English
新闻公告
More
化学进展 2019, Vol. 31 Issue (12): 1696-1711 DOI: 10.7536/PC190424 前一篇   后一篇

• •

硼纳米结构的理论和实验研究

王睿1,2, 台国安1,**(), 伍增辉1, 邵伟1, 候闯1, 郝金钱1   

  1. 1. 南京航空航天大学航空学院 机械结构与控制国家重点实验室 纳智能材料器件教育部重点实验室纳米科学研究所 南京 210016
    2. 南京航空航天大学材料科学与技术学院 南京 210016
  • 收稿日期:2019-04-18 出版日期:2019-12-15 发布日期:2019-10-15
  • 通讯作者: 台国安
  • 基金资助:
    国家自然科学基金项目(61474063); 国家自然科学基金项目(61774085); 江苏省六大人才高峰项目(XCL-046); 中央高校基本科研业务费专项资金(NE2017101); 江苏省高校优势学科建设工程

Theoretical and Experimental Research of Boron Nanostructures

Rui Wang1,2, Guoan Tai1,**(), Zenghui Wu1, Wei Shao1, Chuang Hou1, Jinqian Hao1   

  1. 1. State Key Laboratory of Mechanics and Control of Mechanical Structure, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nano Science, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    2. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2019-04-18 Online:2019-12-15 Published:2019-10-15
  • Contact: Guoan Tai
  • About author:
  • Supported by:
    National Natural Science Foundation of China(61474063); National Natural Science Foundation of China(61774085); Six Talent Peaks Project in Jiangsu Province(XCL-046); Fundamental Research Funds for the Central Universities(NE2017101); Priority Academic Program Development of Jiangsu Higher Education Institutions

硼元素,作为第三主族中唯一非金属元素,其原子具有特殊的缺电子性质,因而产生了复杂的键合机制。从硼原子之间的双中心-双电子键到平衡体系电子分布的多中心双电子键,硼因此具有多种同素异形体。低维硼纳米结构材料具有不同于体相的独特结构及特殊性质,相关理论和实验研究已成为近年来的研究热点。本文从理论和实验两个方面,系统介绍了零维硼团簇到一维硼纳米管、硼纳米线及二维硼纳米结构的相关研究,主要针对其结构、性质与潜在应用进行综述。目前,仍需系统化探索其制备及稳定等相关问题,力求揭示其固有属性,以发挥硼基纳米结构材料在未来纳米器件和能源催化方面的重要应用。

Boron, the only non-metallic element in the third main group, has special electron-deficient properties, which results in a complex bonding mechanism. It has both the normal two-center-two-electron bonds and the multi-center-two-electron bonds for keeping balance of the electron distribution of the system, which makes it have a wide variety of allotropes. In contrast to the bulk counterparts, low-dimensional boron nanostructures have unique structures and special properties, so they have attracted extensive interests in recent years. In this paper, we systematically introduce the theoretical and experimental progress on zero-dimensional boron clusters, one-dimensional boron nanotubes/nanowires and two-dimensional boron nanostructures. The structure, properties and potential applications of the boron nanostructures have been summarized and discussed. Although, there are still great challenges in the controllable preparation and stability of the nanostructures, they will be expected to have exceptionally inherent properties to make them play an important role in the future nano-devices and electrochemical catalysis.

