English
新闻公告
More
化学进展 2019, Vol. 31 Issue (9): 1263-1282 DOI: 10.7536/PC190222 前一篇   后一篇

• •

阳离子抗菌聚合物

梁敬时1, 曾佳铭1, 李俊杰1, 佘珏芹1, 谭瑞轩2,**(), 刘博1,**()   

  1. 1. 长沙理工大学材料科学与工程学院 长沙 410114
    2. 国防科技大学空天科学学院 新型陶瓷纤维及其复合材料重点实验室 长沙 410073
  • 收稿日期:2019-02-22 出版日期:2019-09-15 发布日期:2019-07-02
  • 通讯作者: 谭瑞轩, 刘博
  • 基金资助:
    高分子物理与化学国家重点实验室开放课题基金项目和湖南省自然科学基金项目(No.2019JJ50641)

Cationic Antimicrobial Polymers

Jingshi Liang1, Jiaming Zeng1, Junjie Li1, Jueqin She1, Ruixuan Tan2,**(), Bo Liu1,**()   

  1. 1. College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China
    2. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2019-02-22 Online:2019-09-15 Published:2019-07-02
  • Contact: Ruixuan Tan, Bo Liu
  • About author:
    ** E-mail: (Ruixuan Tan);
  • Supported by:
    The Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, and the Hunan Provincial Natural Science Foundation(No.2019JJ50641)

阳离子抗菌聚合物, 作为一种新型抗菌材料, 具有独特的抗菌机理和高效的抗菌活性, 并且能有效解决细菌耐药性问题, 引起了人们的广泛关注。阳离子抗菌聚合物具有有效的抗菌活性, 其抗菌活性受到亲疏水平衡、分子质量、烷基链长度和阴离子等因素的影响。抗菌活性是评价抗菌剂优劣的重要因素之一, 了解和掌握影响抗菌活性的因素, 对于优化或开发更安全、更高效的阳离子抗菌聚合物具有重大意义。本文总结了通过不同作用方式作用于细菌的多种抗菌策略, 依据影响阳离子抗菌聚合物抗菌活性的因素, 总结包括天然阳离子抗菌聚合物、季铵盐类聚合物、N-卤代胺类聚合物、膦盐和锍盐类聚合物、胍盐类聚合物和抗菌水凝胶的研究进展。最后, 对阳离子抗菌聚合物面临的挑战和未来发展方向进行了讨论。

Cationic antimicrobial polymers, as a kind of novel antimicrobial material with unique antimicrobial mechanism and high antimicrobial activity, can effectively solve the problem of bacterial resistance, which have caused widespread concern. Although cationic antimicrobial polymers have potent antimicrobial activities, the factors that affect their antimicrobial activities, including the balance of hydrophilicity and hydrophobicity, molecular weight, alkyl chain length, counter ions, and so on, are reviewed. Antimicrobial activity is one of the important factors to evaluate the pros and cons of antimicrobial agents. Thus, it is of great significance for optimizing or developing the safer and more efficient cationic antimicrobial polymers by controlling the factors affecting antimicrobial activity. In this review, multiple antimicrobial strategies of different modes acting on bacteria are firstly summarized. Then, the research progress of natural cationic antibacterial polymers, quaternary ammonium salt polymers, N-halamine polymers, phosphonium and sulfonium salt polymers, guanidine salt polymers and antibacterial hydrogels are listed based on the parameters affecting the properties of cationic antimicrobial polymers. In addition, the antibacterial coatings, membranes or gels fabricated with some cationic antimicrobial are also described. Finally, the current challenges about realizing the clinical application of antibacterial agents and the future perspectives in this field are discussed.

()
表1 多种抗菌策略
Table 1 Multiple antibacterial strategies
Antibacterial strategy Antibacterial mechanism ref
Antibiotic (1) Interaction with cell wall biosynthesis to prevent cross-linking of peptidoglycan chains;(2) Blocking the protein biosynthesis on ribosomes;(3) Interfering with DNA replication. 9~11
Antibacterial peptide (1) Membrane interaction mechanism targeting bacterial cell membrane;(2) Intracellular mechanism of action targeting intracellular macromolecular substances(enzymes, nucleic acids and heat shock proteins). 12
Photodynamic antibacterial method Cell death by singlet oxygen(1O2) and its reactive oxygen species produced by interaction with cellular components. 13~15
Inorganic antibacterial material (1) Under certain conditions, nanoparticles interact with bacterial cell walls through charge interaction to destroy cell membrane structure;(2) Nanoparticles produce reactive oxygen species;(3) Destroy the surface morphology of bacteria;(4) Anti-fouling ability;(5) High surface area to volume ratio, surface modification process. 16~24
Hydrophilic antibacterial adhesion material Inhibits protein and bacterial adhesion and stain resistance 25~27
Super hydrophobic or "slippery" anti-bacterial
adhesion surface
Prevents surface wetting of water, low surface energy, and excellent adhesion resistance 28, 29
Biomimetic nanostructure antibacterial surface The combination of a layered surface and a low surface free energy provided by surface chemistry provides cleanness and stain resistance. In addition, the surface of the biomimetic nanostructure affects the metabolism of bacterial cells and destroys the morphology of the cells. 30~32
Gas antibacterial method(CO、NO) Inhibition of bacterial respiratory chain and production of adenosine triphosphate, promoting bacterial phagocytosis. 33~37
图式1 季铵化的β-甲壳素[41]
Scheme. 1 Quaternized β-chitin[41]
图式2 壳聚糖的结构[42]
Scheme. 2 Structure of chitosan[42]
图式3 一些壳聚糖衍生物的结构[62, 63, 64, 65, 66, 67, 68, 69, 70]
Scheme. 3 Structure of some chitosan derivatives[62, 63, 64, 65, 66, 67, 68, 69, 70]
图1 制备抗菌涂层的方法[71]
Fig. 1 Schematic illustration of the preparation of antibacterial coating[71].(Reprinted from Applied Surface Science, 478, Liang J S, She J Q, He H, Fan Z, Chen S, Li J, Liu B, A new approach to fabricate polyimidazolium salt(PIMS) coatings with efficient antifouling and antibacterial properties, 770~778. Copyright(2019), with permission from Elsevier).
图式4 聚(ε-赖氨酸)的结构[72]
Scheme. 4 Structure of poly(ε-lysine)[72]
图式5 受链长度影响的聚合物[102, 107, 109, 111~114]
Scheme. 5 Polymers affected by chain length[102, 107, 109, 111~114]
图式6 不同阴离子的阳离子聚合物[119, 122, 123]
Scheme. 6 Cationic polymers with different anions[119, 122, 123]
图式7 亲疏水性平衡的聚合物[133~137, 139~141]
Scheme. 7 Polymers with the balance of hydrophilicity and hydrophobicity[133~137, 139~141]
图10 图式8 不同分子质量的带环氧基团的聚硅氧烷季铵盐[146]
Fig. 10 Scheme 8 Polysiloxane quaternary ammonium salts with different molecular weights of epoxy groups[146]
图式9 主链咪唑盐齐聚物[147]
Scheme. 9 Main chain imidazolium salt oligomer[147]
图式10 侧链阳离子聚合物和主链阳离子聚合物[148]
Scheme. 10 Side chain cationic polymer and backbone cationic polymer[148]
图式11 两亲性聚合物的结构[149]
Scheme. 11 Structures of amphiphilic polymers[149]
图2 两亲聚合物的构效关系[149]
Fig. 2 Structure-activity relationship for amphiphilic polymers[149].(Reprinted with permission from ref[149]. Copyright(2019) American Chemical Society).
图式12 Chi-HDH-Cl[162]
Scheme. 12 Chi-HDH-Cl[162]
图式13 膦盐和锍盐类聚合物[167, 171, 173~175]
Scheme. 13 Polymers of phosphonium and phosphonium salt[167, 171, 173~175]
图式14 胍盐类聚合物[181, 183, 185~187, 191]
Scheme. 14 Polymers of guanidine salt[181, 183, 185~187, 191]
图式15 抗菌水凝胶结构[195, 196]
Scheme. 15 Structures of antibacterial hydrogels[195, 196]
[1]
Whitman W B, Coleman D C, Wiebe W J . Proc. Natl. Acad. Sci. U.S.A, 1998, 95:6578. https://www.ncbi.nlm.nih.gov/pubmed/9618454

