化学进展 2019, Vol. 31 Issue (9): 1199-1212 DOI: 10.7536/PC190303 前一篇   后一篇

• •


刘璇宇1, 朱晓婷1, 丁帅帅2, 李荣金1,**(), 胡文平1,2   

  1. 1. 天津大学理学院化学系 天津 300072
    2. 中国科学院化学研究所 北京 100190
  • 收稿日期:2019-03-03 出版日期:2019-09-15 发布日期:2019-07-02
  • 通讯作者: 李荣金
  • 基金资助:

Organic Spin Valves and Their Magnetoresistance Effect

Xuanyu Liu1, Xiaoting Zhu1, Shuaishuai Ding2, Rongjin Li1,**(), Wenping Hu1,2   

  1. 1. Departmet of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2019-03-03 Online:2019-09-15 Published:2019-07-02
  • Contact: Rongjin Li
  • About author:
    ** E-mail:
  • Supported by:
    The National Natural Science Foundation of China(No.61674116)

随着巨磁电阻效应(GMR)的发现, 自旋电子学迅速兴起并成为一门新的学科。自旋电子学以电子的自旋属性为信息载体, 有望实现集逻辑、存储和通信于一体的多功能、低功耗器件, 为下一代电子学开辟新的路径。有机半导体具有低自旋轨道耦合、弱超精细相互作用和长自旋弛豫时间等特点, 因而受到了极大关注。有机自旋阀(OSVs)是研究有机材料中自旋注入和传输的原型器件。本文综述了有机自旋阀的发展历程, 总结了有机半导体的自旋弛豫机制, 详细分析了有机自旋阀中存在的关键科学问题, 如室温自旋传输的实现策略和磁电阻符号问题, 介绍了自旋有机发光二极管和自旋光伏器件等新型自旋器件, 最后对有机自旋电子学未来发展进行了展望。

With the discovery of the giant magnetoresistance effect(GMR), spintronics has rapidly emerged as a new discipline. Spintronics, which utilizes the spin property of electrons, may combine logic operations, information storage and communication to foster the next-generation electronics. Organic semiconductors are attractive for spintronics because of their intrinsically long spin relaxation time due to their low spin-orbit coupling and weak hyperfine interactions. Organic spin valves(OSVs) are important basic structures to study spin injection and transport in organic materials. This review generalizes the progress of OSVs. The spin relaxation mechanisms in organic semiconductors are summarized briefly. Key scientific questions such as the strategy to realize room temperature spin transport and the sign problem of magnetoresistance in OSVs are specially emphasized. Emerging functional devices which utilize the spin property of electrons such as spin organic light-emitting diode(OLED) and spin-photovoltaic device are introduced. Finally, the future development of organic spintronics is prospected.

