English
新闻公告
More
化学进展 2019, Vol. 31 Issue (10): 1417-1424 DOI: 10.7536/PC190315 前一篇   后一篇

• •

喷墨打印制备高性能薄膜晶体管的材料体系

张奇, 项徽清, 刘建国**(), 曾晓雁   

  1. 华中科技大学 武汉光电国家研究中心 激光与太赫兹技术功能实验室 武汉 430074
  • 收稿日期:2019-03-15 出版日期:2019-10-15 发布日期:2019-08-05
  • 通讯作者: 刘建国
  • 基金资助:
    国家自然科学基金项目(51775209); 中国电子科技集团装备预研项目(6141B08120301)

Materials System for Inkjet Printing High Performance Thin-Film Transistors

Qi Zhang, Huiqing Xiang, Jianguo Liu**(), Xiaoyan Zeng   

  1. Functional Laboratory of Laser and Terahertz Technology, Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2019-03-15 Online:2019-10-15 Published:2019-08-05
  • Contact: Jianguo Liu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51775209); Equipment Advance Research Project of China Electronics Technology Group Corporation(6141B08120301)

作为有源电子器件的基本构筑元件,薄膜晶体管(Thin-film transistor, TFT)近年来受到深入研究并在高性能材料研发和器件多功能应用等方面取得了长足的进展。喷墨打印作为一种新兴的加成法制备技术,因其具有成本低、环境友好、无需掩膜等优点,在电子功能器件制备等领域受到了广泛关注。本文概述了可用于喷墨打印制备TFT的材料体系,并依照材料的种类和功能,分别较详细地介绍了喷墨打印制备TFT所用的半导体材料、绝缘材料和电极材料,深入分析了不同材料对TFT器件性能的影响,并对喷墨打印制备TFT的材料体系进行了展望,为制备高性能的TFT提供了可能的材料方向。

Recently, thin-film transistor(TFT), as the primary building blocks of active electronics, has been intensively studied, and considerable progress on its high performance material development and multifunctional application have been made. As an emerging additive preparation technology, inkjet printing has received wide attention in such preparation field as electronic functional devices because of its low cost, environmental friendliness and masklessness. In this paper, the materials system for inkjet printing TFT is summarized. According to the corresponding classification and function, the three materials systems including semiconductor, insulator and electrode are introduced in detail, respectively. The effect of the three materials on the performance of TFT devices is also analyzed in depth. The materials system for inkjet printing TFT is prospected, and these provide the future materials selection direction for inkjet printing high-performance TFT.

