的透过率[131]
Fig. 15 (a) Preparation of VO2 nanoparticle-based mixture from commercial V2O5;(b) photograph of large-scale VO2-PVP coatings[129]. Copyright(2018) RSC.(c) optical transmittance spectra of hybrid samples with different W-VO2 NPs content at 20 ℃ and 55 ℃, respectively;(d) optical modulation modes of composite films in response to different stimuli;(e) transmittance of samples with different W-VO2 NPs content during heating and cooling cycles. Reproduced with permission from Ref[133]. Copyright(2017) ACS
图16 (a) VO2/水凝胶混合膜的太阳光调节机制[35];(b) NIT和合成薄膜分别在20 ℃和80 ℃照片;(c) NIT涂层的透射光谱;(d) VO2单层膜透射光谱;(e) VO2/NIT复合膜透射光谱[135]
Fig. 16 (a)Solar modulation mechanism of the VO2/hydrogel hybrid[35].(b)Photographs of NIT and composite films at 20 and 80 ℃, respectively. Transmittance spectra of(c) NIT coating;(d) VO2 single layer film;(e) VO2/NIT composite film. Reproduced with permission from Ref[135]. Copyright(2018) Elsevier
图17 (a~c)可见光透过率和近红外透过率分别以无源模式调制(对环境温度作出反应)的示意图;(d~f)在有源模式1下(对输入电压的响应),太阳光透过率从透明状态调制到阻挡状态的示意图;(g~h)响应外加电场将器件从不透明状态变为透明状态的示意图(工作在有源模式2)[136]
Fig. 17 (a~c) Schematic illustration of the separated modulation of visible and NIR light transmittance working in passive mode(in response to environmental temperature);(d~f) Schematic illustration of the modulation of solar light transmittance from a transparent state to a blocking state working in active mode 1(in response to input voltage);(g and h) Schematic illustration of turning the device from an opaque state into a transparent state in response to the applied electric field(working in active mode 2)[136]
表2 VO2涂层表面工程的研究成果总结
Table 2 Summary of research results of VO2 coating surface engineering
[1]
郑磊(Zheng L), 陈醒(Chen X) . 国际融资 (International Financing), 2018,12(6):669.
[2]
Moriarty P, Honnery D . Energ. Policy, 2016,93:3.
[3]
Xu F X, Luo H, Jin P . J. Mater. Chem., 2018,6:1903.
[4]
梁坤丽(Liang K L), 赵康杰(Zhao K J), . 石河子大学学报哲学社会科学版 (Journal of Shihezi University Philosophy and Social Sciences), 2018,1(6):6.
[5]
Glicksman L R . Phys. Today, 2008,61:35.
[6]
Xu F, Cao X, Luo H, Jin P . J. Mater. Chem., 2018,6:1903.
[7]
Chen Z, Gao Y, Kang L, Du J, Zhang Z, Luo H, Miao H, Tan G . Sol. Energ. Mater. Sol. Cells, 2011,95:2677.
[8]
陈何国(Chen H G), 张冠琦(Zhang G Q), 黄凯(Huang K), 侯甫文(Hou P W) . 门窗 (Doors & Windows), 2009,47(05):53.
[9]
Davy N C, Sezen E M, Gao J, Lin X, Liu A, Yao N, Kahn A, Loo Y L . Nat. Energy, 2017,2:17104.
[10]
Mondal N N . Sci. Res., 2014,4:8.
[11]
Ding J, Liu Z, Wei A, Chen T P, Zhang H . Mater. Sci. Semicond. Process., 2018,88:73.
[12]
Shi Y D, Zhang Y, Tang K, Cui J W, Shu X, Wang Y, Liu J Q, Jiang Y, Tan H H, Wu Y C . Chem. Eng. J., 2019,355:942.
[13]
Zum Felde U, Haase M, Weller H . J. Phys. Chem. B, 2000,104:9388.
[14]
Casini M . Renew. Energ., 2018,119:923. https://linkinghub.elsevier.com/retrieve/pii/S0960148117312533

doi: 10.1016/j.renene.2017.12.049     URL    
[15]
Hu C W, Yamada Y, Yoshimura K . Chem. Commun., 2017,53:3242. https://www.ncbi.nlm.nih.gov/pubmed/28256668