doi: 10.1073/pnas.95.12.6578     URL     pmid: 9618454
[2]
Lode H M . Clin. Microbiol., 2009, 15:212. https://JCM.asm.org/content/15/2/212

doi: 10.1128/JCM.15.2.212-215.1982     URL    
[3]
McDonnell G, Russel A D . Clin. Microbiol. Rev., 1999, 12:147. https://www.ncbi.nlm.nih.gov/pubmed/9880479

URL     pmid: 9880479
[4]
Siedenbiedel F, Tiller J C . Polymers, 2012, 4:46. http://www.mdpi.com/2073-4360/4/1/46

doi: 10.3390/polym4010046     URL    
[5]
Haydar S, Aziz J A . J. Hazard. Mater., 2009, 168:1035. https://www.ncbi.nlm.nih.gov/pubmed/19345491

doi: 10.1016/j.jhazmat.2009.02.140     URL     pmid: 19345491
[6]
Singha P, Locklin J, Handa H . Acta Biomater., 2017, 50:20. https://www.ncbi.nlm.nih.gov/pubmed/27916738

doi: 10.1016/j.actbio.2016.11.070     URL     pmid: 27916738
[7]
Gao D, Feng J, Ma J, Lü B, Lin J, Zhang J . Prog. In. Org. Coat., 2014, 77:1834.
[8]
Timofeeva L, Kleshcheva N . Appl. Microbiol. Biot., 2011, 89:475. https://www.ncbi.nlm.nih.gov/pubmed/20953604

doi: 10.1007/s00253-010-2920-9     URL     pmid: 20953604
[9]
Walsh C . Nature, 2000, 406:775. https://www.ncbi.nlm.nih.gov/pubmed/10963607

doi: 10.1038/35021219     URL     pmid: 10963607
[10]
Williams D H . Nat. Prod. Rep., 1996, 13:469. https://www.ncbi.nlm.nih.gov/pubmed/8972102

doi: 10.1039/np9961300469     URL     pmid: 8972102
[11]
Anderson G J . Emerg. Infect. Dis., 2004, 10:1177.
[12]
Nguyen L T, Haney E F, Vogel H J . Trends. Biotechnol., 2011, 29:464. https://www.ncbi.nlm.nih.gov/pubmed/21680034

doi: 10.1016/j.tibtech.2011.05.001     URL     pmid: 21680034
[13]
Felsher D W . Nat. Rev. Cancer., 2003, 3:375. https://www.ncbi.nlm.nih.gov/pubmed/12724735

doi: 10.1038/nrc1070     URL     pmid: 12724735
[14]
Costa L, Alves E, Carvalho C M, Tome J P, Faustino M A, Neves M G, Tome A C, Cavaleiro J A, Cunha A, Almeida A . Photoch. Photobio. Sci., 2008, 7:415.
[15]
Liu K, Liu Y, Yao Y, Yuan H, Wang S, Wang Z, Zhang X . Angewandte Chemie, 2013, 52:8285. https://www.ncbi.nlm.nih.gov/pubmed/23804550

doi: 10.1002/anie.201303387     URL     pmid: 23804550
[16]
Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank A M . Environ. Sci. Technol., 2006, 40:6151. https://www.ncbi.nlm.nih.gov/pubmed/17051814

doi: 10.1021/es060999b     URL     pmid: 17051814
[17]
Soenen S J, Rivera-Gil P, Montenegro J M, Parak W J, de Smedt S C, Braeckmans K . Nano Today, 2011, 6:446.
[18]
Nel A E, Madler L, Velegol D, Xia T, Hoek E M, Somasundaran P, Klaessig F, Castranova V, Thompson M . Nat. Mater., 2009, 8:543. https://www.ncbi.nlm.nih.gov/pubmed/19525947

doi: 10.1038/nmat2442     URL     pmid: 19525947
[19]
Mukherjee M, De S . Environ. Sci-Wat Res., 2015, 1:204.
[20]
Damodar R A, You S J, Chou H H . J. Hazard. Mater., 2009, 172:1321. https://www.ncbi.nlm.nih.gov/pubmed/19729240