()
图1 薄膜晶体管结构示意图
Fig. 1 Schematic diagram of the structure of thin film transistor
图2 常见的有机半导体材料分子结构
Fig. 2 Molecular structures of common organic semiconductor materials
图3 (a)旋涂P3HT薄膜的AFM图像和TFT的传输特性;(b)喷墨打印P3HT薄膜的AFM图像和TFT的传输特性[21]
Fig. 3 (a) AFM image of spin-coated P3HT thin film and transfer characteristic of TFT;(b) AFM image of inkjet-printed P3HT thin film and transfer characteristic of TFT[21]
图4 聚合物分离的单壁半导体碳纳米管的紫外-可见-近红外光谱图。 1.5 mg PFO-BT, 2.5 mg PFIID(Mw(l)), 3.5 mg PFIID(Mw(h)), 4.5 mg PCZ(Mw(l)), 5.5 mg PCZ(Mw(h)),6.5 mg PCZIIF,7.3 mg PCZIIF, 8.3 mg PCZ(Mw(h))[32]
Fig. 4 UV-Vis-NIR spectra of sorted SWCNTs by different polymers including PFO-BT, PFIID, PCZ and PCZIID, 1.5 mg PFO-BT, 2.5 mg PFIID(Mw(l)), 3.5 mg PFIID(Mw(h)), 4.5 mg PCZ(Mw(l)), 5.5 mg PCZ(Mw(h)),6.5 mg PCZIIF,7.3 mg PCZIIF, 8.3 mg PCZ(Mw(h))[32]
图5 (a)喷墨打印IGZO-TFT的SEM图像;(b)采用LSA和CTA处理的IJP-IGZO TFT的传输特性[49]
Fig. 5 (a) SEM image of inkjet printed IGZO-TFT;(b) Transfer characteristics of IJP-IGZO TFTs with LSA and CTA treatments[49]
图6 (a)在ITO玻璃上印刷ZrO2阵列;(b)单个印刷的ZrO2单元的3D图像[61]
Fig. 6 (a) Printing the ZrO2 array on ITO glass;(b) 3D image of the single printed ZrO2 unit[61]
图7 (a)用喷墨印刷的源/漏电极制造的CNT-TFT的光学显微镜图像,CNT网络通道的AFM图像,沉积时间分别为(b)13 h和(c)18 h[77]
Fig. 7 (a) Optical microscopy images of CNT-TFTs fabricated from inkjet printed source/drain electrodes, AFM images of CNT network channels, deposition times (b) 13 h and (c) 18 h, respectively[77]
[1]
Zhou L, Wanga A, Wu S C, Sun J, Park S, Jackson T N . Appl. Phys. Lett., 2006,88(8):083502.
[2]
Mandal S, Noh Y Y . Semicond. Sci. Tech., 2015,30(6):064003.
[3]
Jeon P J, Lee K, Park E Y, Im S, Bae H . Org. Electron., 2016,32:208.
[4]
宋静怡(Song J Y), 江浪(Jiang L), 董焕丽(Dong H L), 胡文平(Hu W P) . 化学进展 (Progress in Chemistry), 2013,25(01):12.
[5]
Shen W . Sens. Actuators B, 2012,166:110.
[6]
Hennek J W, Xia Y, Everaerts K, Hersam M C, Facchetti A, Marks T J . ACS Appl. Mater. Inter., 2012,4(3):1614.
[7]
Wood V, Panzer M J, Chen J, Bradley M S, Halpert J E, Bawendi M G, Bulović V . Adv. Mater., 2009,21(21):2151.
[8]
Hoth C N, Schilinsky P, Choulis S A, Brabec C J . Nano Lett., 2008,8(9):2806.
[9]
Lavery L L, Whiting G L, Arias A C . Org. Electron., 2011,12(4):682.
[10]
Yang L, Rida A, Vyas R, Tentzeris M M . IEEE Trans. Microw. Theory Tech., 2007,55(12):2894.
[11]
Jiang C, Choi H W, Cheng X, Ma H, Hasko D, Nathan A . Science, 2019,363(6428):719.
[12]
Giri G, Verploegen E, Mannsfeld S C B, Atahan-Evrenk S, Kim D H, LEE S Y, Becerril HA, Aspuru-Guzik A S, Toney M F, Bao Z . Nature, 2011,480(7378):504.
[13]
Ge F, Wang X, Zhang Y, Song E, Zhang G B, Lu H B, Cho K, Qiu L Z , Adv. Electron. Mater., 2017,3(1):1600402.
[14]
Norita S, Kumaki D, Kobayashi Y, Sato T, Fukuda K, Tokito S . Org. Electron., 2015,25:131.
[15]
Haase K, Teixeira da Rocha C, Hauenstein C, Zheng Y, Hambsch M, Mannsfeld S C . Adv.Electron. Mater., 4(8):1800076.
[16]
Sakanoue T, Sirringhaus H . Nat. Mater., 2010,9(9):736.
[17]
Wang X, Qin M, Yuan M, Gu X, Qiu L, Zhang G, Hu J, Lu H, Lv G . J. Disp. Technol., 2015,11(5), 450.
[18]
Liu X, Kanehara M, Liu C, Minari T . J. Inf. Display., 2017,18(2):93.
[19]
Lim J A, Kim J H, Qiu L, Lee W H, Lee H S, Kwak D, Cho K . Adv. Funct. Mater., 2010,20(19):3292.
[20]
Lim J A, Lee W H, Lee H S, Lee J H, Park Y D, Cho K . Adv. Funct. Mater., 2008,18(2):229.
[21]