doi: 10.1039/c7cc00077d     URL     pmid: 28256668
[16]
Cheng Y, Zhang X, Fang C, Chen J, Wang Z . J. Mater. Sci. Technol., 2018,34:2225.
[17]
Gavalas S, Gagaoudakis E, Katerinopoulou D, Petromichelaki V, Wight S, Wotring G, Aperathitis E, Kiriakidis G, Binas V . Mater. Sci. Semicond. Process., 2019,89:116.
[18]
Ke Y J, Wang S C, Liu G W, Li M, White T J, Long Y . Small, 2018,14:29.
[19]
Sezen E M, Loo Y L . J. Phys. Chem. Lett., 2017,8:4530. https://www.ncbi.nlm.nih.gov/pubmed/28853890

doi: 10.1021/acs.jpclett.7b01785     URL     pmid: 28853890
[20]
Li B, Fan H T, Zang S Q, Li H Y, Wang L Y . JCCR. Coordin. Chem. Rev., 2018,377:307.
[21]
Wall S, Yang S, Vidas L, Chollet M, Glownia J M, Kozina M, Katayama T, Henighan T, Jiang M, Miller T A J S . Science, 2018,362:572. https://www.ncbi.nlm.nih.gov/pubmed/30385575

doi: 10.1126/science.aau3873     URL     pmid: 30385575
[22]
Huang F, Yang T, Wang S X, Lin L, Hu T, Chen D Q . J. Mater. Chem., 2018,6:12364.
[23]
Lukeš V, Breza M J J o M S T . J. Mol. Struct., 2007,820:35.
[24]
Li W, Zhu C, Wang W, Wu J J J F M . J. Funct. Mater., 1997,28:337.
[25]
Qu Z, Yao L, Zhang Y, Jin B B, He J H, Mi J . Mater. Res. Bull., 2019,109:195.
[26]
Granqvist C G . Thin Solid Films, 2016,614:90.
[27]
Zhang H, Xiao X, Xu G, Chai G, Yang T . Mater. Rev., 2014,28:56.
[28]
Manning T D, Parkin I P . J. Mater. Chem., 2004,14:2554.
[29]
Kang L, Gao Y, Luo H . ACS Appl. Mater. Interfaces, 2009,1:2211. https://www.ncbi.nlm.nih.gov/pubmed/20355855

doi: 10.1021/am900375k     URL     pmid: 20355855
[30]
Ke Y, Zhou C, Zhou Y, Wang S, Chan S H, Long Y . Adv. Funct. Mater., 2018,28:22.
[31]
Choi S, Choi Y j, Jang M S, Lee J H, Jeong J H, Kim J J. Adv. Funct. Mater., 2017,27:42.
[32]
Hamidi M, Azadi A, Rafiei P . Adv. Drug Deliver. Rev., 2008,60:1638. https://www.ncbi.nlm.nih.gov/pubmed/18840488

doi: 10.1016/j.addr.2008.08.002     URL     pmid: 18840488
[33]
Omidinia A A, Boesveld S, Tuvshindorj U, Rose J C, Haraszti T, De L L . Small, 2017,13:36.
[34]
La T G, Li X, Kumar A, Fu Y, Yang S, Chung H J . ACS Appl. Mater. Interfaces, 2017,9:33100. https://www.ncbi.nlm.nih.gov/pubmed/28836752

doi: 10.1021/acsami.7b08907     URL     pmid: 28836752
[35]
Zhou Y, Cai Y, Hu X, Long Y . J. Mater. Chem. A, 2015,3:1121.
[36]
Owusu N S, Gillmor J, Switalski S, Mis M R, Bennett G, Moody R, Antalek B, Gutierrez R, Slater G . Macromolecules, 2017,50:3671.
[37]
Yang Y S, Zhou Y, Chiang F B Y, Long Y . RSC Adv., 2017,7:7758.
[38]
Wang Y, Zhao F, Wang J, Khan A R, Shi Y, Chen Z, Zhang K, Li L, Gao Y, Guo X . Ind. Eng. Chem. Res., 2018,57:12801.
[39]
Pennadam S S, Firman K, Alexander C, Gorecki D C . J. Nanobioteg., 2004,2:8.
[40]
Jain K, Vedarajan R, Watanabe M, Ishikiriyama M, Matsumi N . Polym. Chem., 2015,6:6819.
[41]
De la Rosa V R, Woisel P, Hoogenboom R . Mater. Today, 2016,19:44.
[42]
Zhou Y, Cai Y, Hu X, Long Y . J. Mater. Chem. A, 2014,2:13550.
[43]
Swatloski R P, Spear S K, Holbrey J D, Rogers R D . J. Am. Chem. Soc., 2002,124:4974. https://www.ncbi.nlm.nih.gov/pubmed/11982358