doi: 10.1016/j.jhazmat.2009.07.139     URL     pmid: 19729240
[21]
Zeng Z, Yu D, He Z, Liu J, Xiao F X, Zhang Y, Wang R, Bhattacharyya D, Tan T T . Sci. Rep-UK., 2016, 6:20142. https://www.ncbi.nlm.nih.gov/pubmed/26832603

doi: 10.1038/srep20142     URL     pmid: 26832603
[22]
Kang S, Pinault M, Pfefferle L D, Elimelech M . Langmuir, 2007, 23:8670. https://www.ncbi.nlm.nih.gov/pubmed/17658863

doi: 10.1021/la701067r     URL     pmid: 17658863
[23]
Kang S, Herzberg M, Rodrigues D F, Elimelech M . Langmuir, 2008, 24:6409. https://www.ncbi.nlm.nih.gov/pubmed/18512881

doi: 10.1021/la800951v     URL     pmid: 18512881
[24]
Al-Hinai M H, Sathe P, Al-Abri M Z, Dobretsov S, Al-Hinai A T, Dutta J . ACS Omega, 2017, 2:3157. https://www.ncbi.nlm.nih.gov/pubmed/30023686

doi: 10.1021/acsomega.7b00314     URL     pmid: 30023686
[25]
Khoo X, Hamilton P, O’Toole G A, Snyder B D, Kenan D J, Grinstaff M W . J. Am. Chem. Soc., 2009, 131:10992. https://www.ncbi.nlm.nih.gov/pubmed/19621876

doi: 10.1021/ja9020827     URL     pmid: 19621876
[26]
Ham H O, Park S H, Kurutz J W, Szleifer I G, Messersmith P B . J. Am. Chem. Soc., 2013, 135:13015.
[27]
Smith R S, Zhang Z, Bouchard M, Li J, Lapp H S, Brotske G R, Lucchino D L, Weaver D, Roth L A, Coury A, Biggerstaff J, Sukavaneshvar S, Langer R, Loose C . Sci. Transl. Med., 2012, 4:153ra132. https://www.ncbi.nlm.nih.gov/pubmed/23019657

doi: 10.1126/scitranslmed.3004120     URL     pmid: 23019657
[28]
Hu C, Liu S, Li B, Yang H, Fan C, Cui W . Adv. Heal. Mater., 2013, 2:1314.
[29]
Tan R, Xie H, She J, Liang J, He H, Li J, Fan Z, Liu B . Carbon, 2019, 145:359.
[30]
Ivanova E P, Hasan J, Webb H K, Truong V K, Watson G S, Watson J A, Baulin V A, Pogodin S, Wang J Y, Tobin M J, Lobbe C, Crawford R J . Small, 2012, 8:2489. https://www.ncbi.nlm.nih.gov/pubmed/22674670

doi: 10.1002/smll.201200528     URL     pmid: 22674670
[31]
Mitik-Dineva N, Wang J, Truong V K, Stoddart P, Malherbe F, Crawford R J, Ivanova E P . Curr. Microbiol., 2009, 58:268. http://link.springer.com/10.1007/s00284-008-9320-8

doi: 10.1007/s00284-008-9320-8     URL    
[32]
Campoccia D, Montanaro L, Agheli H, Sutherland D S, Pirini V, Donati M E, Arciola C R . Int. J. Artif. Organs., 2006, 29:622. https://www.ncbi.nlm.nih.gov/pubmed/16841292

doi: 10.1177/039139880602900612     URL     pmid: 16841292
[33]
De Jong W H, Borm P J A . Int. J. Nanomed., 2008, 3:133.
[34]
Duong H T, Jung K, Kutty S K, Agustina S, Adnan N N, Basuki J S, Kumar N, Davis T P, Barraud N, Boyer C . Biomacromolecules, 2014, 15:2583. https://www.ncbi.nlm.nih.gov/pubmed/24915286

doi: 10.1021/bm500422v     URL     pmid: 24915286
[35]
Yepuri N R, Barraud N, Mohammadi N S, Kardak B G, Kjelleberg S, Rice S A, Kelso M J . Chem. Commun., 2013, 49:4791. https://www.ncbi.nlm.nih.gov/pubmed/23603842

doi: 10.1039/c3cc40869h     URL     pmid: 23603842
[36]
Hasegawa U, van der Vlies A J, Simeoni E, Wandrey C, Hubbell J A . J. Am. Chem. Soc., 2010, 132:18273. https://www.ncbi.nlm.nih.gov/pubmed/21128648

doi: 10.1021/ja1075025     URL     pmid: 21128648
[37]
van der Vlies A J, Inubushi R, Uyama H, Hasegawa U . Bioconjugate. Chem., 2016, 27:1500. https://www.ncbi.nlm.nih.gov/pubmed/27128363

doi: 10.1021/acs.bioconjchem.6b00135     URL     pmid: 27128363
[38]
Jin J, Lee D, Im H G, Han Y C, Jeong E G, Rolandi M, Choi K C, Bae B S . Adv. Mater., 2016, 28:5169. https://www.ncbi.nlm.nih.gov/pubmed/27146562

doi: 10.1002/adma.201600336     URL     pmid: 27146562
[39]
Yusof N L B M, Wee A, Lim L Y, Khor E . J. Biomed. Mater. Res. A, 2003, 66A:224.
[40]
Kato Y, Onishi H, Machida Y . Curr. Pharm. Biotechno., 2003, 4:303.
[41]
Xu H, Fang Z, Tian W, Wang Y, Ye Q, Zhang L, Cai J . Adv. Mater., 2018: e1801100. https://www.ncbi.nlm.nih.gov/pubmed/29845657

doi: 10.1002/adma.201801100     URL     pmid: 29845657
[42]
Tokura S, Ueno K, Miyazaki S, Nishi N . New Macromolecular Architecture and Functions, 1996, 199.
[43]
Li X, Feng X, Yang S, Fu G, Wang T, Su Z . Carbohyd. Polym., 2010, 79:493. 8f85c371-5292-4cb6-9924-af5f66caf563http://www.sciencedirect.com/science/article/pii/S014486170900366X

