English
新闻公告
More
化学进展 2019, Vol. 31 Issue (12): 1669-1680 DOI: 10.7536/PC190414 前一篇   后一篇

• •

基于新型离子交换膜过程的含盐废水零排放技术

陈青柏, 刘雨, 赵津礼, 李鹏飞, 王建友**()   

  1. 南开大学环境科学与工程学院 天津市跨介质复合污染环境治理技术重点实验室 天津 300350
  • 收稿日期:2019-04-15 出版日期:2019-12-15 发布日期:2019-10-15
  • 通讯作者: 王建友

Emerging Ion Exchange Membrane Process-Based Zero Liquid Discharge Technology for Saline Wastewater

Qingbai Chen, Yu Liu, Jinli Zhao, Pengfei Li, Jianyou Wang**()   

  1. Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
  • Received:2019-04-15 Online:2019-12-15 Published:2019-10-15
  • Contact: Jianyou Wang
  • About author:

离子交换膜过程作为连续的离子交换过程,具有绿色、经济、可持续、无污染等优点。本文以近年来出现的新型离子交换膜过程的结构组成、分离机理等为出发点,结合含盐废水零排放过程面临的高能耗、易结垢、分盐难等关键问题,介绍了选择性电渗析、置换电渗析、反电渗析等新型离子交换膜过程在零排放领域的最新应用与研究进展;针对这些过程与其他分离技术的系统性集成操作进行了介绍与总结,并对其进行了初步分析和评述,以期为以后的研究工作提供参考。

As a continuous ion exchange process, ion exchange membrane(IEM) process has many advantages in terms of green, sustainability, cost and pollution free. The latest applications and current progress of emerging ion exchange membrane process-based zero liquid discharge(ZLD) technology for saline wastewater, such as selectrodialysis, electrodialysis metathesis and reverse electrodialysis, are summarized from the view of some elementary factors(configurations, working mechanism, etc.), by considering the key issues of ZLD process, i.e., huge energy waste, easy scaling and difficult salts separating. The integrations with other separation technologies are introduced and summarized specifically. The review has made a generalization and summarization of the previous works in order to provide some reference for the future works in ZLD progress.

()
图1 反渗透浓缩单元、卤水浓缩器以及卤水结晶器的过程能耗[16]
Fig. 1 Specific energy consumption by RO, brine concentrator, and brine crystallizer[16]
图2 SED原理图。 SA-单价选择性阴离子交换膜;C-常规阳离子交换膜[35]
Fig. 2 Schematic diagram of SED. SA-monoselectivity anion exchange membrane; C-conventional cation exchange membrane[35]
图3 EDM原理图。 A-阴离子交换膜;C-阳离子交换膜[37]
Fig. 3 Schematic diagram of EDM. A-Anion exchange membrane; C-cation exchange membrane[37]
图4 RED原理图。 A-阴离子交换膜;C-阳离子交换膜[38]
Fig. 4 Schematic diagram of RED. A-Anion exchange membrane; C-cation exchange membrane[38]
图5 BMSED膜堆结构图。BM-双极膜;SA-单价选择性阴离子交换膜;SC-单价选择性阳离子交换膜[43]
Fig. 5 Structural diagram of the BMSED stack. BM-bipolar membrane; SA-monoselectivity anion exchange membrane; SC-monoselectivity cation exchange membrane[43]
图6 “SED/鸟粪石反应器”集成系统[50]
Fig. 6 Schematic illustrations of “SED/Struvite reactor” integrated system[50]
图7 EDM零排放脱盐基本原理
Fig. 7 The schematic principle of ZLD based on EDM
图8 用于数学建模的ZDD流程图[62]
Fig. 8 ZDD flow diagram used for modeling[62]
图9 基于EDM技术的浓海水零排放和资源化技术路线[66]
Fig. 9 Schematic flow diagram of the ED-RED integrated system[66]
图10 “RO/RED”集成脱盐系统(a)和“RO/MD/RED”零排放脱盐集成系统(b)[72,73]
Fig. 10 Schematic flow diagram of the “RO/RED” integrated desalination system(a) and “RO/MD/RED” integrated ZDD system(b)[72,73]
[1]
Mekonnen M M, Hoekstra A Y . Sci. Adv., 2016,2:1.
[2]
Voutchkov N . Desalination, 2018,431:2.
[3]
Feng C, Tang X, Jin Y, Höök M . J. Clean. Pro., 2019,210:298.
[4]
Yao Y, Zheng C, Andrews C, He X, Zhang A, Liu J . Sci. Total Environ., 2019,658:550. https://www.ncbi.nlm.nih.gov/pubmed/30580210

