化学进展 2019, Vol. 31 Issue (8): 1148-1158 DOI: 10.7536/PC190131 前一篇   后一篇

• •


贾强, 宋洪伟, 唐盛, 王静**(), 彭银仙**()   

  1. 江苏科技大学环境与化学工程学院 镇江 212003
  • 收稿日期:2019-01-21 出版日期:2019-08-15 发布日期:2019-05-13
  • 通讯作者: 王静, 彭银仙
  • 基金资助:
    国家自然科学基金项目(21705060); 国家自然科学基金项目(21605105); 镇江市社会发展重点项目基金(SH2018011)

Synthesis of the Functionalized Porous Materials and Their Applications in the Specific Recognition and Separation

Qiang Jia, Hongwei Song, Sheng Tang, Jing Wang**(), Yinxian Peng**()   

  1. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • Received:2019-01-21 Online:2019-08-15 Published:2019-05-13
  • Contact: Jing Wang, Yinxian Peng
  • About author:
    ** E-mail: (Jing Wang)
    (Yinxian Peng)
  • Supported by:
    National Natural Science Foundation of China(21705060); National Natural Science Foundation of China(21605105); Social Development Key Project Fund of Zhenjiang(SH2018011)


Functionalized porous materials(FPMs) as ideal materials for specific idenpngication and separation have attracted a great deal of attention due to their excellent controllability of preparation, great specific surface area and unique three-dimensional macrostructures with well-defined interconnected porous networks. In this paper, the preparation of FPMs and their applications in specific recognition and separation are reviewed and prospected systematically. Firstly, the basic theory of the preparation of FPMs and the concept of frontier design are expounded systematically. Then, through the in-depth analysis of the preparation principle and key factors during synthesis of FPMs, the mechanism and applications for FPMs in the fields of specific recognition, extraction natural functional ingredients, separation and removal pollutants and catalytic reaction are reviewed. The problems and development trends of FPMs in the fields of specific recognition, catalysis and separation are analyzed and forecasted.

图1 磁性多微孔吸附剂的形成机理[33]
Fig. 1 Formation mechanism of magnetic porous adsorbent[33]
图2 CMP(0~4)网络的典型分子结构[34]
Fig. 2 Representative molecular structures for networks CMP(0~4)[34].Reprinted with permission from ref. 34. Copyright [2008] American Chemical Society
图3 聚合物微球(PMMA)的形态特征:a和b为PMMA微球的扫描电镜,c为透射电镜显微照片[47]
Fig. 3 Morphological characterizations of the polymer microspheres. SEM(a and b) and TEM(c) micrographs of PMMA Reprinted with permission from ref 47. Copyright [2005] American Chemical Society.
图4 Pickering 乳液合成MPMMA 的示意图[82]
Fig. 4 Schematic illustration for the synthesis of MPMMA by Pickering emulsion polymerization[82]
图5 Cr3+-HPFs-1-H+的制备以及大气压下纤维素在[EMIM]Cl中制备HMF的流程图[84]
Fig. 5 Schematic illustration of the synthesis of Cr3+-HPFs-1-H+ and the conversion of carbohydrate into HMF in [Emim]Cl under atmospheric pressure[84]
图6 中空SnO2多孔材料的制备过程及分离提取木犀草素的流程图[87]
Fig. 6 Schematic of fabrication process of the Ho-SnO2@MIPs[87]
图7 化合物TFSE(a), NUS-30(b), NUS-31(c) 和 NUS-32(d)的化学结构[89]
Fig. 7 The chemical structures of TFSE compound(a), NUS-30(b), NUS-31(c) and NUS-32(d). Reprinted with permission from ref 89. Copyright [2019] American Chemical Society.
图8 [4+6] 席夫碱环亚胺化反应合成CC10[94]
Fig. 8 Synthesis of CC10 by [4 + 6] Schiff-base cycloimination reaction[94]
Xie S, Wu S, Bao S, Wang Y, Zheng Y, Deng D, Huang L, Zhang L, Lee M, Huang Z . Advanced Materials, 2018,1800683.
Schneider D, Mehlhorn D, Zeigermann P, Kärger J, Valiullin R . Chemical Society Reviews, 2016,47:3439.
Pan J, Chen W, Ma Y, Pan G . Chemical Society Reviews, 2018,47:5574. https://www.ncbi.nlm.nih.gov/pubmed/29876564