()
图1 Bn-(n=3~30和35~38)单阴离子硼簇最小能量结构及点群对称性的总结[13]
Fig. 1 Summary of the minimum-energy structures, point group symmetries and electronic state of Bn-clusters(n=3~30 and 35~38)[13]. Copyright 2017, Springer Nature
图2 根据“Aufbau原理”的硼团簇构造准平面、凸结构和硼纳米管的示意图[9]
Fig. 2 Schematic diagram of quasiplanar, convex structures and boron nanotubes, following the “Aufbau principle” for forming the boron clusters[9]. Copyright 1997, American Physical Society
图3 由B36团簇扩展成二维硼烯示意图[8]
Fig. 3 Relationship between B36 and borphene[8]. Copyright 2014, Springer Nature
图4 硼纳米结构图:(a) 硼片的结构;(b) 硼纳米管的结构[33]
Fig. 4 Atomic models of boron nanostructures:(a) the structure of boron sheet;(b) the structure of boron nanotubes[33]. Copyright 2008, American Physical Society
图5 硼纳米管的TEM图:(a) 硼纳米管的明场HRTEM图;(b) 暗场HRTEM图;(c) 硼纳米管的低分辨TEM图,插入图为对应的SAED图;(d) 单根硼纳米管的端口HRTEM图[45, 46]
Fig. 5 TEM images of boron nanotubes:(a) bright field HRTEM image of boron nanotubes;(b) dark field HRTEM image [45]. Copyright 2004, American Chemical Society.(c) low-resolution TEM image of boron nanotubes. The inset is the corresponding SAED pattern;(d) cross-section HRTEM image of a single boron nanotube [46]. Copyright 2010, Royal Society of Chemistry
图6 硼纳米线的SEM表征结果:(a) 大面积BNW阵列的低倍SEM图;(b) 硅基底上均匀BNW阵列的侧视图;(c,d) BNW在图案边缘和内部的侧视图;(e,f) BNW的尖端和末端的SEM图,白色圆圈指示催化剂位置[58]
Fig. 6 SEM images of boron nanowires:(a) low-magnification SEM images of large-area BNW patterns;(b) side-view of uniform BNW patterns on the Si substrate;(c,d) side-view of BNWs at the edge and at the inner portion of the pattern;(e,f) SEM images at the tip and the end of BNWs. The white circles refer to the catalysts’ site[58]. Copyright 2013, John Wiley and Sons
图7 硼纳米线的实验结果:(a) Si(111)衬底上形成的典型硼纳米线的SEM图;(b) 单根硼纳米线的TEM图,插图为相应的SAED图,显示为β-菱形硼;(c~f)机械弯曲过程的SEM图[60]
Fig. 7 Experimental results of boron nanowires:(a) a typical SEM image of boron nanowires on Si(111) substrate;(b) TEM image of single boron nanowire. The inset is the corresponding SAED pattern that can be indexed to β-rhombohedral boron;(c~f) SEM images showing mechanical bending process[60]. Copyright 2008, AIP Publishing
图8 硼结构的SEM及TEM表征:(a) 鼓起球的形貌;(b) 涡卷式纳米结构。插图表示厚度为17±2 nm的“纳米卷”横截面;(c)“草状”纳米带。插图显示纳米带很容易扭曲,有些具有Z字形边缘;(d)“棕榈叶状”纳米结构。纳米带具有分叉末端,形成较小的纳米结构;(e) 几个扭曲纳米带的低倍TEM图;(f,g) 对应的SAED图[64]
Fig. 8 SEM and TEM images of boron nanostructures:(a) Overall view of the puffy ball;(b) Scrolled nanostructures. The inset shows the cross-section of one “nano-scroll” of thickness 17±2 nm;(c) “Grass-like” nanoribbons. The inset shows that the nanoribbons are easily twisted and some have “zigzag” edges;(d) “Palm-leaf like” nanostructures. Nanoribbons have split ends, forming smaller nanostructures;(e) TEM micrograph of several twisted nanoribbons at lower magnification;(f,g) corresponding SAED pattern[64]. Copyright 2004, American Chemical Society
图9 α-sheet的理论预测:(a) α-sheet的理论结构;(b) 具有均匀分布的六边形孔洞的2D硼,电子结合能Eb与六边形孔密度η的关系[32]
Fig. 9 Theoretical predications of α-sheet:(a) The structure of α-sheet;(b) LDA Eb vs hexagon hole density η for sheets with evenly distributed hexagons[32]. Copyright 2007, American Physical Society
图10 二维硼在独立状态下及在Au、Ag、Cu和Ni基底上的结构图。每列的插图表明了三种最稳定的结构。在每个插图下方提供了相对于基态的能量和相应的空位浓度ν[80]
Fig. 10 Configurational energy spectra of 2D B on Au, Ag, Cu, and Ni substrates. The inset in each column illustrates the three most stable structures. Energies versus the ground states and the corresponding v are provided below each inset[80]. Copyright 2015, John Wiley and Sons