图1 (a) 自旋阀效应示意图。左边为两个电极磁化方向反平行时的情况, 右边为平行时的情况;(b) 自旋阀中的电阻与外部磁场的关系图。两个铁磁电极的矫顽力分别是|H1|和|H2|[11]
Fig. 1 (a) Schematics of spin valve effect. The left side is the case that the magnetization of the two electrodes is anti-parallel and the right side is parallel.(b) Electrical resistance versus external magnetic field in spin-valve. Coercivities of two ferromagnets are |H1| and |H2|, respectively[11]
图2 自旋弛豫机制示意图。上图、中图和下图分别代表Elliott-Yafet、D’yakonov-Perel和超精细相互作用自旋弛豫机制[14]
Fig. 2 Schematic of spin relaxation mechanisms. Top, middle, and bottom panels represent spin relaxation mechanism of Elliott-Yafet, D’yakonov-Perel and hyperfine interaction, respectively[14]
表1 有机自旋阀的常用铁磁电极[12, 31]
Table 1 Representative FM materials used as OSV electrodes[12, 31]
表2 由不同有机层和铁磁电极组成的自旋阀在不同温度下的MR响应以及自旋扩散长度
Table 2 MR response and spin diffusion length of spin valves composed of different organic layers and ferromagnetic electrodes at different temperatures.
OSCs(Thickness) FM Electrodes MR @Tempreture Spin diffusion length ref
T6(150 nm) LSMO(100 nm)/LSMO(100 nm) 30%@RT - 42
Alq3(130 nm) LSMO(100 nm)/Co(3.5 nm) -40%@11 K 45 nm@11 K 30
Alq3(1.6 nm) Co(8 nm)/Al2O3(0.6 nm)/Py(10 nm) 7.5%@4.2 K; 6.8%@77 K;4.6%@RT - 50
Alq3(96 nm) Co(5 nm)/AlOx(2 nm)/Co(10 nm) 19%@5 K - 74
Alq3(2 nm) Fe3O4(110 nm)/AlOx(2 nm)/Co(10 nm) 6%@RT - 75
Alq3(1.6 nm) Ni80Fe20(10 nm)/AlOx(0.6 nm)/Co(8 nm) 6%@RT - 50
BCP(10 nm) Co(11 nm)/AlOx(1.5 nm)/Ni80Fe20(11 nm) 3.5%@RT - 61
BTQBT LSMO(100 nm)/LSMO(100 nm) 29%@9.1 K;8.8%@10 K 100 nm@9.1 K 76
C60(5 nm) Co(15 nm)/AlOx(0.9 nm)Py(20 nm) 10%@RT 55
C60(80 nm) Fe3O4(70 nm)/AlOx(2 nm)/Co(10 nm) 6.9% @150 K;5.3%@RT 110 nm@RT 60
C60(120 nm) LSMO(50 nm)/Co(15 nm) -13.3%@20 K 86±8 nm@120 K 77
CuPc(100 nm) Fe(25 nm)/Co(5 nm) 6.4%@40 K;3.2%@80 K;
1.8%@120 K
- 78
CuPc(100 nm) LSMO(50 nm)/Co(20 nm) -6%@10 K;-0.84%@RT 50 nm@10 K 58
CVB(100 nm) LSMO/Co(5 nm) 18%±3%@14 K - 46
Pentacene LSMO(100 nm)/LSMO(100 nm) 6%@5.3 K 55 nm@5.3 K 76
Peteacene(300 nm) LSMO(100 nm)/LSMO(100 nm) 2%@9 K - 79
P(NDI2OD-T2)(35 nm) LSMO(100 nm)/AlOx(1.5 nm)/Co(10 nm) 90%@4.2 K;6.8%@RT 64 nm@4.2 K 56
PVDF(6.9 nm) Fe3O4(75 nm)/AlOx(2 nm)/Co 2.6%@RT - 62
P3MT(15 nm) LSMO(50 nm)/Co(15 nm) 2.7%@RT - 80
RRP3HT(100 nm) LSMO/Co(10 nm) 80%@5 K;1.5%@RT - 38
RRP3HT(75 nm/150 nm) Fe50Co50(20/40 nm)/Ni81Fe19(20 nm) 0.1%@RT;0.04%@RT 62±10 nm 39
RRP3HT(80 nm) LSMO(100 nm)/AlOx(1 nm)/Co(10 nm) 15.6%@2 K;-0.2%@2 K - 40
Rubrene(4.6 nm) Fe(10 nm)/Co(8 nm) 16%@4.2 K;6%@RT 13.3 nm@0.45 K 59
Rubrene(2 nm) Fe3O4(100 nm)/AlOx(2 nm)/Co(10 nm) 6%@RT - 44
α-NPD(105 nm) LSMO/Co(5 nm) 14±3%@14 K - 46
Rubrene(10 nm) V[TCNE]x(50 nm)/ V[TCNE]x(300 nm) -0.04%@100 K - 36
Rubrene(10 nm) Fe(50 nm)/ V[TCNE]x(300 nm) -0.18%@100 K - 81
TPD(200 nm) Co2MnSi(20 nm)/Co(7 nm) 10.7%@5 K;7.8%@RT - 57
TPD(200 nm) LSMO/Co(7 nm) 19%@5 K - 57
TPP(20 nm) LSMO(100 nm)/Co(5 nm) 17%@80 K - 82
BF3(50 nm) NiFe/AlOx(2 nm)/Co 3%@40 K - 83
CNAP(1~3 nm) NiFe(30 nm)/AlOx(2 nm)/Co(50 nm) 10%@5 K;6%@RT - 45
CNAP(5~15 nm) NiFe(30 nm)/AlOx(2 nm)/Co(50 nm) 4%~6%@5 K;1%~2%@RT - 45
PTCDA(2 nm) NiFe(25 nm)/Co(15 nm)/AlOx(0.6 nm)/AlOx
(0.6 nm)/Co(30 nm)
13.5%@RT - 84
1H-DOO-PPV(25 nm) LSMO(200 nm)/Co(15 nm) 2%@10 K - 85
1D-DOO-PPV(25 nm) LSMO(200 nm)/Co(15 nm) 35% or 45%@10 K - 85
图3 (a) LSMO/T6/LSMO平面结构自旋阀示意图[42]。(b) LSMO/Alq3/Co垂直结构自旋阀示意图[30]。(c) LSMO/Alq3/Co/Alq3/Co 双层垂直全有机结构自旋阀示意图[43]。(d) V[TCNE]x/rubrene/V[TCNE]x全有机层自旋阀示意图[36]
Fig. 3 (a) Schematic diagram of the LSMO/T6/LSMO lateral spin-valve device[42].(b) Schematic diagram of the LSMO/Alq3/Co vertical spin-valve device[30].(c) Schematic side views of a double-layer OSV device(LSMO/Alq3/Co/Alq3/Co)[43].(d) Device structure of V[TCNE]x/rubrene/V[TCNE]x[36]