doi: 10.1039/c7cs00854f     URL     pmid: 29876564
Gunathilake T M S U, Ching Y C, Ching K Y, Cheng H C, Abdullah L C . Polymers, 2017,9:160.
Blin J L, Impérorclerc M . Chemical Society Reviews, 2013,42:4071. https://www.ncbi.nlm.nih.gov/pubmed/23258529

doi: 10.1039/c2cs35362h     URL     pmid: 23258529
Cai R, Ellis P R, Yin J, Liu J, Brown C M, Griffin R, Chang G, Yang D, Ren J, Cooke K . Small, 2018,14:1703734.
Wu R, Ma Y, Pan J, Lee S H, Liu J, Zhu H, Gu R, Shea K J, Pan G . Biosensors & Bioelectronics, 2018,101:52. https://www.ncbi.nlm.nih.gov/pubmed/29040914

doi: 10.1016/j.bios.2017.10.003     URL     pmid: 29040914
Xu X, Li Y, Yang D, Zheng X, Wang Y, Pan J, Zhang T, Xu J, Qiu F, Yan Y . Journal of Cleaner Production, 2017,171:264.
Easun T L, Moreau F, Yan Y, Yang S, Schroeder M . Chemical Society Reviews, 2017,46:239. https://www.ncbi.nlm.nih.gov/pubmed/27896354

doi: 10.1039/c6cs00603e     URL     pmid: 27896354
Li H, Meng B, Mahurin S M, Chai S, Nelson K, Baker D C, Liu H, Dai S . Journal of Materials Chemistry A, 2015,3(42):20913.
Cote A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M . Science, 2005,310:1166. https://www.ncbi.nlm.nih.gov/pubmed/16293756

doi: 10.1126/science.1120411     URL     pmid: 16293756
Wang X, Lu S, Li J, Liu Y, Li C . Catalysis Science & Technology, 2015,5(5):2585.
任浩(Ren H), 朱广山(Zhu G S) . 化学学报( Acta Chimica Sinica), 2015,73:587.
Xu X, Qiu F, Yang D, Zheng X, Wang Y, Pan J, Zhang T, Xu J, Li C . Applied Organometallic Chemistry, 2017,32:e4114
Pan J, Liu J, Ma Y, Huang X, Niu X, Zhang T, Chen X, Qiu F . Chemical Engineering Journal, 2017,317:317.
Hyuk I S, Jeong U, Xia Y . Nature Materials, 2005,4:671. https://www.ncbi.nlm.nih.gov/pubmed/16086022

doi: 10.1038/nmat1448     URL     pmid: 16086022
Yu L, Yu X Y, Lou X W D . Advanced Materials, 2018,1800939.
Ma F X, Hu H, Wu H B, Xu C Y, Xu Z, Zhen L, Lou X W D . Advanced Materials, 2015,27:4097. https://www.ncbi.nlm.nih.gov/pubmed/26038182

doi: 10.1002/adma.201501130     URL     pmid: 26038182
Jiang B, Li C, Qian H, Msa H, Malgras V, Yamauchi Y . Angew. Chem. Int. Ed. Engl., 2017,129:7836.
Ovcharov M, Shcherban N, Filonenko S, Mishura A, Skoryk M, Shvalagin V, Granchak V . Materials Science & Engineering B, 2015,202:1.
Wang Y, Chang B, Guan D, Pei K, Chen Z, Yang M, Dong X . Materials Letters, 2014,135:172.
Yang X Y, Chen L H, Li Y, Rooke J C, Sanchez C, Su B L . Chemical Society Reviews, 2017,46:481. https://www.ncbi.nlm.nih.gov/pubmed/27906387

doi: 10.1039/c6cs00829a     URL     pmid: 27906387
Kaneti Y V, Tang J, Salunkhe R R, Jiang X, Yu A, Wu C W, Yamauchi Y . Advanced Materials, 2017,29:1604898.
Okubo M, Takekoh R, Suzuki A . Colloid & Polymer Science, 2002,280:1057.
Okubo M, Konishi Y, Inohara T, Minami H . Colloid & Polymer Science, 2003,281:302.
Song T, Luo W, Mu J, Cai Y, Wei , Li H . Journal of Colloid and Interface Science, 2019,535:371. https://www.ncbi.nlm.nih.gov/pubmed/30316124