doi: 10.1016/j.carbpol.2009.07.011     URL    
[44]
Li J, Wu Y, Zhao L Q . Carbohyd. Polym., 2016, 148:200. https://www.ncbi.nlm.nih.gov/pubmed/27185132

doi: 10.1016/j.carbpol.2016.04.025     URL     pmid: 27185132
[45]
Kong M, Chen X G, Liu C S, Liu C G, Meng X H, Yu le J . Colloid. Surface B, 2008, 65:197. 284dde10-8ecb-4cce-be0d-4e4214a363ebhttp://www.sciencedirect.com/science/article/pii/S0927776508001434

doi: 10.1016/j.colsurfb.2008.04.003     URL    
[46]
Sudarshan N R, Hoover D G, Knorr D . Food. Biotechnol., 1992, 6:257. http://www.tandfonline.com/doi/abs/10.1080/08905439209549838

doi: 10.1080/08905439209549838     URL    
[47]
Benhabiles M S, Salah R, Lounici H, Drouiche N, Goosen M F A, Mameri N . Food. Hydrocolloid., 2012, 29:48. 0bdce028-443a-4f9e-87ef-eac9a75e848chttp://dx.doi.org/10.1016/j.foodhyd.2012.02.013

doi: 10.1016/j.foodhyd.2012.02.013     URL    
[48]
Kim K W, Thomas R L, Lee C, Park H J . J. Food. Protect., 2003, 66:1495. https://meridian.allenpress.com/jfp/article/66/8/1495/169045/Antimicrobial-Activity-of-Native-Chitosan-Degraded

doi: 10.4315/0362-028X-66.8.1495     URL    
[49]
Younes I, Sellimi S, Rinaudo M, Jellouli K, Nasri M . Int. J. Food. Microbiol., 2014, 185:57. d5f76a88-a2a3-440e-96be-cad30b17d5cehttp://dx.doi.org/10.1016/j.ijfoodmicro.2014.04.029

doi: 10.1016/j.ijfoodmicro.2014.04.029     URL    
[50]
Luo L J, Huang C C, Chen H C, Lai J Y, Matsusaki M . Carbohyd. Polym., 2018, 197:375. https://www.ncbi.nlm.nih.gov/pubmed/30007625

doi: 10.1016/j.carbpol.2018.06.020     URL     pmid: 30007625
[51]
Taskın P, Canısag H, Sen M . Radiat. Phys. Chem., 2014, 94:236. https://linkinghub.elsevier.com/retrieve/pii/S0969806X13002168

doi: 10.1016/j.radphyschem.2013.04.007     URL    
[52]
Byun S M, No H K, Hong J H, Lee S I, Prinyawiwatkul W . Int. J. Food. Sci. Tech., 2013, 48:136. 9fbf04c2-6efb-482d-8a7d-76938a10809bhttp://dx.doi.org/10.1111/j.1365-2621.2012.03169.x

doi: 10.1111/j.1365-2621.2012.03169.x     URL    
[53]
Andres Y, Giraud L, Gerente C, Le Cloirec P . Environ. Technol., 2007, 28:1357. https://www.ncbi.nlm.nih.gov/pubmed/18341146

doi: 10.1080/09593332808618893     URL     pmid: 18341146
[54]
Mellegard H, Strand S P, Christensen B E, Granum P E, Hardy S P . Int. J. Food. Microbiol., 2011, 148:48. 6158fae5-e0cb-4aec-abff-d09df352e7c4http://dx.doi.org/10.1016/j.ijfoodmicro.2011.04.023

doi: 10.1016/j.ijfoodmicro.2011.04.023     URL    
[55]
Ardila N, Daigle F, Heuzey M C, Ajji A . J. Food. Sci., 2017, 82:679. https://www.ncbi.nlm.nih.gov/pubmed/28140469

doi: 10.1111/1750-3841.13635     URL     pmid: 28140469
[56]
Chang S H, Lin H T, Wu G J, Tsai G J . Carbohyd. Polym., 2015, 134:74. https://www.ncbi.nlm.nih.gov/pubmed/26428102

doi: 10.1016/j.carbpol.2015.07.072     URL     pmid: 26428102
[57]
Chung Y C, Kuo C L, Chen C C . Bioresource. Technol., 2005, 96:1473. https://linkinghub.elsevier.com/retrieve/pii/S0960852404004183

doi: 10.1016/j.biortech.2004.12.001     URL    
[58]
Chung Y . Bioresource. Technol., 2003, 88:179. https://www.ncbi.nlm.nih.gov/pubmed/12618038

doi: 10.1016/s0960-8524(03)00002-6     URL     pmid: 12618038
[59]
Chung Y C, Yeh J Y, Tsai C F . Molecules, 2011, 16:8504. 4fca3793-6ef7-4e6f-9b1e-93dbbd86c147http://dx.doi.org/10.3390/molecules16108504

doi: 10.3390/molecules16108504     URL    
[60]
Li B, Wang X, Chen R, Huangfu W, Xie G . Carbohyd. Polym., 2008, 72:287. 49ea4872-339f-4cd3-8cb5-f36117fef570http://www.sciencedirect.com/science/article/pii/S0144861707004365

doi: 10.1016/j.carbpol.2007.08.012     URL    
[61]
Tan H, Ma R, Lin C, Liu Z, Tang T . Int. J. Mol. Sci., 2013, 14:1854. http://www.mdpi.com/1422-0067/14/1/1854

doi: 10.3390/ijms14011854     URL    
[62]
Li Z, Yang F, Yang R D . Int. J. Biol. Macromol., 2015, 75:378. https://www.ncbi.nlm.nih.gov/pubmed/25666853

doi: 10.1016/j.ijbiomac.2015.01.056     URL     pmid: 25666853
[63]
Upadhyaya L, Singh J, Agarwal V, Tewari R P . Carbohyd. Polym., 2013, 91:452. https://www.ncbi.nlm.nih.gov/pubmed/23044156