图11 2D γ-B28薄膜实验结果:(a) 用于CVD法制备原子级薄2D γ-B28薄膜的双温区炉的示意图;(b,c) 2D γ-B28结构示意图;(d) 光学图像;(e) γ-B28薄膜的UV-vis谱;(f) γ-B28薄膜和体相β-菱形硼的PL谱,蓝线为相应的高斯拟合结果[87]
Fig. 11 Experimental results of 2D γ-B28:(a) Schematic representation of the two-zone furnace for synthesizing atomically thin 2D γ-B28 film via CVD;(b,c) Schematic diagram of the 2D γ-B28 structure;(d) Optical image of the film on Cu substrate;(e) UV-vis absorption spectrum of monolayer γ-B28 film;(f) Photoluminescence spectra of a monolayer γ-B28 film and bulk β-rhombohedral boron. The blue line is the corresponding Gaussian fit[87]. Copyright 2015, John Wiley and Sons
图12 γ-B28单层结构的理论预测:(a) 具有B和H原子表面钝化单层γ-B28的结构模型。修饰的B原子以黄色显示,H原子以白色显示;(b) B和H表面钝化后单层膜的电子能带结构;(c) 带隙随膜厚度的变化[88]
Fig. 12 Theoretical predications of γ-B28 monolayer:(a) The structural model of monolayer γ-B28 with B and H surface passivation; the additional B atoms are highlighted in yellow color and hydrogen atoms in white color;(b) the electronic band structure of B and H surface passivated the monolayer film;(c) the bandgap variation with the film thickness[88]. Copyright 2016, Royal Society of Chemistry
图13 在Ag(111)基底上生长硼烯的实验结果:(a) 制备硼烯的MBE装置示意图;(b) 硼沉积前、后的AES光谱;(c~h) 硼烯的STM图(左)和闭环dI /dV(右)图[89]
Fig. 13 Experimental results of borophenes on Ag(111) substrate:(a) The schematic diagram of MBE growth of borophene;(b) AES spectra of clean Ag(111) before and after boron deposition;(c~h) large-scale STM topography(left) and closed-loop dI/dV(right) images of borophene sheets[89]. Copyright 2015, The American Association for the Advancement of Science
图14 Ag(111)基底上硼单层的实验结果:(a) Ag(111)基底上硼结构的STM图,生长温度约为570 K;(b)是(a)的三维立体模式图;(c) S1相的高分辨率STM图;(d) 基底温度为650 K时,硼结构的STM图。两相被标记为“S1”和“S2”。大多数硼岛转变为S2相,但S1相仍然存在一小部分;(e)为(d)中用黑色矩形标记区域的高分辨STM图;(f) S2相的高分辨率STM图[91]
Fig. 14 Experimental realization of boron monolayer on Ag(111) substrates:(a) STM topographic image of boron structures on Ag(111) with a substrate temperature of ~570 K during the growth;(b) Three-dimensional image of(a);(c) high-resolution STM image of S1 phases;(d) STM image of boron structures under a substrate temperature of 650 K.The two different phases are labelled ‘S1’ and ‘S2’. Most boron islands are transformed into the S2 phase, but the S1 phase still remains in small parts of the islands;(e) STM image obtained on the area marked by the black rectangle in(d);(f) high-resolution STM image of the S2 phase[91]. Copyright 2016, Springer Nature
图15 硼烯在Cu(111)表面的实验结果:(a) 温度为770 K时,在不同时间间隔下硼烯在Cu(111)表面的明场LEEM图;(b) 大约覆盖0.1 ML硼原子的AFM图;(c) Cu基底表面0.28 nm高度的原子台阶(对应图(b)中的黑线);(d) 对应图(c)中的蓝线,显示出硼烯厚度为3.0 ?;(e) B/Cu(111)样品的非原位XPS光谱[93]
Fig. 15 Experimental results of borphene on the Cu(111) surface:(a) The sequence of bright-field LEEM images at different time intervals at T=770 K;(b) Topographic AFM image at around a 0.1 ML coverage.(c) The line profile corresponding to the black line in(b) shows a 2.8 ? atomic step of the Cu substrate;(d) The line profile corresponding to the blue line in(b) shows that the thickness of the borophene sheet in ambient conditions is around 3.0 ?;(e) Ex-situ XPS spectra of a B/Cu(111) sample[93]. Copyright 2018, Springer Nature
[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A . Science, 2004,306:666. https://www.ncbi.nlm.nih.gov/pubmed/15499015