doi: 10.1016/j.jcis.2018.09.103     URL     pmid: 30316124
Ohta S, Hashimoto K, Fu X, Kamihira M, Sakai Y, Ito T . Journal of Bioscience & Bioengineering, 2018,126(4):533. https://www.ncbi.nlm.nih.gov/pubmed/29776730

doi: 10.1016/j.jbiosc.2018.04.017     URL     pmid: 29776730
Akamatsu K, Ide Y, Inabe T, Nakao S I . Industrial & Engineering Chemistry Research, 2018,57(29):9465.
Kamio E, Yonemura S, Ono T, Yoshizawa H . Langmuir, 2008,24:13287. https://www.ncbi.nlm.nih.gov/pubmed/18666759

doi: 10.1021/la800758d     URL     pmid: 18666759
Xu S, Chen L, Li J, Qin W, Ma J . Journal of Materials Chemistry, 2011,21:12047.
Côtél A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M . Science, 2005,310(5751):1166 https://www.ncbi.nlm.nih.gov/pubmed/16293756

doi: 10.1126/science.1120411     URL     pmid: 16293756
Ji W, Sun R, Geng Y, Liu W, Wang X . Analytica Chimica Acta, 2018,1001:179. https://www.ncbi.nlm.nih.gov/pubmed/29291801

doi: 10.1016/j.aca.2017.12.001     URL     pmid: 29291801
Ma Y, Zhou Q, Li A, Shuang C, Shi Q, Zhang M . Journal of Hazardous Materials, 2014,266:84. https://www.ncbi.nlm.nih.gov/pubmed/24380891

doi: 10.1016/j.jhazmat.2013.12.015     URL     pmid: 24380891
Jiang J, Su F, Trewin A, Wood C D, Niu H, Jones J T A, Khimyak Y Z, Cooper A I . Journal of the American Chemical Society, 2008,130(24):7710. https://www.ncbi.nlm.nih.gov/pubmed/18500800

doi: 10.1021/ja8010176     URL     pmid: 18500800
Jiang J, Su F, Trewin A, Wood C D, Campbell N L, Niu H, Dickinson C, Ganin A Y, Rosseinsky M J, Khimyak Y Z, Cooper A I . Angewandte Chemie International Edition, 2007,46(45):8574. https://www.ncbi.nlm.nih.gov/pubmed/17899616

doi: 10.1002/anie.200701595     URL     pmid: 17899616
Cheng G, Hasell T, Trewin A, Adams D J . Angewandte Chemie International Edition, 2012,51(51):12727. https://www.ncbi.nlm.nih.gov/pubmed/23143745

doi: 10.1002/anie.201205521     URL     pmid: 23143745
Geng T, Zhang C, Chen G, Ma L, Zhang W, Xia H . Microporous and Mesoporous Materials, 2019, doi.: 10.1016/j.micromeso.2019.04.036.
Ding H, Zhang Y, Wang S, Xu J, Xu S, Li G . Chemistry of Materials, 2012,24:4572.
Luis A D S, Bonnefond A, Barrado M, Guraya T, Iturrondobeitia M, Okariz A, Paulis M, Leiza J R . Chemical Engineering Journal, 2016,313:261.
Tan X, Fang M, Tan L, Liu H, Ye X, Hayat T, Wang X . Environmental Science Nano, 2018,5:1140.
Tan C, Zhu G, Hojamberdiev M, Lokesh K S, Luo X, Lei J, Zhou J, Peng L . Journal of Hazardous Materials, 2014,278:572. https://www.ncbi.nlm.nih.gov/pubmed/25016456

doi: 10.1016/j.jhazmat.2014.06.019     URL     pmid: 25016456
Cho M S, Kim J W, Chung G Y . Korean Journal of Chemical Engineering, 1996,13:515.
Zeng X, Liu G, Tao W, Ma Y, Zhang X, He F, Pan J, Mei L, Pan G . Advanced Functional Materials, 2017,27:1605985.
Wang Y, Xu J, Xu X, Yang D, Zheng X, Pan J, Zhang T, Qiu F, Li C . Applied Organometallic Chemistry, 2017,32:e4182.
Yu B, Xue T, Pang L, Zhang X, Shen Y, Cong H . Materials, 2018,11:705.
Okubo M, Ise E, Yonehara H, Yamashita T . Colloid & Polymer Science, 2001,279:539.
He X, Ge X W, Liu H, Wang M Z, Zhang Z . Chemistry of Materials, 2005,17:5891.
He X, Ge X W, Liu H, Wang M Z, Zhang Z . Journal of Polymer Science Part A Polymer Chemistry, 2007,45:933.
Huang H, Li J, Wang K, Han T, Tong M, Li L, Xie Y, Yang Q, Liu D, Zhong C . Nature Communications, 2015,6:8847. https://www.ncbi.nlm.nih.gov/pubmed/26548441