doi: 10.1016/j.carbpol.2012.07.076     URL     pmid: 23044156
[64]
Kim C H, Choi K S . J. Ind. Eng. Chem., 1998, 4:19.
[65]
Kurita K, Kojima T, Nishiyama Y, Shimojoh M . Macromolecules, 2000, 33:4711.
[66]
Liu X, Song L, Li L, Li S, Yao K . J. Appl. Polyr. Sci., 2007, 103:3521.
[67]
Suvannasara P, Juntapram K, Praphairaksit N, Siralertmukul K, Muangsin N . Carbohyd. Polym., 2013, 94:244. https://www.ncbi.nlm.nih.gov/pubmed/23544535

doi: 10.1016/j.carbpol.2013.01.039     URL     pmid: 23544535
[68]
Geisberger G, Gyenge E B, Hinger D, Kach A, Maake C, Patzke G R . Biomacromolecules, 2013, 14:1010. https://www.ncbi.nlm.nih.gov/pubmed/23470196

doi: 10.1021/bm3018593     URL     pmid: 23470196
[69]
Eweis M, Elkholy S S, Elsabee M Z . Int. J. Biol. Macromol., 2006, 38:1. https://www.ncbi.nlm.nih.gov/pubmed/16413607

doi: 10.1016/j.ijbiomac.2005.12.009     URL     pmid: 16413607
[70]
Li P, Poon Y F, Li W, Zhu H Y, Yeap S H, Cao Y, Qi X, Zhou C, Lamrani M, Beuerman R W, Kang E T, Mu Y, Li C M, Chang M W, Leong S S, Chan-Park M B, . Nat. Mater., 2011, 10:149. https://www.ncbi.nlm.nih.gov/pubmed/21151166

doi: 10.1038/nmat2915     URL     pmid: 21151166
[71]
Liang J S, She J Q, He H, Fan Z, Chen S, Li J, Liu B . Appl. Surf. Sci., 2019, 478:770.
[72]
Shih I L, Shen M H, Van Y T . Bioresource. Technol., 2006, 97:1148. https://www.ncbi.nlm.nih.gov/pubmed/16551535

doi: 10.1016/j.biortech.2004.08.012     URL     pmid: 16551535
[73]
Zahi M R, El Hattab M, Liang H, Yuan Q P . Food. Chem., 2017, 221:18. https://www.ncbi.nlm.nih.gov/pubmed/27979165

doi: 10.1016/j.foodchem.2016.10.037     URL     pmid: 27979165
[74]
Gallagher A G, McLean K, Stewart R M, Wellings D A, Allison H E, Williams R L . Invest. Ophth. Vis. Sci., 2017, 58:4499. https://www.ncbi.nlm.nih.gov/pubmed/28873175

doi: 10.1167/iovs.17-22301     URL     pmid: 28873175
[75]
Cheng L, Weir M D, Zhang K, Arola D D, Zhou X, Xu H H . J. Dent., 2013, 41:345. https://www.ncbi.nlm.nih.gov/pubmed/23353068