图4 (a) LSMO/Alq3/Co自旋阀结构示意图[30]。(b) LSMO(100 nm)/Alq3(130 nm)/Co(3.5 nm)自旋阀在11 K时的GMR曲线[30]。(c)V=2.5 mV时测量的ΔR/R与温度的函数关系。插图:使用磁光克尔效应测量的Co和LSMO电极对温度的磁化[30]
Fig. 4 (a) Schematic diagram of LSMO/Alq3/Co spin valve[30].(b) GMR loop of a LSMO(100 nm)/Alq3(130 nm)/Co(3.5 nm) spin-valve device measured at 11 K[30].(c) ΔR/R vs temperature of LSMO/Alq3/Co spin valve measured at V=2.5 mV. Inset: Temperature dependence of magnetization of Co and LSMO electrodes measured using MOKE[30]
图5 (a)BLAG自旋阀和传统自旋阀的示意图。常规器件(b)的横截面示意图表示由于Co原子的扩散导致的短路区域(由白色实线画出)。对于BLAG器件(c)在沉积顶部电极之前使用BLAG形成几层Co纳米点, 这有效地将相互扩散过程降到最小化[63]
Fig. 5 (a) Schematic diagrams of a BLAG spin valve and a conventional spin valve. Cross-sectional schematic diagram of conventional device(b) indicates the short circuit area(sketched by solid white line) due to the diffusion of Co atoms. For the BLAG device(c) several layers of Co nanodots are formed using BLAG prior to the deposition of top electrodes which effectively minimizes the interdiffusion process[63]
图6 非直接沉积磁性电极示意图[70]
Fig. 6 Schematic diagram of the indirect deposition[70]
图7 界面处发生化学反应导致符号翻转示意图[69] 。。。
Fig. 7 Schematic diagram of the sign inversion in OSV due to a strong chemical reaction at the metal-molecule interface[69] 。。。
图8 (a~c) 在磁性金属和分子之间形成杂化状态的示意图[88]。(d) Co/AlOx/P3HT/LSMO自旋阀杂化态示意图[40]
Fig. 8 (a~c) Schematic representation of hybridization between magnetic metal and molecule[88].(d) Hybrid schematic diagram of Co/AlOx/P3HT/LSMO spin valve[40]
图9 有机自旋阀中金属穿透影响磁电阻变化示意图[41]。(a, b) 含直接蒸发Co的厚有机聚合物非磁性层。(c, d) 含直接蒸发Co的薄有机聚合物非磁性层。(e, f) 含转移Co的有机薄聚合物非磁性层的典型磁电阻信号和有机聚合物非磁性层与顶部铁磁电极之间的相关界面
Fig. 9 Schematic illustration of metal penetration influencing the MR response[41]. Typical MR response and related interface between polymer and top ferromagnetic electrodes of(a, b) thick polymer with direct-evaporated Co, (c, d) thin polymer with direct-evaporated Co, and(e, f) thin polymer with transferred Co, respectively
图10 (a) V[TCNE]x/rubrene/V[TCNE]x的简化能量图。(b) V[TCNE]x/rubrene/V[TCNE]x磁性电极发生自旋极化能带示意图[36]
Fig. 10 (a) Simplified energy diagram for a V[TCNE]x/rubrene/V[TCNE]x tunnel junction.(b) Schematic chart of spin polarization energy band of magnetic electrode[36]
图11 双极性自旋阀效应。(a)磁电发光效率与施加磁场的函数关系。MEL的切换对应于铁磁电极的矫顽力。(b)单极和双极性器件的磁电导(MC)的相对变化与偏置电压的函数关系。超过导通电压时, 双极性器件的MC保持不变[32, 90]
Fig. 11 Bipolar spin valve effect. (a) Magneto electroluminescence as a function of applied magnetic field. The switching of the MEL corresponds to the coercive field of the ferromagnetic electrodes. (b) Normalized magneto-conductance(MC) for a homopolar and bipolar device as a function of bias voltage. The MC for bipolar device remains unchanged beyond the turned on voltage[32, 90]
图12 自旋光伏器件的示意图, 以及其磁电流和光伏表征。(a)由Si, SiO2/Co/AlOx/C60和Ni80Fe20(从底部到顶部)组成的基于C60的分子自旋光伏(MSP)器件的示意图。(b)在295和80 K下, 在黑暗条件下施加10 mV的偏压测量的MSP装置上的磁电流(MC)。(c)当电极的相对取向平行时(Iout, 输出电流; Vapp, 施加的电压), 在室温下有或无白光照射时(7.5 mW/cm2)测量的电流-电压曲线[94]
Fig. 12 Schematic of the spin photovoltaic device, together with its magnetocurrent and photovoltaic characterization.(a) Schematic representation of the C60-based molecular spin-photovoltaic(MSP) device, composed(from bottom to top) of Si, SiO2/Co/AlOx/C60 and Ni80Fe20.(b) Magnetocurrent(MC) on the MSP device measured at 295 and 80 K with a bias of 10 mV in dark conditions.(c) Current-voltage curves measured with and without white-light irradiation(7.5 mW/cm2) at room temperature when the relative orientation of the electrodes is parallel(Iout, output current; Vapp, applied voltage)[94]
He J, Zheng L, Feng D, Liu M, Shao D, Lu Z, Zhang X, Wang W, Wang W, Lu F, Dong H, Cheng Y, Liu H, Liu H, Zheng R . J. Alloy. Compd., 2018, 769:991. https://linkinghub.elsevier.com/retrieve/pii/S0925838818328986