doi: 10.1021/ja025790m     URL     pmid: 11982358
[44]
Van Valkenburg M E, Vaughn R L, Williams M, Wilkes J S . Thermochim. Acta, 2005,425:181.
[45]
Nam K T . Science, 2008,322:44.
[46]
余林颇(Yu L P), 陈政宁(Chen Z N) . 科技导报 (Science & Technology Review), 2015,33(24):98. 8ccd80b0-92fb-48a4-81ef-ef48ccc4ac75http://www.kjdb.org/CN/abstract/abstract13255.shtml

doi: 10.3981/j.issn.1000-7857.2015.24.016     URL    
[47]
Zhu J, Huang A, Ma H, Ma Y, Tong K, Ji S, Bao S, Cao X, Jin P . ACS Appl. Mater. Interfaces, 2016,8:29742. https://www.ncbi.nlm.nih.gov/pubmed/27739664

doi: 10.1021/acsami.6b11202     URL     pmid: 27739664
[48]
Rocha J, Anderson M W . Eur. J. Inorg. Chem., 2000,5:801.
[49]
Wei X, Yu L, Wang D, Jin X, Chen G Z . Green Chem., 2008,10:296.
[50]
Zhu J T, Huang A B, Ma H B, Bao S H, Ji S D, Jin P . RSC Adv., 2016,6:67396.
[51]
Zhu J, Huang A, Ma H, Chen Y, Zhang S, Ji S, Bao S, Jin P . New J Chem., 2017,41:830.
[52]
Lee H Y, Cai Y F, Velioglu S, Mu C Z, Chang C J, Chen Y L, Song Y J, Chew J W, Hu X M . Chem. Mater., 2017,29:6947.
[53]
Li X, Li S, Zhang Z, Huang J, Yang L, Hirano S I , J. Mater. Chem. A, 2016,4:13822.
[54]
Connell T U, Earl S K, Ng C, Roberts A, Davis T J, White J M, Polyzos A, Gomez D E . Small, 2017,13:32.
[55]
Chen H, Chan C T . Appl. Phys. Lett., 2007,91:18.
[56]
Ma H F, Chen X, Xu H S, Yang X M, Jiang W X, Cui T J . Appl. Phys. Lett., 2009,95:9.
[57]
Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M . Appl. Phys. Lett., 2010,96:25.
[58]
Liu X, Padilla W J . Adv. Mater., 2016,28:871. https://www.ncbi.nlm.nih.gov/pubmed/26619382

doi: 10.1002/adma.201504525     URL     pmid: 26619382
[59]
Overvelde J T B, de Jong T A, Shevchenko Y, Becerra S A, Whitesides G M, Weaver J C, Hoberman C, Bertoldi K . Nat. Commun., 2016,7:96. https://www.ncbi.nlm.nih.gov/pubmed/20981024

doi: 10.1038/ncomms1094     URL     pmid: 20981024
[60]
Tang Y, Lin G, Yang S, Yi Y K, Kamien R D, Yin J . Adv. Mater., 2017,29:10.
[61]
Ke Y, Yin Y, Zhang Q, Tan Y, Hu P, Wang S, Tang Y, Zhou Y, Wen X, Wu S, White T J, Yin J, Peng J, Xiong Q, Zhao D, Long Y . Joule, 2019,3:858.
[62]
Binnemans K . Chem. Rev., 2005,105:4148. https://www.ncbi.nlm.nih.gov/pubmed/16277373