doi: 10.1016/j.scitotenv.2018.12.185     URL     pmid: 30580210
[5]
De Aquim P M, Hansen É, Gutterres M . J. Environ. Manage., 2019,230:456. https://www.ncbi.nlm.nih.gov/pubmed/30316036

doi: 10.1016/j.jenvman.2018.09.077     URL     pmid: 30316036
[6]
Pankratz V, Gasson T J F . IDA Desalination Yearbook 2015-2016, Oxford, UK, Global Water Intell; 2016.
[7]
Lin J, Ye W, Baltaru M C, Tang Y P, Bernstein N J, Gao P, Balta S, Vlad M, Volodin A, Sotto A, Luis P, Zydney A L, Van der Bruggen B . J. Membr. Sci., 2016,514:217.
[8]
Abdel-Fatah M A . Ain Shams Eng. J., 2018,9:3077.
[9]
Thomas M M, Robert G M . Desalination, 2018,434:198.
[10]
Giwa A, Dufour V, Marzooqi F A, Kaabi M A, Hasan S W . Desalination, 2017,407:1. https://linkinghub.elsevier.com/retrieve/pii/S0011916416305306

doi: 10.1016/j.desal.2016.12.008     URL    
[11]
Jones E, Qadi M, van Vliet M T H, Smakhtin V, Kang S . Sci. Total Environ., 2019,657:1343. https://www.ncbi.nlm.nih.gov/pubmed/30677901

doi: 10.1016/j.scitotenv.2018.12.076     URL     pmid: 30677901
[12]
Frank H, Fussmann K E, Rahav E, Zeev E B . Water Res., 2019,151:478. https://www.ncbi.nlm.nih.gov/pubmed/30641463

doi: 10.1016/j.watres.2018.12.046     URL     pmid: 30641463
[13]
Zhao W Y, Zhou M, Yan B, Sun X, Liu Y, Wang Y, Xu T, Zhang Y . Ind. Eng. Chem. Res., 2018,57(18):6025. https://pubs.acs.org/doi/10.1021/acs.iecr.8b00519

doi: 10.1021/acs.iecr.8b00519     URL    
[14]
Davenport D M, Deshmukh A, Werber J R, Elimelech M . Environ. Sci. Technol. Lett., 2018,5(8):467. https://pubs.acs.org/doi/10.1021/acs.estlett.8b00274

doi: 10.1021/acs.estlett.8b00274     URL    
[15]
Chung H W, Nayar K G, Swaminathan J, Chehayeb K M, Lienhard V J H . Desalination, 2017,404:291.
[16]
Tong T, Elimelech M . Environ. Sci. Technol., 2016,50(13):6846. https://www.ncbi.nlm.nih.gov/pubmed/27275867

doi: 10.1021/acs.est.6b01000     URL     pmid: 27275867
[17]
Leung R W, Li D C, Yu W K, Chui H K, Lee T O, van Loosdrecht M C, Chen G H . Water Sci. Technol., 2012,65(3):410. https://www.ncbi.nlm.nih.gov/pubmed/22258669

doi: 10.2166/wst.2012.768     URL     pmid: 22258669
[18]
Zhou W, Li Y, Gao Y, Zhao H . Bioresource Technol., 2017,245:10. https://www.ncbi.nlm.nih.gov/pubmed/28892678

doi: 10.1016/j.biortech.2017.08.160     URL     pmid: 28892678
[19]
Liu M, Li Q, Sun H, Jia S, He X, Li M, Zhang X X, Ye L . Chem. Eng. J., 2018,338:557.
[20]
McGinnis R L, Hancock N T, Nowosielski-Slepowron M S, McGurgan G D . Desalination, 2013,312:67.
[21]
Burbano A, Brankhuber P . Water Environment Research Foundation: Alexandria, VA, 2012.
[22]
Martinetti C R, Childress A E, Cath T Y . J. Membr. Sci., 2009,331:31
[23]
Reig M, Casas S, Aladjem C, Valderrama C, Gibert O, Valero F, Centeno C M, Larrotcha E, Cortina J L . Desalination, 2014,342:107.
[24]
Nathoo J, Jivanji R, Lewis A E . Abstracts of the International Mine Water Conference, Document Transformation Technologies, 2009,431.
[25]
Jiang Y, Sun Y, Jacob R D, Bruno F, Li S . Sol. Energ. Mat. Sol. C, 2018,178:74.
[26]
Hayashi Y, Fukui S, Nakamura Y . US 6030535, 2000.
[27]
Zhang Y, Ghyselbrecht K, Vanherpe R, Meesschaert B, Pinoy L, Van der Bruggen B . J. Environ. Manage., 2012,107:28. https://www.ncbi.nlm.nih.gov/pubmed/22579771