doi: 10.1016/j.jallcom.2018.08.024     URL    
Ren J, Fu J, Xie S . Physics, 2006, 35:852.
Binasch G, Grünberg P, Saurenbach F, Zinn W . Phys. Rev. B, 1989, 39:4828.
Baibich M N, Broto J M, Fert A, Van Dau F N, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J . Phys. Rev. Lett., 1988, 61:2472. https://www.ncbi.nlm.nih.gov/pubmed/10039127

doi: 10.1103/PhysRevLett.61.2472     URL     pmid: 10039127
Pollard S D, Garlow J A, Yu J, Wang Z, Zhu Y, Yang H . Nat. Commun., 2017, 8:14761. https://www.ncbi.nlm.nih.gov/pubmed/28281542

doi: 10.1038/ncomms14761     URL     pmid: 28281542
Bodnar S Y, Smejkal L, Turek I, Jungwirth T, Gomonay O, Sinova J, Sapozhnik A A, Elmers H J, Klaui M, Jourdan M . Nat. Commun, 2018, 9:348. https://www.ncbi.nlm.nih.gov/pubmed/29367633

doi: 10.1038/s41467-017-02780-x     URL     pmid: 29367633
Yu J, Bang D, Mishra R, Ramaswamy R, Oh J H, Park H J, Jeong Y, Thach V P, Lee D K, Go G, Lee S W, Wang Y, Shi S, Qiu X, Awano H, Lee K J, Yang H . Nat. Mater, 2019, 18:29. https://www.ncbi.nlm.nih.gov/pubmed/30510269

doi: 10.1038/s41563-018-0236-9     URL     pmid: 30510269
Sanvito S, Rocha A R . J. Comput. Theor. Nanosci., 2006, 3:624.
Sanvito S . Chem Soc Rev, 2011, 40:3336. https://www.ncbi.nlm.nih.gov/pubmed/21552606

doi: 10.1039/c1cs15047b     URL     pmid: 21552606
Žutić I, Fabian J Sarma D S . Rev. Mod. Phys., 2004, 76:323.
Jang H J, Richter C A . Adv. Mater., 2017, 29:1602739.
Yao X, Duan Q, Tong J, Chang Y, Zhou L, Qin G, Zhang X . Materials, 2018, 11:721.
Andrews D L, Scholes G D, Wiederrecht G P . Comprehensive Nanoscience and Technology. NY: Elsevier Science & Technology, 2011. 109.
Iniewski K. Nano-Semiconductors Devices and Technology, Boca Raton: CRC Press, 2012, 97.
Patibandla S, Kanchibotla B, Pramanik S, Bandyopadhyay S, Cahay M . Int. J. Nanotechnol. Mol. Comput., 2009, 1:20.
Tsukahara M, Yamada M, Naito T, Yamada S, Sawano K, Lazarov V K, Hamaya K . Appl. Phys. Express, 2019, 12:033002. https://iopscience.iop.org/article/10.7567/1882-0786/ab0252