doi: 10.1021/cr0400919     URL     pmid: 16277373
[63]
Liu H, Tang Y, Wang C, Xu Z, Yang C, Huang T, Zhang F, Wu D, Feng X . Adv. Funct. Mater., 2017,27:12.
[64]
Yan J, Ota F, San Jose B A, Akagi K . Adv. Funct. Mater., 2017,27:2. https://www.ncbi.nlm.nih.gov/pubmed/28824357

doi: 10.1002/adfm.201603524     URL     pmid: 28824357
[65]
Kakiuchida H, Tazawa M, Yoshimura K, Ogiwara A . Sol. Energ. Mat. Sol. C., 2010,94:1747.
[66]
Sun J, Wang H, Wang L, Cao H, Xie H, Luo X, Xiao J, Ding H, Yang Z, Yang H . Smart Mater. Struct., 2014,23:12.
[67]
Guo S M, Liang X, Zhang C H, Chen M, Shen C, Zhang L Y, Yuan X, He B F, Yang H . ACS Appl. Mater. Interfaces, 2017,9:2942. https://www.ncbi.nlm.nih.gov/pubmed/28001028

doi: 10.1021/acsami.6b13366     URL     pmid: 28001028
[68]
Liang X, Guo S, Chen M, Li C, Wang Q, Zou C, Zhang C, Zhang L, Guo S, Yang H . Mater. Horiz., 2017,4:878.
[69]
Liang X, Guo C, Chen M, Guo S, Zhang L, Li F, Guo S, Yang H . Nanoscale Horiz., 2017,2:319. https://www.ncbi.nlm.nih.gov/pubmed/32260661

doi: 10.1039/c7nh00105c     URL     pmid: 32260661
[70]
Budai J D, Hong J W, Manley M E, Specht E D, Li C W, Tischler J Z, Abernathy D L, Said A H, Leu B M, Boatner L A, McQueeney R J, Delaire O . Nature, 2014,515:7528.
[71]
Moatti A, Sachan R, Prater J, Narayan J . ACS Appl. Mater. Interfaces, 2017,9:24298. https://www.ncbi.nlm.nih.gov/pubmed/28622721

doi: 10.1021/acsami.7b05620     URL     pmid: 28622721
[72]
Liu K, Lee S, Yang S, Delaire O, Wu J Q . Mater. Today, 2018,21:875.
[73]
Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhacs A, Chaker M, Siwick B J . Science, 2014,346:445. https://www.ncbi.nlm.nih.gov/pubmed/25342797

doi: 10.1126/science.1253779     URL     pmid: 25342797
[74]
金海波(Jin H B), 凌晨(Ling C), 李静波(Li J B) . 深空探测学报 (Journal of Deep Space Exploration), 2018,5(02):188.
[75]
Lee D, Chung B, Shi Y, Kim G Y, Campbell N, Xue F, Song K, Choi S Y, Podkaminer J P, Kim T H, Ryan P J, Kim J W, Paudel T R, Kang J H, Spinuzzi J W, Tenne D A, Tsymbal E Y, Rzchowski M S, Chen L Q, Lee J, Eom C B . Science, 2018,362:1037. https://www.ncbi.nlm.nih.gov/pubmed/30498123

doi: 10.1126/science.aam9189     URL     pmid: 30498123
[76]
Najera O, Civelli M, Dobrosavljevic V, Rozenberg M J . Phys. Rev. B, 2018,97:15.
[77]
Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Duerr H A, Samant M G, Parkin S S P . Nat. Phys., 2013,9:661.
[78]
Slusar T V, Cho J C, Lee H R, Kim J W, Yoo S J, Bigot J Y, Yee K J, Kim H T . Sci. Rep., 2017,7:8. https://www.ncbi.nlm.nih.gov/pubmed/28127058

doi: 10.1038/s41598-017-00061-7     URL     pmid: 28127058
[79]
Biermann S, Poteryaev A, Lichtenstein A I, Georges A . Phys. Rev. Lett., 2005,94.
[80]
Li S Y, Niklasson G A, Granqvist C G . Thin Solid Films, 2012,520:3823.
[81]
Yuan Y, Cui Y K, Chang L, Zhang C, Wang N, Zhang L M, Zhou Y, Wang S C, Gao Y F, Long Y . Joule, 2018,2:39.
[82]
Powell M J, Marchand P, Denis C J, Bear J C, Darr J A, Parkin I P . Nanoscale, 2015,7:18686. https://www.ncbi.nlm.nih.gov/pubmed/26497868