Lin Y, Liu C F, Song Y J, Yang L, Zeng W J, Lai W Y, Huang W . RSC Adv., 2016,6(47):40970.
[22]
Li D, Borkent E J, Nortrup R, Moon H, Katz H, Bao Z . Appl. Phys. Lett., 2005,86(4):042105.
[23]
Gracia-Espino E, Sala G, Pino F, Halonen N, Luomahaara J, Mäklin J, Tóth G, Kordás K, Jantunen H, Terrones M, Helistö P, Seppä H, Ajayan P M, Vajtai R . ACS Nano, 2010,4(6):3318.
[24]
Moore K E, Pfohl M, Tune D D, Hennrich F, Dehm S, ChakradhanulaV S K, Kübel C, Krupke R, Flavel B S . ACS Nano, 2015,9(4):3849.
[25]
Feng P, Xu W, Yang Y, Wan X, Shi Y, Wan Q. Zhao J W, Cui Z . Adv. Funct. Mater., 2017,27(5):1604447.
[26]
Sun D M, Liu C, Ren W C, Cheng H M . Small, 2013,9(8):1188.
[27]
Franklin A D, Luisier M, Han S J, Tulevski G, Breslin C M, Gignac L, Lundstrom M S, Haensch W . Nano Lett., 2012,12(2):758.
[28]
Liu H, Tanaka T, Kataura H . Nano Lett., 2014,14(11):6237.
[29]
Arnold M S, Green A A, Hulvat J F, Stupp S I, Hersam M C . Nat. Nanotechnol., 2006,1(1):60.
[30]
Xu X, Ray R, Gu Y, Ploehn H J, Gearheart L, Raker K, Scrivens W A . J. Am. Chem. Soc., 2004,126(40):12736.
[31]
许威威(Xu W W), 徐文亚(Xu W Y), 张祥(Zhang X), 金晶(Jin J), 赵建文(Zhao J W), 崔铮(Cui Z) . 影像科学与光化学 (Photographic Science and Photochemistry), 2016,34(2):152.
[32]
刘停停(Liu T T), 朱天翔(Zhu T X), 邵琳(Shao L), 赵新洛(Zhao X L), 赵建文(Zhao J W), 崔铮(Cui Z) . 影像科学与光化学 (Photographic Science and Photochemistry), 2018,36(3):245.
[33]
Tulevski G S, Franklin A D, Frank D, Lobez J M, Cao Q, Park H, Afzali A, Han S, Hannon J B, Haensch W . ACS Nano, 2014,8(9):8730.
[34]
Zaumseil J . Semicond. Sci. Tech., 2015,30(7):074001.
[35]
Biswas C, Lee Y H . Adv. Funct. Mater., 2011,21(20):3806.
[36]
Kim B, Jang S, Geier M L, Prabhumirashi P L, Hersam M C, Dodabalapur A . Nano Lett., 2014,14(6):3683.
[37]
Chen H, Cao Y, Zhang J, Zhou C . Nat. Commun., 2014,5:4097.
[38]
Geier M L, Moudgil K, Barlow S, Marder S R, Hersam M C . Nano Lett., 2016,16(7):4329.
[39]
Li G, Li Q, Jin Y, Zhao Y, Xiao X Y, Jiang K, Wang J P, Fan S S . Nanoscale, 2015,7(42):17693.
[40]
Shahrjerdi D, Franklin A D, Oida S, Ott J A, Tulevski G S, Haensch W . ACS Nano, 2013,7(9):8303.
[41]
Li H, Zhou L . ACS Appl. Mater. Inter., 2015,7(41):22881.
[42]
Kim B, Geier M L, Hersam M C, Dodabalapur A . ACS Appl. Mater. Inter., 2015,7(50):27654.
[43]
Liu X, Wegener M, Polster S, Jank M P, Roosen A, Frey L . J. Disp. Technol., 2016,12(3):214.
[44]
Zeumault A, Ma S, Holbery J . Phys. Status Solidi. A, 2016,213(8):2189.
[45]
Kim H, Choi W S . Ceram. Int., 2017,43(6):4775.
[46]
Chen J Q, Ning H L, Fang Z Q, Tao R Q, Yang C G, Zhou Y C, Yao R H, Xu M, Wang L, Peng J B . J. Phys. D Appl. Phys., 2018,51(16):165103.
[47]
Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H . Nature, 2004,432(7016):488.
[48]
Xie M, Wu S, Chen Z, Khan Q, Wu X, Shao S, Cui Z . RSC Adv., 2016,6(47):41439.
[49]
Huang H, Hu H, Zhu J, Guo T . J. Electron. Mater., 2017,46(7):4497.
[50]
张国成(Zhang G C), 陈惠鹏(Chen H P), 郭太良(Guo T L) . 发光学报 (Chinese Journal of Luminescence), 2017,38(2):194.
[51]
Shen Y K, Liu Z, Wang X L, Ma W K, Chen Z H, Chen T P, Zhang H Y . Solid State Electron., 2017,138:108.
[52]
Yang C G, Fang Z Q, Ning H L, Tao R Q, Chen J Q, Zhou Y C, Zheng Z K, Yao R H, Wang L, Peng J B, Song Y S . Appl. Sci., 2017,7(8):844.
[53]
Du X, Li Y, Herman G S . Nanoscale, 2016,8(43):18469.
[54]
Guo L, Zhu X, Sun S, Cong C, Zhou Q, Sun X, Liu Y . Org. Electron., 2019,69:308.