doi: 10.1016/j.jenvman.2012.04.020     URL     pmid: 22579771
[28]
Liu J, Yuan J, Ji Z, Wang B, Hao Y, Guo X . Desalination, 2016,390:53.
[29]
Dhanaraj P V, Bhagavannarayana G, Rajesh N P . Mater. Chem. Phys., 2008,112(2):490.
[30]
卢诗谣(Lu S Y), 赵颖颖(Zhao Y Y), 袁俊生(Yuan J S) . 化工进展 (Chem. Ind. Eng. Prog.), 2017,36(9):3210.
[31]
Wang W, Liu R, Tan M, Sun H, Niu Q J, Xu T, Nikonenko V, Zhang Y . J. Membr. Sci., 2019,582:236. https://linkinghub.elsevier.com/retrieve/pii/S037673881930300X

doi: 10.1016/j.memsci.2019.04.007     URL    
[32]
Li J, Yuan S, Wang J, Zhu J, Shen J, van der Bruggen B . J. Membr. Sci., 2018,553:139.
[33]
邓会宁(Deng H N), 何云飞(He Y F), 胡柏松(Hu B S), 冯妙(Feng M) . 化工进展 (Chem. Ind. Eng. Prog.), 2017,36(01):224.
[34]
Guler E, Zhang Y, Saakes D M, Nijmeijer D K . ChemSusChem, 2012,5:2262. https://www.ncbi.nlm.nih.gov/pubmed/23109486

doi: 10.1002/cssc.201200298     URL     pmid: 23109486
[35]
Zhang Y, Paepen S, Pinoy L, Meesschaert B, van der Bruggen B . Sep. Purif. Technol., 2012,88:191.
[36]
Chen Q B, Ji Z Y, Liu J, Zhao Y Y, Wang S Z, Yuan J S . J. Membr. Sci., 2018,548:408.
[37]
Chai P, Wang J, Lu H . J. Membr. Sci., 2015,493:549.
[38]
Mei Y, Tang C Y . Desalination, 2018,425:156.
[39]
苏成龙(Su C L) . 南开大学硕士学位论文 (Master Dissertation of Nankai University), 2014.
[40]
张涛(Zhang T) . Zhang T). 河北工业大学硕士学位论文 (Master Dissertation of Hebei University of Technology), 2015.
[41]
Zhang W, Miao M, Pan J, Sotto A, Shen J, Gao C, van der Bruggen B . Desalination, 2017,411:28.
[42]
Zhang W, Miao M, Pan J, Sotto A, Shen J, Gao C, van der Bruggen B . ACS Sustain. Chem. Eng., 2017,5:5820.
[43]
Chen B, Jiang C, Wang Y, Fu R, Liu Z, Xu T . Desalination, 2018,442:8.
[44]
Reig M, Valderrama C, Gibert O, Cortina J L . Desalination, 2016,399:88.
[45]
Reig M, Vecino X, Valderrama C, Gibert O, Cortina J L . Sep. Purif. Technol., 2018,195:404.
[46]
Selvaraj H, Aravind P, Sundaram M . Chem. Eng. J., 2017,333:162.
[47]
Zhang Y, van der Bruggen B, Pinoy L, Meesschaert B . J. Membr. Sci., 2009,332:104.
[48]
Tran A T K, Zhang Y, De Corte D, Hannes J B, Ye W, Mondal P, Jullok N, Meesschaert B, Pinoy L, van der Bruggen B . J. Cleaner Prod., 2014,77:140.
[49]
Tran A T K, Zhang Y, Lin J, Mondal P, Ye W, Meesschaert B, Pinoy L, van der Bruggen B . Sep. Purif. Technol., 2015,141:38.
[50]
Zhang Y, Desmidt E, van Looveren A, Pinoy L, Meesschaert B, van der Bruggen B . Environ. Sci. Technol., 2013,47:5888. https://www.ncbi.nlm.nih.gov/pubmed/23651001