doi: 10.7567/1882-0786/ab0252     URL    
Harmon N J, Flatte M E . Phys Rev Lett, 2013, 110:176602. https://www.ncbi.nlm.nih.gov/pubmed/23679752

doi: 10.1103/PhysRevLett.110.176602     URL     pmid: 23679752
Zuppiroli L, Bussac M N, Paschen S, Chauvet O, Forro L . Phys. Rev. B, 1994, 50:5196. https://www.ncbi.nlm.nih.gov/pubmed/9976858

doi: 10.1103/physrevb.50.5196     URL     pmid: 9976858
Cheng Y C, Silbey R J . J. Chem. Phys., 2008, 128:114713. https://www.ncbi.nlm.nih.gov/pubmed/18361607

doi: 10.1063/1.2894840     URL     pmid: 18361607
Fabian J, Sarma S D . J. Vac. Sci. Technol. B, 1999, 17:1708.
Bennati M, Németh K, Surján P R, Mehring M . J. Chem. Phys., 1996, 105:4441.
Elliott R J . Phys. Rev., 1954, 96:266.
Pramanik S, Stefanita C G, Patibandla S, Bandyopadhyay S, Garre K, Harth N, Cahay M . Nat. Nanotechnol., 2007, 2:216. https://www.ncbi.nlm.nih.gov/pubmed/18654265

doi: 10.1038/nnano.2007.64     URL     pmid: 18654265
Pramanik S, Bandyopadhyay S, Garre K, Cahay M . Phys. Rev. B, 2006, 74:235329.
D’yakonov M I, Perel’ V I . Sov. Phys., 1965, 33:1053.
Bir G, Aronov A, Pikus G . Sov. Phys. JETP, 1976, 42:705.
Geng R, Subedi R C, Luong H M, Pham M T, Huang W, Li X, Hong K, Shao M, Xiao K, Hornak L A, Nguyen T D . Phys. Rev. Lett., 2018, 120:086602.
Cui Y, Zhu J G, Tao H L, Liu S M, Lv Y Z, He M, Song B, Chen Y G, Zhang Z H . Comp. Mater. Sci., 2019, 158:260.
Miyagawa H, Funaki N, Koshiba S, Takahashi N, Inada Y, Mizumaki M, Kawamura N, Suzuki M . J. Magn. Magn. Mater., 2019, 476:213.
Xiong Z H, Wu D, Vardeny V Z, Shi J . Nature, 2004, 427:821. https://www.ncbi.nlm.nih.gov/pubmed/14985756

doi: 10.1038/nature02325     URL     pmid: 14985756
Bergenti I, Manna P K, Lin C H, Graziosi P, Liu X, Causer G L, Liscio F, Ruotolo A, Dediu V A, van Lierop J, Klose F, Lin K W . J. Appl. Phys., 2018, 124:183903.
Devkota J, Geng R, Subedi R C, Nguyen T D . Adv. Funct. Mater., 2016, 26:3881.
van ’t Erve O M J, Hanbicki A T, Holub M, Li C H, Awo-Affouda C, Thompson P E, Jonker B T . Appl. Phys. Lett., 2007, 91:212109.
Lou X, Adelmann C, Crooker S A, Garlid E S, Zhang J, Reddy K S M, Flexner S D, Palmstrøm C J, Crowell P A . Nat. Phys., 2007, 3:197.
Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M, Krausz F . Nature, 2004, 427:817. https://www.ncbi.nlm.nih.gov/pubmed/14985755

doi: 10.1038/nature02277     URL     pmid: 14985755
Li B, Kao C Y, Yoo J W, Prigodin V N, Epstein A J . Adv. Mater., 2011, 23:3382. https://www.ncbi.nlm.nih.gov/pubmed/21721052

doi: 10.1002/adma.201100903     URL     pmid: 21721052
Bedoya-Pinto A, Miralles S G, Vélez S, Atxabal A, Gargiani P, Valvidares M, Casanova F, Coronado E, Hueso L E . Adv. Funct. Mater., 2018, 28:1702099. http://doi.wiley.com/10.1002/adfm.v28.16

doi: 10.1002/adfm.v28.16     URL    
Majumdar S, Laiho R, Laukkanen P, Väyrynen I J, Majumdar H S, Österbacka R . Appl. Phys. Lett., 2006, 89:122114. http://aip.scitation.org/doi/10.1063/1.2356463

doi: 10.1063/1.2356463     URL    
Morley N A, Rao A, Dhandapani D, Gibbs M R J, Grell M, Richardson T . J. Appl. Phys., 2008, 103:07F306. http://aip.scitation.org/doi/10.1063/1.2829245