doi: 10.1039/c5nr04444h     URL     pmid: 26497868
[83]
Zhou X, Gu D, Xu S, Qin H, Jiang Y . Mater. Res. Bull., 2018,105:98.
[84]
杜靖(Du J) . 中国科学院上海硅酸盐研究所博士论文 (Doctoral Dissertation of Shanghai Institute of Ceramics, Chinese Academy of Sciences), 2012.
[85]
Zhou H, Li J, Bao S, Li J, Liu X, Jin P . Appl. Surf. Sci., 2016,363:532.
[86]
Li C, Hsieh J H, Su T Y, Wu P L . Thin Solid Films, 2018,660:373.
[87]
James K K, Krishnaprasad P S, Hasna K, Jayaraj M K . J. Phys. Chem. Solids, 2015,76:64. https://linkinghub.elsevier.com/retrieve/pii/S0022369714001930

doi: 10.1016/j.jpcs.2014.07.024     URL    
[88]
Li D, Shan Y, Huang F, Ding S . Appl. Surf. Sci., 2014,317:160. 405e766f-6370-4dff-96cd-dc13830a5f09http://dx.doi.org/10.1016/j.apsusc.2014.08.042

doi: 10.1016/j.apsusc.2014.08.042     URL    
[89]
Kang L, Gao Y, Luo H, Chen Z, Du J, Zhang Z . ACS Appl. Mater. Interfaces, 2011,3:135. https://www.ncbi.nlm.nih.gov/pubmed/21268632

doi: 10.1021/am1011172     URL     pmid: 21268632
[90]
Lee M, Kim D . Bull. Korean Chem. Soc., 2018,39:320.
[91]
Vernardou D, Louloudakis D, Spanakis E, Katsarakis N, Koudoumas E . Sol. Energy Mater. Sol. Cells, 2014,128:36.
[92]
Chang T, Cao X, Li N, Long S, Gao X, Dedon L R, Sun G, Luo H, Jin P . ACS Appl. Mater. Interfaces, 2017,9:26029. https://www.ncbi.nlm.nih.gov/pubmed/28723095

doi: 10.1021/acsami.7b07137     URL     pmid: 28723095
[93]
Wu S, Tian S, Liu B, Tao H, Zhao X, Palgrave R G, Sankar G, Parkin I P . Sol. Energ. Mat. Sol. C, 2018,176:427.
[94]
Kim H J, Roh D K, Jung H S, Kim D S . Ceram Int., 2019,45:4123.
[95]
Qu Z, Yao L, Ma S, Li J, He J, Mi J, Tang S Y, Feng L L . Sol. Energ. Mat. Sol. C., 2019,200:109920.
[96]
Taylor A, Parkin I, Noor N, Tummeltshammer C, Brown M S, Papakonstantinou I . Opt. Express, 2013,21:A750. https://www.ncbi.nlm.nih.gov/pubmed/24104571

doi: 10.1364/OE.21.00A750     URL     pmid: 24104571
[97]
Xu L, He J . J. Mater. Chem., 2013,1:4655. https://www.ncbi.nlm.nih.gov/pubmed/32261209

doi: 10.1039/c3tb20923g     URL     pmid: 32261209
[98]
Mehmood U, Sulaiman F A, Yilbas B S, Salhi B, Ahmed S H A, Hossain M K . Sol. Energ. Mat. Sol. C., 2016,157:604.
[99]
Park S J, Lee S W, Lee K J, Lee J H, Kim K D, Jeong J H, Choi J H . Nanoscale Res. Lett., 2010,5:1570. https://www.ncbi.nlm.nih.gov/pubmed/21076677

doi: 10.1007/s11671-010-9678-y     URL     pmid: 21076677
[100]
Hanaei H, Assadi M K, Saidur R . Renew. Sust. Energ. Rev., 2016,59:620. https://linkinghub.elsevier.com/retrieve/pii/S1364032116000472