doi: 10.1021/es4004476     URL     pmid: 23651001
[51]
Liu R, Wang Y, Wu G, Luo J, Wang S . Chem. Eng. J., 2017,322:224.
[52]
Wang Y K, Geng Y K, Pan X R, Sheng G P . Chem. Eng. Sci., 2017,171:451.
[53]
Thampy S K, Joshi B S, Govindan K P . Indian J. Technol., 1985,23:454.
[54]
Sharma P P, Yadav V, Rajput A, Kulshrestha V . ACS Omega, 2018,3(6):6895. https://www.ncbi.nlm.nih.gov/pubmed/31458858

doi: 10.1021/acsomega.8b01005     URL     pmid: 31458858
[55]
Zhang X, Wang X, Liu X, Han X, Jiang C, Li Q, Xu T . Ind. Eng. Chem. Res., 2015,54:11937.
[56]
Jaroszek H, Lis A, Dydo P . Sep. Purif. Technol., 2016,158:87.
[57]
Sharma P P, Gahlot S, Rajput A, Patidar R, Kulshrestha V . ACS Sustain. Chem. Eng., 2016,4:3220.
[58]
Davis T A . US 7459088, 2008.
[59]
Biagini B, Mack B, Pascal P, Davis T A, Cappelle M . International Mine Water Association, Annual Conference, 2012.
[60]
Bond R, Batchelor B, Davis T A, Klayman B . Fla. Water Resour. J., 2011,36.
[61]
Davis T . US 0227151 , 2014.
[62]
Cappelle M, Walker W S, Davis T A . Ind. Eng. Chem. Res., 2017,56(37):10448.
[63]
Camacho L M, Fox J A, Ajedegba J O . Desalination, 2017,403:136.
[64]
Bakouri H E, Riaza A, Llenas L, Davis T . The International Desalination Association World Congress on Desalination and Water Reuse, San Diego, CA, USA, 2015.
[65]
Zhang Y F, Liu L, Du J, Fu R, van der Bruggen B, Zhang Y . J. Membr. Sci., 2017,523:385.
[66]
Chen Q B, Ren H, Tian Z, Sun L, Wang J . Sep. Purif. Technol., 2019,213:587.
[67]
Giacalone F, Papapetrou M, Kosmadakis G, Tamburini A, Micale G, Cipollina A . Energy, 2019,181:532.
[68]
Yip N Y, Elimelech M . Environ. Sci. Technol., 2014,48(18):11002. https://www.ncbi.nlm.nih.gov/pubmed/25157687

doi: 10.1021/es5029316     URL     pmid: 25157687
[69]
Mei Y, Tang C Y . Desalination, 2018,425:156.
[70]
Daniilidis A, Vermaas D A, Herber R, Nijmeijer K . Renew. Energ., 2014,64:123. https://www.ncbi.nlm.nih.gov/pubmed/27614713

doi: 10.1016/j.npep.2016.08.009     URL     pmid: 27614713
[71]
陈霞(Chen X), 蒋晨啸(Jiang C X), 汪耀明(Wang Y M), 徐铜文(Xu T W) . 化工学报 (J. Chem. Ind. Eng., 2018,69(1):188.
[72]
Li W, Krantz W B, Cornelissen E R, Post J W, Verliefde A R, Tang C Y . Appl. Energ., 2013 104:592.
[73]
Tufa R A, Curcio E, Brauns E, van Baak W, Fontananova E, Di Profio G . J. Memb. Sci., 2015,496:325.
[74]
Wang Q, Gao X, Zhang Y, He Z, Ji Z, Wang X, Gao C . Desalination, 2017,405:59.
[75]
Chen Q, Liu Y Y, Xue C, Yang Y L, Zhang W M . Desalination, 2015,359:52. https://linkinghub.elsevier.com/retrieve/pii/S0011916414006481

doi: 10.1016/j.desal.2014.12.010     URL    
[76]
Luo F, Wang Y, Jiang C, Wu B, Feng H, Xu T . Desalination, 2017,404:138.
[1] 王琦,程易,吴昌宁,金涌. 新型节能CO2零排放工艺——化学循环燃烧技术[J]. 化学进展, 2008, 20(10): 1612-1620.