doi: 10.1063/1.2829245     URL    
Ding S, Tian Y, Li Y, Mi W, Dong H, Zhang X, Hu W, Zhu D . ACS Appl. Mater. Interfaces, 2017, 9:15644. https://www.ncbi.nlm.nih.gov/pubmed/28452463

doi: 10.1021/acsami.7b02804     URL     pmid: 28452463
Ding S, Tian Y, Wang H, Zhou Z, Mi W, Ni Z, Zou Y, Dong H, Gao H, Zhu D, Hu W . ACS Nano, 2018, 12:12657. https://www.ncbi.nlm.nih.gov/pubmed/30412379

doi: 10.1021/acsnano.8b07468     URL     pmid: 30412379
Dediu V, Murgia M, Matacotta F C, Taliani C, Barbanera S . Solid State Commun., 2002, 122:181. https://linkinghub.elsevier.com/retrieve/pii/S003810980200090X

doi: 10.1016/S0038-1098(02)00090-X     URL    
Liang S H, Geng R, Zhang Q T, You L, Subedi R C, Wang J, Han X F, Nguyen T D . Org. Electron., 2015, 26:314. https://linkinghub.elsevier.com/retrieve/pii/S156611991530077X

doi: 10.1016/j.orgel.2015.07.056     URL    
Zhang X, Ma Q, Suzuki K, Sugihara A, Qin G, Miyazaki T, Mizukami S . ACS Appl. Mater. Interfaces, 2015, 7:4685. https://www.ncbi.nlm.nih.gov/pubmed/25668508

doi: 10.1021/am508173j     URL     pmid: 25668508
Suzuki K Z, Izumi T, Zhang X, Sugihara A, Pham S T, Taka H, Sato S, Isobe H, Mizukami S . APL Materials, 2017, 5:046101. http://aip.scitation.org/doi/10.1063/1.4979548

doi: 10.1063/1.4979548     URL    
Wang F J, Yang C G, Vardeny Z V, Li X G . Phys. Rev.B, 2007, 75:245324. https://link.aps.org/doi/10.1103/PhysRevB.75.245324

doi: 10.1103/PhysRevB.75.245324     URL    
Dediu V, Hueso L E, Bergenti I, Riminucci A, Borgatti F, Graziosi P, Newby C, Casoli F, De Jong M P, Taliani C, Zhan Y . Phys. Rev. B, 2008, 78:115203. https://link.aps.org/doi/10.1103/PhysRevB.78.115203

doi: 10.1103/PhysRevB.78.115203     URL    
Schneider C M, Bressler P, Schuster P, Kirschner J, de Miguel J J, Miranda R . Phys. Rev. Lett., 1990, 64:1059. https://www.ncbi.nlm.nih.gov/pubmed/10042152

doi: 10.1103/PhysRevLett.64.1059     URL     pmid: 10042152
Wang F J, Xiong Z H, Wu D, Shi J, Vardeny Z V . Synth. Met., 2005, 155:172. https://linkinghub.elsevier.com/retrieve/pii/S0379677905007393

doi: 10.1016/j.synthmet.2005.07.345     URL    
Santos T S, Lee J S, Migdal P, Lekshmi I C, Satpati B, Moodera J S . Phys. Rev. Lett., 2007, 98:016601. https://www.ncbi.nlm.nih.gov/pubmed/17358495

doi: 10.1103/PhysRevLett.98.016601     URL     pmid: 17358495
Chen B B, Zhou Y, Wang S, Shi Y J, Ding H F, Wu D . Appl. Phys. Lett., 2013, 103:072402. http://aip.scitation.org/doi/10.1063/1.4818614

doi: 10.1063/1.4818614     URL    
Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R, Venkatesan T . Phys. Rev. Lett., 1998, 81:1953. https://link.aps.org/doi/10.1103/PhysRevLett.81.1953

doi: 10.1103/PhysRevLett.81.1953     URL    
Drew A J, Hoppler J, Schulz L, Pratt F L, Desai P, Shakya P, Kreouzis T, Gillin W P, Suter A, Morley N A, Malik V K, Dubroka A, Kim K W, Bouyanfif H, Bourqui F, Bernhard C, Scheuermann R, Nieuwenhuys G J, Prokscha T, Morenzoni E . Nat. Mater., 2009, 8:109. https://www.ncbi.nlm.nih.gov/pubmed/19029892

doi: 10.1038/nmat2333     URL     pmid: 19029892
Majumdar S, Majumdar H S, Laiho R, Österbacka R . J. Alloy. Compd., 2006, 423:169. https://linkinghub.elsevier.com/retrieve/pii/S0925838806002076