doi: 10.1016/j.rser.2016.01.017     URL    
[101]
Mlyuka N R, Niklasson G A, Granqvist C G . Sol. Energ. Mat. Sol. C., 2009,93:1685.
[102]
Powell M J, Quesada C R, Taylor A, Teixeira D, Papakonstantinou I, Palgrave R G, Sankar G, Parkin I P . Chem. Mater., 2016,28:1369.
[103]
Wang C, Zhao L, Liang Z, Dong B, Wan L, Wang S . Sci. Technol. Adv. Mater., 2017,18:563. https://www.ncbi.nlm.nih.gov/pubmed/28970866

doi: 10.1080/14686996.2017.1360752     URL     pmid: 28970866
[104]
Xu L, Gao L, He J . RSC Adv., 2012,2:12764.
[105]
Van der Voort P, Vercaemst C, Schaubroeck D, Verpoort F . Phys. Chem. Chem. Phys., 2008,10:347. https://www.ncbi.nlm.nih.gov/pubmed/18174976

doi: 10.1039/b707388g     URL     pmid: 18174976
[106]
关英(Guan Y), 张拥军(Zhang Y J) . 高分子学报 (Acta Polymerica Sinica), 2017,11:1739.
[107]
乔红梅(Qiao H M) . 精细化工 (Fine Chemical), 2015,7:32.
[108]
Jin H B, Yu J H, Nam S H, Lee J W, Kim D I . Appl. Surf. Sci., 2018,3:7.
[109]
Cao Z Y, Lu Y A, Xiao X D, Zhan Y J, Cheng H L, Xu G . Mater. Lett., 2017,209:609.
[110]
Zhou M, Bao J, Tao M, Zhu R, Lin Y, Zhang X, Xie Y . Chem. Commun., 2013,49:6021. https://www.ncbi.nlm.nih.gov/pubmed/23715531

doi: 10.1039/c3cc42112k     URL     pmid: 23715531
[111]
Li Y, Zhang J, Zhu S, Dong H, Jia F, Wang Z, Sun Z, Zhang L, Li Y, Li H, Xu W, Yang B . Adv. Mater., 2009,21:4731.
[112]
Qian X, Wang N, Li Y, Zhang J, Xu Z, Long Y . Langmuir, 2014,30:10766. https://www.ncbi.nlm.nih.gov/pubmed/25164486

doi: 10.1021/la502787q     URL     pmid: 25164486
[113]
Wang N, Duchamp M, Xue C, Dunin B R E, Liu G, Long Y . Adv. Mater. Interfaces, 2016,3:15.
[114]
Ke Y, Wen X, Zhao D, Che R, Xiong Q, Long Y . ACS Nano, 2017,11:7542. https://www.ncbi.nlm.nih.gov/pubmed/28586193

doi: 10.1021/acsnano.7b02232     URL     pmid: 28586193
[115]
Hao Q, Li W, Xu H, Wang J, Yin Y, Wang H, Ma L, Ma F, Jiang X, Schmidt O G, Chu P K . Adv. Mater., 2018,30:10.
[116]
Liu M, Su B, Kaneti Y V, Chen Z, Tang Y, Yuan Y, Gao Y, Jiang L, Jiang X, Yu A . ACS Nano, 2017,11:407. https://www.ncbi.nlm.nih.gov/pubmed/28009507

doi: 10.1021/acsnano.6b06152     URL     pmid: 28009507
[117]
Li S Y, Niklasson G A, Granqvist C G . J. Appl. Phys., 2010,108:6.
[118]
Cui Y, Ke Y, Liu H, Chen Z, Wang N, Zhang L, Zhou Y . Joule, 2018,2:1707. https://linkinghub.elsevier.com/retrieve/pii/S2542435118302836

doi: 10.1016/j.joule.2018.06.018     URL    
[119]
Granqvist C G . Mater. Today, 2016,3:S2. https://www.ncbi.nlm.nih.gov/pubmed/26558956