doi: 10.1038/ncomms9847     URL     pmid: 26548441
Wu T, Ge Z, Liu S Y . Chemistry of Materials, 2011,23:2370.
Park M K, Xia C, Advincula R C . Langmuir, 2001,17:7670.
Liu W, Chen G, He G, He Z, Qian Z . Journal of Materials Science, 2011,46:6758.
Zhang X, Yan W, Yang H, Liu B, Li H . Polymer, 2008,49:5446.
Flores P A, Ojeda J, Irala C, Zalts A, Montserrat J . Waste Management, 2018,78:532.
Tahiri Y, Reinisch J . Clinics in Plastic Surgery, 2019,46(2):223. https://www.ncbi.nlm.nih.gov/pubmed/30851753

doi: 10.1016/j.cps.2018.11.006     URL     pmid: 30851753
Stephan S, Reinisch J . Facial Plastic Surgery Clinics of North America, 2018,26(1):69. https://www.ncbi.nlm.nih.gov/pubmed/29153190

doi: 10.1016/j.fsc.2017.09.009     URL     pmid: 29153190
Ke Y, Wang F, Xu P, Yang B . Building and Environment, 2018,145:85.
Fan X, Fan P, Li S, Wu Y, Shao S, Zhai L . Polymer Materials Science & Engineering, 2018,34:185.
Zeng H, Wang W, Li J, Luo J, Chen S. ACS Appl . Mater. Interfaces, 2018,8721.
Li Y, Wang S, Hao P, Tian J, Cui H, Wang X . Sensors & Actuators B Chemical, 2018,273:751.
Wang J, Tang J, Ding B, Malgras V, Chang Z, Hao X, Wang Y, Dou H, Zhang X, Yamauchi Y . Nature Communications, 2017,8:15717. https://www.ncbi.nlm.nih.gov/pubmed/28604671

doi: 10.1038/ncomms15717     URL     pmid: 28604671
Bing Y, Zeng Y, Liu C, Qiao L, Sui Y, Zou B, Zheng W, Zou G . Sensors & Actuators B Chemical, 2014,190:370.
Silverstein M S . Progress in Polymer Science, 2014,39:199.
Li Z, Liu H, Zeng L, Liu H, Wang Y . Journal of Materials Science, 2016,51:9005.
Zhu Y, Zheng Y, Feng W, Wang A . Chemical Engineering Journal, 2016,284:422.
Huå S, Kolar M, Krajnc P . Journal of Chromatography A, 2016,1437:168. https://www.ncbi.nlm.nih.gov/pubmed/26875120

doi: 10.1016/j.chroma.2016.02.012     URL     pmid: 26875120
Liu S, Jin M, Chen Y, Gao H, Shi X, Cheng W, Ren L, Wang Y . Journal of Materials Chemistry B, 2017,5:2671. https://www.ncbi.nlm.nih.gov/pubmed/32264046

doi: 10.1039/c7tb00145b     URL     pmid: 32264046
Woodward R T, De L F, Roberts A D . Bismarck A. Materials, 2016,9:776.
Peng H, Ma G, Sun K, Mu J, Zhang Z, Lei Z . Journal of Physical Chemistry C, 2014,118:29507.
Lissant K J . Journal of Colloid & Interface Science, 1966,22:462.
Fan X, Zhang S, Zhu Y, Chen J . RSC Advances, 2018,8:10141.
Grant N C, Cooper A I, Zhang H. ACS Appl . Mater. Interfaces, 2010,2:1400.
Woodward R T, Markoulidis F, Luca F D, Anthony D B, Malko D, McDonald T O, Shaffer M S P, Bismarck A . Journal of Materials Chemistry A, 2018,6(4):1840.
Zhang W, Ruan G, Li X, Jiang X, Huang Y, Du F Y, Li J . Analytica Chimica Acta, 2019, doi: 10.1016/j.aca.2019.04.041.
Velev O D, Furusawa K, Nagayama K . Langmuir, 1996,12:2385. https://pubs.acs.org/doi/10.1021/la950679y