doi: 10.1126/science.1102896     URL     pmid: 15499015
[2]
Iijima S . Nature, 1991,354:56. https://doi.org/10.1038/354056a0

doi: 10.1038/354056a0     URL    
[3]
Davy E . Philos. Trans. R. Soc. London, 1809,99:39.
[4]
Gay-Lussac J L, Thénard L J . Ann. Chim. Phys., 1808,68:169.
[5]
Weintraub E . Trans. Amer. Electrochem. Soc., 1910,16:165.
[6]
Wade K . J. Chem. Soc. D, 1971,792.
[7]
Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I . Acc. Chem. Res., 2014,47:1349. https://www.ncbi.nlm.nih.gov/pubmed/24661097

doi: 10.1021/ar400310g     URL     pmid: 24661097
[8]
Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J, Wang L S . Nat. Commun., 2014,5:3113. https://www.ncbi.nlm.nih.gov/pubmed/24445427

doi: 10.1038/ncomms4113     URL     pmid: 24445427
[9]
Boustani I . Phys. Rev. B, 1997,55:16426.
[10]
Zhai H J, Kiran B, Li J, Wang L S . Nat. Mater., 2003,2:827. https://www.ncbi.nlm.nih.gov/pubmed/14608377

doi: 10.1038/nmat1012     URL     pmid: 14608377
[11]
Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S . J. Phys. Chem. A, 2004,108:3509.
[12]
Romanescu C, Sergeeva A P, Li W L, Boldyrev A I, Wang L S . J. Am. Chem. Soc., 2011,133:8646. https://www.ncbi.nlm.nih.gov/pubmed/21520972

doi: 10.1021/ja2012438     URL     pmid: 21520972
[13]
Li W L, Chen X, Jian T, Chen T T, Li J, Wang L S . Nat. Rev. Chem., 2017,1:0071.
[14]
Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S . Proc. Natl. Acad. Sci. U. S. A., 2005,102:961. https://www.ncbi.nlm.nih.gov/pubmed/15644450

doi: 10.1073/pnas.0408132102     URL     pmid: 15644450
[15]
Zhang Z, Penev E S, Yakobson B I . Chem. Soc. Rev., 2017,46:6746. https://www.ncbi.nlm.nih.gov/pubmed/29085946

doi: 10.1039/c7cs00261k     URL     pmid: 29085946
[16]
Li W L, Chen Q, Tian W J, Bai H, Zhao Y F, Hu H S, Li J, Zhai H J, Li S D, Wang L S . J. Am. Chem. Soc., 2014,136:12257. https://www.ncbi.nlm.nih.gov/pubmed/25141029

doi: 10.1021/ja507235s     URL     pmid: 25141029
[17]
Kato H, Yamashita K, Morokuma K . Chem. Phys. Lett., 1992,190:361.
[18]
Boustani I . J. Quantum Chem., 1994,52:1081.
[19]
Ray A K, Howard I A, Kanal K M . Phys. Rev. B, 1992,45:14247. https://www.ncbi.nlm.nih.gov/pubmed/10001550

doi: 10.1103/physrevb.45.14247     URL     pmid: 10001550
[20]
Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M, Ahlrichs R . Angew. Chem. Int. Edit., 2007,46:8503. https://www.ncbi.nlm.nih.gov/pubmed/17907255

doi: 10.1002/anie.200701915     URL     pmid: 17907255
[21]
Lv J, Wang Y, Zhu L, Ma Y . Nanoscale, 2014,6:11692. https://www.ncbi.nlm.nih.gov/pubmed/24993287

doi: 10.1039/c4nr01846j     URL     pmid: 24993287
[22]
Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S . Nat. Chem., 2014,6:727. https://www.ncbi.nlm.nih.gov/pubmed/25054944