doi: 10.1186/1472-6963-15-S3-S2     URL     pmid: 26558956
[120]
Li Y, Ji S, Gao Y, Luo H, Kanehira M . Sci. Rep., 2013,3:81.
[121]
Yao L, Qu Z, Pang Z, Li J, Tang S, He J, Feng L . Small, 2018,14:34.
[122]
Chen Y, Zeng X, Zhu J, Li R, Yao H, Cao X, Ji S, Jin P . ACS Appl. Mater. Interfaces, 2017,9:27784. https://www.ncbi.nlm.nih.gov/pubmed/28758388

doi: 10.1021/acsami.7b08889     URL     pmid: 28758388
[123]
Ji H, Liu D, Zhang C, Cheng H . Sol. Energy Mater. Sol. Cells, 2018,176:1.
[124]
Zhu J, Zhou Y, Wang B, Zheng J, Ji S, Yao H, Luo H, Jin P . ACS Appl. Mater. Interfaces, 2015,7:27796. https://www.ncbi.nlm.nih.gov/pubmed/26618391

doi: 10.1021/acsami.5b09011     URL     pmid: 26618391
[125]
Zhou Y, Huang A, Li Y, Ji S, Gao Y, Jin P . Nanoscale, 2013,5:9208. https://www.ncbi.nlm.nih.gov/pubmed/23934483

doi: 10.1039/c3nr02221h     URL     pmid: 23934483
[126]
Fleer N A, Pelcher K E, Zou J, Nieto K, Douglas L D, Sellers D G, Baneljee S . ACS Appl. Mater. Interfaces, 2017,9:38887. https://www.ncbi.nlm.nih.gov/pubmed/29039916

doi: 10.1021/acsami.7b09779     URL     pmid: 29039916
[127]
Qu Z, Yao L, Li J, He J, Mi J, Ma S, Tang S, Feng L . ACS Appl. Mater. Interfaces, 2019,11:15960. https://www.ncbi.nlm.nih.gov/pubmed/30990646

doi: 10.1021/acsami.8b22113     URL     pmid: 30990646
[128]
Jung Y H, Pack S P, Chung S . Mater. Res. Bull., 2018,101:67.
[129]
Kim Y, Yu S, Park J, Yoon D, Dayaghi A M, Kim K J, Jin S A, Son J . J. Mater. Chem., 2018,6:13.
[130]
Ji H, Liu D, Cheng H, Zhang C . J. Mater. Chem., 2018,6:2424.
[131]
Liang X, Chen M, Guo S, Zhang L, Li F, Yang H . ACS Appl. Mater. Interfaces, 2017,9:40810. https://www.ncbi.nlm.nih.gov/pubmed/29094919

doi: 10.1021/acsami.7b11582     URL     pmid: 29094919
[132]
Khandelwal H, Schenning A P H J, Debije M G . Adv. Energy Mater., 2017,7:14.
[133]
Zhou Y, Layani M, Wang S, Hu P, Ke Y, Magdassi S, Long Y . Adv. Funct. Mater., 2018,28:9.
[134]
Lee H Y, Cai Y, Velioglu S, Mu C, Chang C J, Chen Y L, Song Y, Jia W C, Hu X M . Chem. Mater., 2017,29:16. https://www.ncbi.nlm.nih.gov/pubmed/28852267

doi: 10.1021/acs.chemmater.7b01334     URL     pmid: 28852267
[135]
Xu F, Cao X, Zhu J, Sun G, Li R, Long S, Luo H, Jin P . Mater. Lett., 2018,222:62.
[136]
Liang X, Chen M, Wang Q, Guo S, Zhang L, Yang H . J. Mater. Chem., 2018,6:7054.
[137]
Lu Q, Liu C, Wang N, Magdassi S, Mandler D, Long Y . J. Mater. Chem., 2016,4:8385.
[138]
Dou S, Wang Y, Zhang X, Tian Y, Hou X, Wang J, Li X, Zhao J, Li Y . Sol. Energy Mater. Sol. Cells, 2017,160:164.
[139]
Wang M, Tian J, Zhang H, Shi X, Chen Z, Wang Y, Ji A, Gao Y . RSC Adv., 2016,6:108286.
[140]
Zhao L L, Miao L, Liu C Y, Li C, Asaka T, Kang Y P, Iwamoto Y, Tanemura S, Gu H, Su H R . Sci. Rep., 2014,4:2045.
No related articles found!
阅读次数
全文


摘要

热致变色材料智能涂层