doi: 10.1016/j.jallcom.2005.12.104     URL    
Gobbi M, Golmar F, Llopis R, Casanova F, Hueso L E . Adv. Mater., 2011, 23:1609.
Li F, Li T, Chen F, Zhang F . Sci. Rep., 2015, 5:9355.
Kawasugi Y, Ujino T, Tada H . Org. Electron., 2013, 14:3186.
Jiang S W, Wang P, Chen B B, Zhou Y, Ding H F, Wu D . Appl. Phys. Lett., 2015, 107:042407.
Shim J H, Raman K V, Park Y J, Santos T S, Miao G X, Satpati B, Moodera J S . Phys. Rev. Lett., 2008, 100:226603.
Zhang X, Mizukami S, Kubota T, Ma Q, Oogane M, Naganuma H, Ando Y, Miyazaki T . Nat. Commun., 2013, 4:1392.
Sun X, Bedoya-Pinto A, Llopis R, Casanova F, Hueso L E . Appl. Phys. Lett., 2014, 105:083302.
Zhang X, Tong J, Zhu H, Wang Z, Zhou L, Wang S, Miyashita T, Mitsuishi M, Qin G . J. Mater. Chem. C, 2017, 5:5055.
Sun D, Yin L, Sun C, Guo H, Gai Z, Zhang X G, Ward T Z, Cheng Z, Shen J . Phys. Rev. Lett., 2010, 104:236602.
Sun M. Mi W . J. Mater. Chem. C, 2018, 6:6619.
Gu X R, Guo L D, Sun X N . Chin. Phys. B, 2018, 27:107202.
Brede J, Atodiresei N, Kuck S, Lazic P, Caciuc V, Morikawa Y, Hoffmann G, Blugel S, Wiesendanger R . Phys. Rev. Lett., 2010, 105:047204.
Moorsom T, Wheeler M, Mohd Khan T, Al Ma’Mari F, Kinane C, Langridge S, Ciudad D, Bedoya-Pinto A, Hueso L, Teobaldi G, Lazarov V K, Gilks D, Burnell G, Hickey B J, Cespedes O . Phys. Rev. B, 2014, 90:125311.
Morley N A, Drew A J, Zhang H, Scott K, Hudziak S, Morgan D J . Appl. Surf. Sci., 2014, 313:850.
Ciudad D, Gobbi M, Kinane C J, Eich M, Moodera J S, Hueso L E . Adv. Mater., 2014, 26:7561.
Wang S, Shi Y J, Lin L, Chen B B, Yue F J, Du J, Ding H F, Zhang F M, Wu D . Synth. Met., 2011, 161:1738.
Jang H J, Lee J S, Pookpanratana S J, Hacker C A, Tran I C, Richter C A . J. Phys. Chem. C, 2015, 119:12949.
Yang Z H, Pang R, Shi X Q . J. Phys. Chem. C, 2015, 119:10532.
Sun X, Bedoya-Pinto A, Mao Z, Gobbi M, Yan W, Guo Y, Atxabal A, Llopis R, Yu G, Liu Y, Chuvilin A, Casanova F, Hueso L E . Adv. Mater., 2016, 28:2609.
Zhang X, Mizukami S, Kubota T, Oogane M, Naganuma H, Ando Y, Miyazaki T . IEEE Trans.Magn., 2011, 47:2649.
Zhang X, Mizukami S, Ma Q, Kubota T, Oogane M, Naganuma H, Ando Y, Miyazaki T . J. Appl. Phys., 2014, 115:172608.
Ikegami T, Kawayama I, Tonouchi M, Nakao S, Yamashita Y, Tada H . Appl. Phys. Lett., 2008, 92:153304.
Liang S, Geng R, Yang B, Zhao W, Chandra Subedi R, Li X, Han X, Nguyen T D . Sci. Rep., 2016, 6:19461.
Liu Y, Lee T, Katz H E, Reich D H . J. Appl. Phys., 2009, 105:07C708.
Jiang S W, Wang P, Jiang S C, Chen B B, Wang M, Jiang Z S, Wu D . Spin, 2014, 4:1440008.
Geng R, Roy A, Zhao W, Subedi Ram C, Li X, Locklin J, Nguyen Tho D . Adv. Funct. Mater., 2016, 26:3999.
Li B, Zhou M, Lu Y, Kao C Y, Yoo J W, Prigodin V N, Epstein A J . Org. Electron., 2012, 13:1261.
Xu W, Szulczewski G J, LeClair P, Navarrete I, Miao G, Guo H, Gupta A . Appl. Phys. Lett., 2007, 90:072506.