[55]
Wu X, Chen Z, Zhou T, Shao S, Xie M, Song M, Cui Z . RSC Adv., 5(27):20924.
[56]
Mikolajek M, Reinheimer T, Muth M, Hohwieler P, Hoffmann M J, Binder J R . Adv. Eng. Mater., 2018,20(9):1800318.
[57]
Tong S, Sun J, Yang J . ACS Appl. Mater. Inter., 2018,10(31):25902.
[58]
Park J H, Yoo Y B, Lee K H, Jang W S, Oh J Y, Chae S S, Baik H K . ACS Appl. Mater. Inter., 2013,5(2):410.
[59]
Jones C S, Lu X, Renn M, Stroder M, Shih W S . Microelectron. Eng., 2010,87(3):434.
[60]
Braga D, Ha M, Xie W, Frisbie C D . Appl. Phys. Lett., 2010,97(19):245.
[61]
Zhu Z, Ning H, Cai W, Wei J, Zhou S, Yao R. Lu X, Zhang J, Zhou Z, Peng J . Langmuir, 2018,34(22):6413.
[62]
Zhu Z, Zhang J, Zhou Z, Ning H, Cai W, Wei J, Zhou S, Yao R, Lu X, Peng J . ACS Appl. Mater. Inter., 2019,11(5):5193.
[63]
Cai W, Ning H, Zhu Z, Wei J, Zhou S, Yao R, Fang Z, Huang X, Lu X, Peng J . Nanoscale Res. Lett., 2019,14(1):80.
[64]
Lee C W, Raman Pillai S K, Luan X, Wang Y, Li C M, Chan-Park M B . Small, 2012,8(19):2941.
[65]
Tan T, Liu Z, Lu H, Liu W, Tian H . Opt. Mater., 2010,32(3):432.
[66]
Vescio G, López-Vidrier J, Leghrib R, Cornet A, Cirera A . J. Mater. Chem. C, 2016,4(9):1804.
[67]
Jo G, Choe M, Lee S, Park W, Kahng Y H, Lee T . Nanotechnology, 2012,23(11):112001.
[68]
Zaumseil J, Sirringhaus H . Chem. Rev., 2007,107(4):1296.
[69]
Tao R, Fang Z, Zhang J, Ning H, Chen J, Yang C. Zhou Y, Yao R, Lin W, Peng J . ACS Appl. Mater. Inter., 2018,10(27):22883.
[70]
Hong J Y, Yoon D G, Chin B D, Kim S H . RSC Adv., 2015,5(128):105785.
[71]
Xu W, Hu Z, Liu H, Lan L, Peng J, Wang J, Cao Y . Sci. Rep., 2016,6:29055.
[72]
Okimoto H, Takenobu T, Yanagi K, Miyata Y, Shimotani H, Kataura H, Iwasa Y . Adv. Mater., 2010,22(36):3981.
[73]
Leppäniemi J, Eiroma K, Majumdar H S, Alastalo A . IEEE Electr. Device L., 2016,37(4):445.
[74]
Secor E B, Smith J, Marks T J, Hersam M C . ACS Appl. Mater. Inter., 2016,8(27):17428.
[75]
Fukuda K, Sekine T, Kobayashi Y, Takeda Y, Shimizu M, Yamashita N, Kumaki D, Itoh M, Nagaoka M, Toda T, Saito S, Kurihara M, Sakamoto M, Tokito S . Org. Electron., 2012,13(12):3296.
[76]
Ning H, Zhou Y, Fang Z, Yao R, Tao R, Chen J, Cai W, Zhu Z, Yang C, Wei J, Wang L, Peng J . Nanoscale Res. Lett., 2017,12(1):546.
[77]
Lee Y, Yoon J, Choi B, Lee H, Park J, Jeon M, Han J, Lee J, Kim Y, Kim D H, Kim D M, Choi S J . Appl. Phys. Lett., 2017,111(17):173108.
[78]
Lee S H, Choi W S . J. Disp Technol., 2015,11(9):698.
[79]
Yu Y, Xiao X, Zhang Y K, Li K, Yan C, Wei X L, Chen L, Zhen H Y, Zhou H, Zhang S D, Zheng Z J . Adv. Mater., 2016,28:4926
[80]
Li Y, Lan L, Sun S, Lin Z G, Gao P X, Song W, Song E L, Zhang P, Peng J B . ACS Appl. Mater. Inter., 2017,9(9):8194.
[81]
Scheideler W J, Kumar R, Zeumault A R, Subramanian V . Adv. Funct. Mater., 2017,27(14):1606062.
[82]
Zeng Y, Ning H L, Zheng Z K, Zhang H K, Fang Z Q, Yao R H, Xu M, Wang L, Lan L F, Peng J B, Lu X B . Appl. Phys. Lett., 2017,110(15):153503.
[83]
Li Y, Lan L, Xiao P, Sun S, Lin Z G, Song W, Song E L, Gao P X, Wu W J, Peng J B . ACS Appl. Mater. Inter., 2016,8(30):19643.
[84]
Kim Y H, Kim T H, Lee Y, Kim J W, Kim J, Park S K . J. Nanosci. Nanotechno., 2014,14(11):8158.
[85]
Huang Q, Al-Milaji K N, Zhao H . ACS Appl. Nano Mater., 2018,1(9):4528.
[1] 孙加振, 邝旻翾, 宋延林. 喷墨打印中“咖啡环”效应的调控及应用[J]. 化学进展, 2015, 27(8): 979-985.
[2] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.