doi: 10.1038/nchem.1999     URL     pmid: 25054944
[23]
Baruah T, Pederson M R, Zope R R, . Phys. Rev. B, 2008,78:045408.
[24]
Gonzalez S N, Sadrzadeh A, Yakobson B I . Phys. Rev. Lett., 2007,98:166804. https://www.ncbi.nlm.nih.gov/pubmed/17501448

doi: 10.1103/PhysRevLett.98.166804     URL     pmid: 17501448
[25]
De S, Willand A, Amsler M, Pochet P, Genovese L, Goedecker S . Phys. Rev. Lett., 2011,106:225502. https://www.ncbi.nlm.nih.gov/pubmed/21702613

doi: 10.1103/PhysRevLett.106.225502     URL     pmid: 21702613
[26]
Prasad D L V K Jemmis E D . Phys. Rev. Lett., 2008,100:165504. https://www.ncbi.nlm.nih.gov/pubmed/18518216

doi: 10.1103/PhysRevLett.100.165504     URL     pmid: 18518216
[27]
Li F, Jin P, Jiang D E, Wang L, Zhang S B, Zhao J, Chen Z . J. Chem. Phys., 2012,136:074302. https://www.ncbi.nlm.nih.gov/pubmed/22360238

doi: 10.1063/1.3682776     URL     pmid: 22360238
[28]
Hanley L, Whitten J L, Anderson S L . J. Phys. Chem., 1988,92:5803.
[29]
Hanley L, Anderson S L . J. Chem. Phys., 1988,89:2848.
[30]
Hanley L, Anderson S L . J. Phys. Chem., 1987,91:5161.
[31]
Ruatta S A, Hanley L, Anderson S L . J. Chem. Phys., 1989,91:226.
[32]
Tang H, Ismail-Beigi S . Phys. Rev. Lett., 2007,99:115501. https://www.ncbi.nlm.nih.gov/pubmed/17930448

doi: 10.1103/PhysRevLett.99.115501     URL     pmid: 17930448
[33]
Yang X, Ding Y, Ni J . Phys. Rev. B, 2008,77:041402.
[34]
Piazza Z A, Li W L, Romanescu C, Sergeeva A P, Wang L S, Boldyrev A I . J. Chem. Phys., 2012,136:104310. https://www.ncbi.nlm.nih.gov/pubmed/22423841

doi: 10.1063/1.3692967     URL     pmid: 22423841
[35]
Zhao Y, Chen X, Li J . Nano Res., 2017,10:3407.
[36]
Boustani I, Quandt A . Europhys. Lett., 1997,39:527.
[37]
Boustani I, Quandt A, Hernández E, Rubio A . J. Chem. Phys., 1999,110:3176. http://aip.scitation.org/doi/10.1063/1.477976

doi: 10.1063/1.477976     URL    
[38]
Gindulyt$\dot{e}$ A, Lipscomb W N, Massa L . Inorg. Chem., 1998,37:6544. https://www.ncbi.nlm.nih.gov/pubmed/11670779

doi: 10.1021/ic980559o     URL     pmid: 11670779
[39]
Kunstmann J, Quandt A . Phys. Rev. B, 2006,74:035413.
[40]
Kunstmann J, Quandt A . Chem. Phys. Lett., 2005,402:21.
[41]
Quandt A, Liu A Y, Boustani I . Phys. Rev. B, 2001,64:125422.
[42]
Lau K C, Pandey R, Pati R, Karna S P . Appl. Phys. Lett., 2006,88:212111.
[43]
Bezugly V, Kunstmann J, Grundkötter-Stock B, Frauenheim T, Niehaus T, Cuniberti G . ACS Nano, 2011,5:4997. https://www.ncbi.nlm.nih.gov/pubmed/21528877