doi: 10.1016/j.jdent.2013.01.004     URL     pmid: 23353068
[76]
Jiao Y, Niu L N, Ma S, Li J, Tay F R, Chen J H . Prog. Polym. Sci., 2017, 71:53.
[77]
Sekhavat P Z, Makvandi P, Ghaemy M . Int. J. Biol. Macromol., 2015, 80:596.
[78]
Belkhir K, Lacroix M, Jamshidian M, Salmieri S, Jegat C, Taha M . Food. Packaging. Shelf., 2017, 12:28.
[79]
Yao C, Li X, Neoh K G, Shi Z, Kang E T . J. Membrane. Sci., 2008, 320:259.
[80]
Li G, Shen J, Zhu Y . J. Appl. Polym. Sci., 1998, 67:1761.
[81]
Li G, Shen J . J. Appl. Polym. Sci., 2000, 78:676.
[82]
Li L, Zhao Y, Zhou H, Ning A, Zhang F, Zhao Z . Tetrahedron Lett., 2017, 58:321.
[83]
Anderson E B, Long T E . Polymer, 2010, 51:2447.
[84]
Aljuhani A, El-Sayed W S, Sahu P K, Rezki N, Aouad M R, Salghi R, Messali M . J. Mol. Liq., 2018, 249:747.
[85]
Muñoz-Bonilla A, Fernández-García M . Prog. Polym. Sci., 2012, 37:281.
[86]
Chemburu S, Corbitt T S, Ista L K, Ji E, Fulghum J, Lopez G P, Ogawa K, Schanze K S, Whitten D G . Langmuir, 2008, 24:11053.
[87]
Wang Y, Tang Y, Zhou Z, Ji E, Lopez G P, Chi E Y, Schanze K S, Whitten D G . Langmuir, 2010, 26:12509.
[88]
Damavandi M, Pilkington L I, Whitehead K A, Wilson-Nieuwenhuis J, McBrearty J, Dempsey-Hibbert N, Travis-Sejdic J, Barker D, Wilson-Nieuwenhuis J . Eur. Polym. J., 2018, 98:368.
[89]
Zhao Y B, Shi L Q, Ji X J, Li J C, Han Z Z, Li S Q, Zeng R C, Zhang F, Wang Z L . J. Colloid Interf. Sci., 2018, 526:43.
[90]
Fortuniak W, Mizerska U, Chojnowski J, Basinska T, Slomkowski S, Chehimi M M, Konopacka A, Turecka K, Werel W . J. Inorg. Organomet. P., 2011, 21:576.
[91]
Pasquier N, Keul H, Heine E, Moeller M, Angelov B, Linser S, Willumeit R . Macromol. Biosci., 2008, 8:903.
[92]
Gao B, Zhang X, Zhu Y . J. Biomat. Sci. Polymer. Edition., 2007, 18:531.
[93]
Gultekinoglu M, Tunc Sarisozen Y, Erdogdu C, Sagiroglu M, Aksoy E A, Oh Y J, Hinterdorfer P, Ulubayram K . Acta Biomater., 2015, 21:44.
[94]
Lin J, Qiu S, Lewis K, Klibanov A M . Biotechnol. Bioeng., 2003, 83:168.
[95]
Yudovin-Farber I, Beyth N, Weiss E I, Domb A J . J. Nanopart. Res., 2009, 12:591.
[96]
Yudovin-Farber I, Golenser J, Beyth N, Weiss E I, Domb A J . J. Nanomater., 2010, 2010:1.
[97]
Pan X, Liu Y, Li Z, Cui S, Gebru H, Xu J, Xu S, Liu J, Guo K . Macromol. Chem. Phys., 2017, 218:1600483.
[98]
Alexis C, Charnay C, Lapinte V, Robin J J . Prog. Org. Coat., 2013, 76:519.
[99]
Stemmelen M, Travelet C, Lapinte V, Borsali R, Robin J J . Polym. Chem-UK., 2013, 4:1445.
[100]
Correia V G, Ferraria A M, Pinho M G, Aguiar-Ricardo A . Biomacromolecules, 2015, 16:3904.
[101]
Correia V G, Bonifacio V D, Raje V P, Casimiro T, Moutinho G, da Silva C L, Pinho M G, Aguiar-Ricardo A . Macromol. Biosci., 2011, 11:1128.
[102]
Ng V W L, Tan J P K, Leong J, Voo Z X, Hedrick J L, Yang Y Y . Macromolecules, 2014, 47:1285.
[103]
Hae Cho C A, Liang C, Perera J, Liu J, Varnava K G, Sarojini V, Cooney R P, McGillivray D J, Brimble M A, Swift S, Jin J . Biomacromolecules, 2018, 19:1389.
[104]
Isik M, Tan J P, Ono R J, Sanchez-Sanchez A, Mecerreyes D, Yang Y Y, Hedrick J L, Sardon H . Macromol. Biosci., 2016, 16:1360.
[105]
Chin W, Yang C, Ng V W L, Huang Y, Cheng J, Tong Y W, Coady D J, Fan W, Hedrick J L, Yang Y Y . Macromolecules, 2013, 46:8797.
[106]
Li M, Liu X, Liu N, Guo Z, Singh P K, Fu S Y . Colloid. Surface. A, 2018, 554:122.
[107]
Engler A C, Shukla A, Puranam S, Buss H G, Jreige N, Hammond P T . Biomacromolecules, 2011, 12:1666.
[108]
Li F, Weir M D, Xu H H . J. Dent. Res., 2013, 92:932.
[109]
Babbs M, Collier H O J, Austin W C, Potter M D, Taylor E P J . J. Pharm. Pharmacol., 1956, 8:110.
[110]
Tischer M, Pradel G, Ohlsen K, Holzgrabe U . ChemMedChem, 2012, 7:22.
[111]
Thiyagarajan D, Goswami S, Kar C, Das G, Ramesh A . Chem. Commun., 2014, 50:7434.
[112]
Gupta A, Landis R F, Li C H, Schnurr M, Das R, Lee Y W, Yazdani M, Liu Y, Kozlova A, Rotello V M . J. Am. Chem. Soc., 2018, 140:12137.
[113]
Qin J, Guo J, Xu Q, Zheng Z, Mao H, Yan F . ACS Appl. Mater. Inter., 2017, 9:10504.
[114]
Zheng Z, Xu Q, Guo J, Qin J, Mao H, Wang B, Yan F . ACS Appl. Mater. Inter., 2016, 8:12684.
[115]
Sharma S K, Chauhan G S, Gupta R, Ahn J H . J. Mater. Sci-Mater. M., 2010, 21:717.
[116]
Chen C Z, Beck-Tan N C, Dhurjati P, van Dyk T K, LaRossa R A, Cooper S L . Biomacromolecules, 2000, 1:473.
[117]
Zhang C, Jiang Y, Ju H, Wang Y, Geng T . J. Mol. Liq., 2017, 241:638.
[118]
Lienkamp K, Madkour A E, Kumar K N, Nusslein K, Tew G N . Chemistry, 2009, 15:11715.
[119]
Kawabata N, Nishiguchi M . Appl. Environ. Microb., 1988, 54:2532.