Palosse M, Séguy I, Bedel-Pereira É, Villeneuve-Faure C, Mallet C, Frère P, Warot-Fonrose B, Biziere N, Bobo J F . AIP Advances, 2014, 4:017117.
Hong J Y, Ou Yang K H, Wang B Y, Li K S, Shiu H W, Chen C H, Chan Y L, Wei D H, Chang F H, Lin H J, Chiang W C, Lin M T . Appl. Phys. Lett., 2014, 104:083301.
Nguyen T D, Hukic-Markosian G, Wang F, Wojcik L, Li X G, Ehrenfreund E, Vardeny Z V . Nat. Mater., 2010, 9:345.
Liu Y, Watson S M, Lee T, Gorham J M, Katz H E, Borchers J A, Fairbrother H D, Reich D H . Phys. Rev. B, 2009, 79:075312.
Bergenti I, Riminucci A, Arisi E, Murgia M, Cavallini M, Solzi M, Casoli F, Dediu V . J. Magn. Magn. Mater., 2007, 316:e987.
Sanvito S . Nat. Phys., 2010, 6:562.
Dediu V A, Hueso L E, Bergenti I, Taliani C . Nat. Mater., 2009, 8:707.
Nguyen T D, Ehrenfreund E, Vardeny Z V . Science, 2012, 337:204.
Nguyen T D, Ehrenfreund E, Vardeny Z V . Synth. Met., 2013, 173:16.
Ehrenfreund E, Valy Vardeny Z . Phys. Chem. Chem. Phys., 2013, 15:7967.
Schulz L, Nuccio L, Willis M, Desai P, Shakya P, Kreouzis T, Malik V K, Bernhard C, Pratt F L, Morley N A, Suter A, Nieuwenhuys G J, Prokscha T, Morenzoni E, Gillin W P, Drew A J . Nat. Mater., 2011, 10:39.
Sun X, Vélez S, Atxabal A, Bedoya-Pinto A, Parui S, Zhu X, Llopis R, Casanova F, Hueso L E . Science, 2017, 357:677.
O’Malley K M, Li C Z, Yip H L, Jen A K Y . Adv. Energy Mater., 2012, 2:82.
Ma’Mari F A, Moorsom T, Teobaldi G, Deacon W, Prokscha T, Luetkens H, Lee S, Sterbinsky G E, Arena D A, MacLaren D A, Flokstra M, Ali M, Wheeler M C, Burnell G, Hickey B J, Cespedes O . Nature, 2015, 524:69.
Sun X, Gobbi M, Bedoya-Pinto A, Txoperena O, Golmar F, Llopis R, Chuvilin A, Casanova F, Hueso L E . Nat. Commun., 2013, 4:2794.
Bottegoni F, Celebrano M, Bollani M, Biagioni P, Isella G, Ciccacci F, Finazzi M . Nat. Mater., 2014, 13:790.
Jansen R . Nat. Mater., 2013, 12:779.
Endres B, Ciorga M, Schmid M, Utz M, Bougeard D, Weiss D, Bayreuther G, Back C H . Nat. Commun., 2013, 4:2068.
Han S, Yang L, Gao K, Xie S, Qin W, Ren S . Sci. Rep., 2016, 6:28656.
Yang L, Han S, Ma X, Qin W, Xie S . Sci. Rep., 2017, 7:8384.
Yang F, Han S, Xie S . Chin. Phys. B, 2014, 23:058106.
Yuan X B, Yang M S, Tian Y L, Cai L L, Ren J F . Synth. Met., 2017, 226:46.
Yuan X B, Cai L L, Tian Y L, Hu G C, Ren J F . Appl. Surf. Sci., 2018, 427:156.
Yuan X B, Tian Y L, Zhao X W, Yue W W, Hu G C, Ren J F . Appl. Surf. Sci., 2018, 439:1158.
Kato Y K, Myers R C, Gossard A C, Awschalom D D . Science, 2004, 306:1910.
Bliokh K Y, Niv A, Kleiner V, Hasman E . Nat. Photonics, 2008, 2:748.
Nori F . Nature Photonics, 2008, 2:716.
Stav T, Faerman A, Maguid E, Oren D, Kleiner V, Hasman E, Segev M . Science, 2018, 361:1101.
Eugenio C, Arthur J E . J. Mater. Chem., 2009, 19:1670.
Ando K, Fujita S, Ito J, Yuasa S, Suzuki Y, Nakatani Y, Miyazaki T, Yoda H . J. Appl. Phys., 2014, 115:172607.
No related articles found!