doi: 10.1021/nn201099a     URL     pmid: 21528877
[44]
Tang H, Ismail-Beigi S . Phys. Rev. B, 2010,82:115412.
[45]
Ciuparu D, Klie R F, Zhu Y, Pfefferle L . J. Phys. Chem. B, 2004,108:3967.
[46]
Liu F, Shen C, Su Z, Ding X, Deng S, Chen J, Xu N S, Gao H J . J. Mater. Chem., 2010,20:2197.
[47]
Yang Q, Sha J, Xu J, Ji Y J, Ma X Y, Niu J J, Hua H Q, Yang D R . Chem. Phys. Lett., 2003,379:87.
[48]
Cao L M, Zhang Z, Sun L L, Gao C X, He M, Wang Y Q, Li Y C, Zhang X Y, Li G, Zhang J, Wang W K . Adv. Mater., 2001,13:1701.
[49]
Cao L M, Hahn K, Wang Y Q, Scheu C, Zhang Z, Gao C X, Li Y C, Zhang X Y, Sun L L, Wang W K, Rühle M . Adv. Mater., 2002,14:1294.
[50]
Gao Y, Xu Z, Liu R . Mater. Sci. Eng. A, 2006,434:53.
[51]
Wang Y Q, Duan X F . Appl. Phys. Lett., 2003,82:272.
[52]
Meng X M, Hu J Q, Jiang Y, Lee C S, Lee S T . Chem. Phys. Lett., 2003,370:825.
[53]
Zhang Y, Ago H, Yumura M, Komatsu T, Ohshima S, Uchida K, Iijima S . Chem. Commun., 2002,2806.
[54]
Wang Z, Shimizu Y, Sasaki T, Kawaguchi K, Kimura K, Koshizaki N . Chem. Phys. Lett., 2003,368:663.
[55]
Tian J, Xu Z, Shen C, Liu F, Xu N, Gao H J . Nanoscale, 2010,2:1375. https://www.ncbi.nlm.nih.gov/pubmed/20820721

doi: 10.1039/c0nr00051e     URL     pmid: 20820721
[56]
Wu Y, Messer B, Yang P . Adv. Mater., 2001,13:1487.
[57]
Otten C J, Lourie O R, Yu M F, Cowley J M, Dyer M J, Ruoff R S, Buhro W E . J. Am. Chem. Soc., 2002,124:4564. https://www.ncbi.nlm.nih.gov/pubmed/11971695

doi: 10.1021/ja017817s     URL     pmid: 11971695
[58]
Liu F, Gan H, Tang D M, Cao Y, Mo X, Chen J, Deng S, Xu N, Golberg D, Bando Y . Small, 2014,10:685. https://www.ncbi.nlm.nih.gov/pubmed/24030778

doi: 10.1002/smll.201301948     URL     pmid: 24030778
[59]
Liu F, Tian J, Bao L, Yang T, Shen C, Lai X, Xiao Z, Xie W, Deng S, Chen J, She J, Xu N, Gao H . Adv. Mater., 2008,20:2609.
[60]
Tian J, Cai J, Hui C, Zhang C, Bao L, Gao M, Shen C, Gao H . Appl. Phys. Lett., 2008,93:122105.
[61]
Zhang Y X, Liu F, Shen C M, Li J, Deng S Z, Xu N S, Gao H J . Chinese Physics B, 2016,25:088102. https://iopscience.iop.org/article/10.1088/1674-1056/25/8/088102

doi: 10.1088/1674-1056/25/8/088102     URL    
[62]
Tian J, Cai J, Hui C, Li C, Tian Y, Shen C, Gao H . AIP Conf. Proc., 2009,1173:317.
[63]
Saxena S, Tyson T A . Phys. Rev. Lett., 2010,104:245502. https://www.ncbi.nlm.nih.gov/pubmed/20867310

doi: 10.1103/PhysRevLett.104.245502     URL     pmid: 20867310
[64]
Xu T T, Zheng J G, Wu N Q, Nicholls A W, Roth J R, Dikin D A, Ruoff R S . Nano Lett., 2004,4:963. https://pubs.acs.org/doi/10.1021/nl0498785

doi: 10.1021/nl0498785     URL    
[65]
Zhong Q, Kong L, Gou J, Li W, Sheng S, Yang S, Cheng P, Li H, Wu K, Chen L . Phys. Rev. Mater., 2017,1:021001. https://www.ncbi.nlm.nih.gov/pubmed/31574693