[120]
Cao Z Q, Mi L, Mendiola J, Ella-Menya J, Zhang L, Xue H, Jiang S Y . Angew. Chem. Int. Ed., 2012, 51:2602.
[121]
Zhang S B, Yang X H, Tang B, Yuan L J, Wang K, Liu X Y, Zhu X L, Li J N, Ge Z C, Chen S G . Chem. Eng. J., 2018, 336:123.
[122]
Panarin E F, Solovskii M V, Zaikina N A, Afinogenov G E . Macromol. Chem. Phys., 1985, 9:25.
[123]
Mizerska U, Fortuniak W, Chojnowski J, Hałasa R, Konopacka A, Werel W . Eur. Polym. J., 2009, 45:779.
[124]
Colak S, Nelson C F, Nüsslein K, Tew G N . Biomacromolecules, 2009, 10:353.
[125]
Palermo E F, Sovadinova I, Kuroda K . Biomacromolecules, 2009, 10:3098.
[126]
Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F . Biofouling, 2011, 27:1017.
[127]
Sambhy V, Peterson B R, Sen A . Angewandte Chemie, 2008, 47:1250.
[128]
Palermo E F, Kuroda K . Biomacromolecules, 2009, 10:1416.
[129]
Oda Y, Kanaoka S, Sato T, Aoshima S, Kuroda K . Biomacromolecules, 2011, 12:3581.
[130]
Stratton T R, Rickus J L, Youngblood J P . Biomacromolecules, 2009, 10:2550.
[131]
King A, Chakrabarty S, Zhang W, Zeng X, Ohman D E, Wood L F, Abraham S, Rao R, Wynne K J . Biomacromolecules, 2014, 15:456.
[132]
Engler A C, Wiradharma N, Ong Z Y, Coady D J, Hedrick J L, Yang YY . Nano Today., 2012, 7:201.
[133]
Liu R H, Chen X Y, Chakraborty S, Lemke J J, Hayouka Z, Chow C, Welch R A, Weisblum B, Masters K S, Gellman S H . J. Am. Chem. Soc., 2014, 136:4410.
[134]
Liu R H, Suarez J M, Weisblum B, Gellman S H . J. Am. Chem. Soc., 2014, 136:14498.
[135]
Liu R H, Chen X Y, Falk S P, Mowery B P, Karlsson A J, Weisblum B, Palecek S P, Masters K S, Gellman S H . J. Am. Chem. Soc., 2014, 136:4333.
[136]
Yang X, Hu K, Hu G, Shi D, Jiang Y, Hui L, Zhu R, Xie Y, Yang L H . Biomacromolecules, 2014, 15:3267.
[137]
Nederberg F, Zhang Y, Tan J P, Xu K, Wang H, Yang C, Gao S, Guo X D, Fukushima K, Li L, Hedrick J L, Yang Y Y . Nat. Chem., 2011, 3:409.
[138]
Ganewatta M S, Rahman M A, Mercado L, Shokfai T, Decho A W, Reineke T M, Tang C . Bioactivematerials, 2018, 3:186.
[139]
Stratton T R, Howarter J A, Allison B C, Applegate B M, Youngblood J P . Biomacromolecules, 2010, 11:1286.
[140]
Stratton T R, Applegate B M, Youngblood J P . Biomacromolecules, 2011, 12:50.
[141]
Zhou C, Song H, Zhang F, Liu J, Li J, Liu B, Liang J . Polym. Bull., 2018, 1.
[142]
Kuroda K, Caputo G A, DeGrado W F . Chem-Eur. J., 2009, 15:1123.
[143]
Gabriel G J, Maegerlein J A, Nelson C F, Dabkowski J M, Eren T, Nusslein K, Tew G N . Chemistry, 2009, 15:433.
[144]
Li S, Wei D, Guan Y, Zheng A . Eur. Polym. J., 2014, 51:120.
[145]
Geng Z, Finn M G . J. Am. Chem. Soc., 2017, 139:15401.
[146]
Cui X, Qiao C, Wang S, Ding Y, Hao C, Li J Y . Colloid. Polym. Sci., 2015, 293:1971.
[147]
Liu L, Huang Y, Riduan S N, Gao S, Yang Y, Fan W, Zhang Y . Biomaterials, 2012, 33:8625.
[148]
Guo J, Qin J, Ren Y, Wang B, Cui H, Ding Y, Mao H L, Yan F . Polym. Chem-UK., 2018, 9:4611.
[149]
Song A, Walker S G, Parker K A, Sampson N S . ACS Chem. Biol., 2011, 6:590.
[150]
Jiang Z, Liu Y, Li R, Ren X, Huang T S . Polym. Advan. Technol., 2016, 27:460.
[151]
Bastarrachea L J, Goddard J M . Appl. Surf. Sci., 2016, 378:479.
[152]
Kang J, Han J S, Gao Y Y, Gao T Y, Lan S, Xiao L H, Zhang Y L, Gao G, Chokto H, Dong D . ACS Appl. Mater. Inter., 2015, 7:17516.
[153]
Ahmed A E S I, Hay J N, Bushell M E, Wardell J N, Cavalli G . React. Funct. Polym., 2008, 68:1448.
[154]
Zhao L, Yan X, Jie Z, Yang H, Yang S, Liang J . J. Nanopart. Res., 2014, 16:2454.
[155]
Sun Y, Sun G . J. Appl. Polym. Sci., 2002, 84:1592.
[156]
Lin J, Jiang F, Wen J, Lv W, Porteous N, Deng Y, Sun Y . Polymer, 2015, 68:92.
[157]
Kocer H B, Worley S D, Broughton R M, Acevedo O, Huang T S . Ind. Eng. Chem. Res., 2010, 49:11188.
[158]
Kocer H B, Akdag A, Ren X H, Broughton R M, Worley S D, Huang T S . Ind. Eng. Chem. Res., 2008, 47:7558.
[159]
Amiri F, Mesquita M M, Andrews S A . Water. Res., 2010, 44:845.
[160]
Dong A, Huang Z, Lan S, Wang Q, Bao S, Siriguleng , Zhang Y, Gao G, Liu F, Harnoode C . J. Colloid. Interf. Sci., 2014, 413:92.
[161]
Wang Y, Yin M, Lin X, Li L, Li Z, Ren X H, Sun Y . J. Colloid. Interf. Sci., 2019, 533:604.
[162]
Tao B, Shen X, Yuan Z, Ran Q, Shen T, Pei Y, Liu J, He Y, Hu Y, Cai K Y . Colloid. Surface. B, 2018, 170:382.
[163]
Cieniecka-Rosłonkiewicz A, Pernak J, Kubis-Feder J, Ramani A, Robertson A J, Seddon K R . Green Chem., 2005, 7:855.
[164]
Qiu T, Zeng Q, Ao N . Mater. Lett., 2014, 122:13.
[165]
Kanazawa A, Ikeda T, Endo T . J. Polym. Sci. Pol. Chem., 1993, 3:335.
[166]