doi: 10.1103/PhysRevE.100.021001     URL     pmid: 31574693
[66]
Wang X J, Tian J F, Yang T Z, Bao L H, Hui C, Liu F, Shen C M, Xu N S, Gao H J . Adv. Mater., 2007,19:4480.
[67]
Li C, Tian Y, Hui C, Tian J, Bao L, Shen C, Gao H J . Nanotechnology, 2010,21:325705. https://www.ncbi.nlm.nih.gov/pubmed/20639582

doi: 10.1088/0957-4484/21/32/325705     URL     pmid: 20639582
[68]
Yang Q, Sha J, Wang L, Yuan Z, Yang D . Eur. Phys. J. B, 2007,56:35.
[69]
Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y . Nat. Nanotechnol., 2014,9:372. https://www.ncbi.nlm.nih.gov/pubmed/24584274

doi: 10.1038/nnano.2014.35     URL     pmid: 24584274
[70]
Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K . Nano Lett., 2012,12:3507. https://www.ncbi.nlm.nih.gov/pubmed/22658061

doi: 10.1021/nl301047g     URL     pmid: 22658061
[71]
Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G . Phys. Rev. Lett., 2012,108:155501. https://www.ncbi.nlm.nih.gov/pubmed/22587265

doi: 10.1103/PhysRevLett.108.155501     URL     pmid: 22587265
[72]
Dávila M E, Xian L, Cahangirov S, Rubio A, Le Lay G . New J. Phys., 2014,16:095002. https://iopscience.iop.org/article/10.1088/1367-2630/16/9/095002

doi: 10.1088/1367-2630/16/9/095002     URL    
[73]
Zhang Z, Yang Y, Penev E S, Yakobson B I . Adv. Funct. Mater., 2017,27:1605059. http://doi.wiley.com/10.1002/adfm.201605059

doi: 10.1002/adfm.201605059     URL    
[74]
Adamska L, Sadasivam S, Foley J J, Darancet P, Sharifzadeh S . J. Phys. Chem. C, 2018,122:4037. https://pubs.acs.org/doi/10.1021/acs.jpcc.7b10197

doi: 10.1021/acs.jpcc.7b10197     URL    
[75]
Penev E S, Kutana A, Yakobson B I . Nano Lett., 2016,16:2522. https://www.ncbi.nlm.nih.gov/pubmed/27003635

doi: 10.1021/acs.nanolett.6b00070     URL     pmid: 27003635
[76]
Zhao Y, Zeng S, Ni J . Phys. Rev. B, 2016,93:014502.
[77]
Penev E S, Bhowmick S, Sadrzadeh A, Yakobson B I . Nano Lett., 2012,12:2441. https://www.ncbi.nlm.nih.gov/pubmed/22494396

doi: 10.1021/nl3004754     URL     pmid: 22494396
[78]
Zhang L Z, Yan Q B, Du S X, Su G, Gao H J . J. Phys. Chem. C, 2012,116:18202.
[79]
Liu Y, Penev E S, Yakobson B I . Angew. Chem. Int. Edit., 2013,52:3156. https://www.ncbi.nlm.nih.gov/pubmed/23355180

doi: 10.1002/anie.201207972     URL     pmid: 23355180
[80]
Zhang Z, Yang Y, Gao G, Yakobson B I . Angew. Chem. Int. Edit., 2015,54:13022.
[81]
Sun X, Liu X, Yin J, Yu J, Li Y, Hang Y, Zhou X, Yu M, Li J, Tai G, Guo W . Adv. Funct. Mater., 2017,27:1603300.
[82]
Kah C B, Yu M, Tandy P, Jayanthi C S, Wu S Y . Nanotechnology, 2015,26:405701. https://www.ncbi.nlm.nih.gov/pubmed/26374239

doi: 10.1088/0957-4484/26/40/405701     URL     pmid: 26374239
[83]
Zhou X F, Dong X, Oganov A R, Zhu Q, Tian Y, Wang H T . Phys. Rev. Lett., 2014,112:085502.
[84]
Feng B, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y, Li H, Chen L, Wu K, Kumigashira H, Komori F, Chiang T C, Meng S, Matsuda I . Phys. Rev. Lett., 2017,118:096401. https://www.ncbi.nlm.nih.gov/pubmed/28306312