Kanazawa A, Ikeda T, Endo T . J. Polym. Sci. Pol. Chem., 1993, 31:1441.
[167]
Chen Y, Tan W, Li Q, Dong F, Gu G, Guo Z Y . Int. J. Biol. Macromol., 2018, 113:1273.
[168]
Chang L, Wang J, Tong C, Zhao L, Liu X M . J. Appl. Polym. Sci., 2016, 133.
[169]
Kanazawa A, Ikeda T, Endo T . J. Appl. Polym. Sci., 1994, 53:1237.
[170]
Pugachev M V, Shtyrlin N V, Sapozhnikov S V, Sysoeva L P, Iksanova A G, Nikitina E V, Musin R Z, Lodochnikova O A, Berdnikov E A, Shtyrlin Y G . Bioorgan. Med. Chem., 2013, 21:7330.
[171]
Kanazawa A, Ikeda T, Endo T . J. Polym. Sci. Pol. Chem., 1994, 32:1997.
[172]
Kanazawa A, Ikeda T, Endo T . J. Appl. Polym. Sci., 1994, 53:1245.
[173]
Kanazawa A, Ikeda T, Endo T . J. Polym. Sci. Pol. Chem., 1993, 31:2873.
[174]
Hirayama M . Biocontrol. Sci., 2011, 16:149.
[175]
Hirayama M . Biocontrol. Sci., 2012, 17:27.
[176]
Christen V, Faltermann S, Brun N R, Kunz P Y, Fent K . Sci. Total. Environ., 2017, 586:1204.
[177]
Olmedo G M, Cerioni L, Sepulveda M, Ramallo J, Rapisarda V A, Volentini S I . Food. Microbiol., 2018, 76:128.
[178]
Feng L, Wu F, Li J, Jiang Y, Duan X . Postharvest. Biol. Tec., 2011, 61:160.
[179]
Ikeda T, Yamaguchi H, Tazuke S . Antimicrob. Agents. Ch., 1984, 26:139.
[180]
Ikeda T, Hirayama H, Yamaguchi H, Tazuke S, Watanabe M . Antimicrob. Agents. Ch., 1986, 30:132.
[181]
Broxton P, Woodcock P M, Gilbert P . J. Appl. Microbiol., 1983, 54:345.
[182]
Albert M, Feiertag P, Hayn G, Saf R, Hönig H . Biomacromolecules, 2003, 4:1811.
[183]
Wei D, Ma Q, Guan Y, Hu F, Zheng A N, Zhang X, Teng Z, Jiang H . Mat. Sci. Eng. C., 2009, 29:1776.
[184]
Choi H, Kim K J, Lee D G . Fungal. Biol-UK., 2017, 121:53.
[185]
Locock K E, Michl T D, Valentin J D, Vasilev K, Hayball J D, Qu Y, Traven A, Griesser H J, Meagher L, Haeussler M . Biomacromolecules, 2013, 14:4021.
[186]
Hung N V, Bac N V, Van Chung T, Luong T D . Int. J. Eng. Res. Sci., 2018, 4.
[187]
Escamilla-Garcia E, Alcazar-Pizana A G, Segoviano-Ramirez J C, Del Angel-Mosqueda C, Lopez-Lozano A P, Cardenas-Estrada E, De La, Garza-Ramos M A, Medina-De La Garza C E, Marquez M . Int. J. Microbiol., 2017, 2017:1.
[188]
Landis R F, Li C H, Gupta A, Lee Y W, Yazdani M, Ngernyuang N, Altinbasak I, Mansoor S, Khichi M A S, Sanyal A, Rotello V M . J. Am. Chem. Soc., 2018, 140:6176.
[189]
Zhu D Y, Landis R F, Li C H, Gupta A, Wang L S, Geng Y Y, Gopalakrishnan S, Guo J W, Rotello V M . Nanoscale, 2018, 10:18651.
[190]
Chindera K, Mahato M, Sharma A K, Horsley H, Kloc-Muniak K, Kamaruzzaman N F, Kumar S, McFarlane A, Stach J, Bentin T, Good L, . Sci. Rep-UK., 2016, 6:23121.
[191]
Chin W, Zhong G, Pu Q, Yang C, Lou W, De Sessions P F, Periaswamy B, Lee A, Liang Z C, Ding X, Gao S, Chu C W, Bianco S, Bao C, Tong Y W, Fan W, Wu M, Hedrick J L, Yang Y Y . Nat. Commun., 2018, 9:917.
[192]
Badawy M E I, Rabea E I . Inter. J Carbohyd. Chem., 2011, 2011:1.
[193]
Noppakundilograt S, Sonjaipanich K, Thongchul N, Kiatkamjornwong S . J. Appl. Polym. Sci., 2013, 127:4927.
[194]
Mohamed N A, El-Ghany N A A . Cellulose, 2012, 19:1879.
[195]
Liu S Q, Yang C, Huang Y, Ding X, Li Y, Fan W M, Hedrick J L, Yang Y Y . Adv. Mater., 2012, 24:6484.
[196]
Li Y, Fukushima K, Coady D J, Engler A C, Liu S, Huang Y, Cho J S, Guo Y, Miller L S, Tan J P, Ee P L, Fan W, Yang Y Y, Hedrick J L . Angew. Chem. Int. Edit., 2013, 52:674.
[197]
Zhang C, Ying Z, Luo Q, Du H, Wang Y, Zhang K, Yan S, Li X, Shen Z, Zhu W . J. Polym. Sci. Pol. Chem., 2017, 55:2027.
[198]
Yeo C K, Vikhe Y S, Li P, Guo Z, Greenberg P, Duan H W, Tan N S, Chan-Park M B . ACS Appl. Mater. Inter., 2018, 10:20356.
[199]
Zhou C, Song H, Loh J L C, She J, Deng L, Liu B . J. Biomat. Sci-Polym. E., 2018, 29:1.
[1] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[2] 杜娟, 卢瑛, 王祎龙, 郭桂萍, 潘迎捷. 非对称纳米材料的性质及其应用[J]. 化学进展, 2014, 26(12): 2019-2026.
[3] 陈杨军, 刘湘圣, 王海波, 王寅, 金桥, 计剑. 生物医用纳米颗粒表面的两性离子化设计[J]. 化学进展, 2014, 26(11): 1849-1858.
[4] 许利娜, 马培培, 陈强, 林思聪, 沈健. 甲基丙烯酰乙基磺基甜菜碱类聚合物的生物应用[J]. 化学进展, 2014, 26(0203): 366-374.
[5] 何淑漫 周健. 抗凝血生物材料*[J]. 化学进展, 2010, 22(04): 760-772.
[6] 胡胜亮 白培康 孙景 曹士锐. 荧光碳纳米颗粒:新进展和技术挑战*[J]. 化学进展, 2010, 22(0203): 345-351.
[7] 王毓江,唐黎明,于建. 基于低分子量凝胶因子的超分子水凝胶:从结构到功能*[J]. 化学进展, 2009, 21(6): 1312-1324.
[8] 刘琼 杨婷婷 高庆 袁建军 程时远. 聚合物/SiO2杂化材料在药物控制释放中的应用*[J]. 化学进展, 2009, 21(12): 2689-2695.
[9] 宫铭,杨珊,张世平,宫永宽. 生物医用材料表面仿细胞膜结构改性*[J]. 化学进展, 2008, 20(10): 1628-1634.
[10] 马佳妮,宫铭,杨珊,张世平,宫永宽. 2-甲基丙烯酰氧基乙基磷酰胆碱单体及其聚合物的合成与应用*[J]. 化学进展, 2008, 20(0708): 1151-1157.
[11] 魏宏亮,王连才,张爱英,朱凯强,冯增国. 可注射水凝胶的制备与应用*[J]. 化学进展, 2004, 16(06): 1008-.
阅读次数
全文


摘要

阳离子抗菌聚合物