doi: 10.1103/PhysRevLett.118.096401     URL     pmid: 28306312
[85]
Ezawa M . Phys. Rev. B, 2017,96:035425.
[86]
Zhou X F, Oganov A R, Wang Z, Popov I A, Boldyrev A I, Wang H T . Phys. Rev. B, 2016,93:085406.
[87]
Tai G, Hu T, Zhou Y, Wang X, Kong J, Zeng T, You Y, Wang Q . Angew. Chem. Int. Edit., 2015,54:15473.
[88]
Kou L, Ma Y, Zhou L, Sun Z, Gu Y, Du A, Smith S, Chen C . Nanoscale, 2016,8:20111. https://www.ncbi.nlm.nih.gov/pubmed/27897298

doi: 10.1039/c6nr07271b     URL     pmid: 27897298
[89]
Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P . Science, 2015,350:1513. https://www.ncbi.nlm.nih.gov/pubmed/26680195

doi: 10.1126/science.aad1080     URL     pmid: 26680195
[90]
Zhang Z, Mannix A J, Hu Z, Kiraly B, Guisinger N P, Hersam M C, Yakobson B I . Nano Lett., 2016,16:6622. https://www.ncbi.nlm.nih.gov/pubmed/27657852

doi: 10.1021/acs.nanolett.6b03349     URL     pmid: 27657852
[91]
Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K . Nat. Chem., 2016,8:563. https://www.ncbi.nlm.nih.gov/pubmed/27219700

doi: 10.1038/nchem.2491     URL     pmid: 27219700
[92]
Zhong Q, Zhang J, Cheng P, Feng B, Li W, Sheng S, Li H, Meng S, Chen L, Wu K . J. Phys. Condens. Matter, 2017,29:095002. https://www.ncbi.nlm.nih.gov/pubmed/28129209

doi: 10.1088/1361-648X/aa5165     URL     pmid: 28129209
[93]
Wu R, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Božović I, Gozar A . Nat. Nanotechnol., 2019,14:44. https://www.ncbi.nlm.nih.gov/pubmed/30510278

doi: 10.1038/s41565-018-0317-6     URL     pmid: 30510278
[94]
Wang J, Zhao H Y, Liu Y . ChemPhysChem, 2014,15:3453. https://www.ncbi.nlm.nih.gov/pubmed/25139442

doi: 10.1002/cphc.201402418     URL     pmid: 25139442
[95]
Jiang H R, Lu Z, Wu M C, Ciucci F, Zhao T S . Nano Energy, 2016,23:97.
[96]
Wang X, Tai G, Wu Z, Hu T, Wang R . J. Mater. Chem. A, 2017,5:23471. http://xlink.rsc.org/?DOI=C7TA08597D

doi: 10.1039/C7TA08597D     URL    
[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[3] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[4] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[5] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[6] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[7] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[8] 严壮, 刘雅玲, 唐智勇. 二维导电金属有机骨架材料[J]. 化学进展, 2021, 33(1): 25-41.
[9] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[10] 赵文军, 秦疆洲, 尹志凡, 胡霞, 刘宝军. 新型2D MXenes 纳米材料在光催化领域的应用[J]. 化学进展, 2019, 31(12): 1729-1736.
[11] 姚送送, 李诺, 叶红齐, 韩凯*. 二维MXene材料的制备与电化学储能应用[J]. 化学进展, 2018, 30(7): 932-946.
[12] 陈诚, 董志强, 陈昊文, 陈杨, 朱志刚, 施惟恒. 二维光子晶体[J]. 化学进展, 2018, 30(6): 775-784.
[13] 周启峰, 江波*, 杨海波*. 可作为碳纳米管片段的共轭芳烃大环的设计合成[J]. 化学进展, 2018, 30(5): 628-638.
[14] 张华东, 李攻科*, 胡玉斐*. 埃洛石纳米管在分离富集中的应用[J]. 化学进展, 2018, 30(2/3): 198-205.
[15] 王宏磊, 吕文珍, 唐星星, 陈铃峰, 陈润锋, 黄维. 二维钙钛矿材料及其在光电器件中的应用[J]. 化学进展, 2017, 29(8): 859-869.
阅读次数
全文


摘要

硼纳米结构的理论和实验研究