doi: 10.1021/la950679y     URL    
Velev O D, Nagayama K . Langmuir, 1997,13:1856.
Dinsmore A D, Ming F H, Nikolaides M G, Marquez M, Bausch A R, Weitz D A . Science, 2002,298:1006. https://www.ncbi.nlm.nih.gov/pubmed/12411700

doi: 10.1126/science.1074868     URL     pmid: 12411700
Yang Y, Wei Z, Wang C, Tong Z . Chemical Communications, 2013,49:7144. https://www.ncbi.nlm.nih.gov/pubmed/23831814

doi: 10.1039/c3cc42270d     URL     pmid: 23831814
Azhar U, Huo Z, Yaqub R, Xu A, Zhang S, Geng B . Polymer, 2019,172:160.
Jiao B, Shi A, Wang Q, Binks B P . Angewandte Chemie International Edition, 2018,57:9274. https://www.ncbi.nlm.nih.gov/pubmed/29845713

doi: 10.1002/anie.201801350     URL     pmid: 29845713
Pan J, Yin Y, Gan M, Meng M, Dai X, Wu R, Shi W, Yan Y . Chemical Engineering Journal, 2015,266:299.
Zeng J, Peng Y, Pan J, Gao H, Wu R, Yin Y, Yan Y . Chemical Engineering Journal, 2015,266:1.
Parlett C M, Wilson K, Lee A F . Chemical Society Reviews, 2013,42:3876. https://www.ncbi.nlm.nih.gov/pubmed/23139061

doi: 10.1039/c2cs35378d     URL     pmid: 23139061
Gao H P, Pan J, Han D, Zhang Y, Shi W, Zeng J, Peng Y, Yan Y . Journal of Materials Chemistry A, 2015,3:13507.
Salimi K, Usta D D, Celikbıcak Ö, Pınar A, Salih B, Tuncel A . Journal of Chromatography A, 2017,1496:9. https://www.ncbi.nlm.nih.gov/pubmed/28351536

doi: 10.1016/j.chroma.2017.03.052     URL     pmid: 28351536
Pan J, Huang X B, Gao L, Peng Y, Liu S, Gu R . Chemical Engineering Journal, 2017,312:263.
Jia Q, Ma Y, Peng Y, Liu Y, Zhang W . Chemical Engineering Journal, 2018,342:293.
Jia Q, Peng Y, Pan J, Huang X, Niu X, Zhang T . New Journal of Chemistry, 2017,41:3308
Dong J, Li Xu, Peh S B, Yuan Y, Wang Y, Ji D, Peng S, Liu G, Ying S, Yuan D, Jiang J, Ramakrishna S, Zhao D . Chemistry of Materials, 2019,31(1):146.
Zhang Y, Pan J, Chen Y, Shi W, Yan Y, Yu L . Chemical Engineering Journal, 2015,283:956.
Zhang Y, Chen Y, Pan J, Liu M, Jin P, Yan Y . Chemical Engineering Journal, 2017,313:1593.
Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y . Angewandte Chemie International Edition, 2014,53(11):2878. https://www.ncbi.nlm.nih.gov/pubmed/24604810

doi: 10.1002/anie.201310500     URL     pmid: 24604810
Song H, Li X, He Y, Peng Y, Pan J, Niu X, Zhao H, Lan M . Microchimica Acta, 2019,186:354. https://www.ncbi.nlm.nih.gov/pubmed/31098776

doi: 10.1007/s00604-019-3488-4     URL     pmid: 31098776
Zhang J, Xie S, Wang B, He P, Yuan L . Journal of Chromatography A, 2015,1426:174. https://www.ncbi.nlm.nih.gov/pubmed/26632517

doi: 10.1016/j.chroma.2015.11.038     URL     pmid: 26632517
Mazaj M, Logar N Z, Žagar E, Kovacic S . Journal of Materials Chemistry A, 2017,5:1967.
Chen M, Sun F, Xu W, Zhou L, Zhang F . Journal of Materials Science, 2016,51:5113.
Liu Y. Xiong Q, Song H, Peng Y, Liu L, Jiang C . Cellulose, 2019,26(4):2573
Liu J, Pan J, Ma Y, Liu S, Qiu F, Yan Y . Chemical Engineering Journal, 2018,332:517.
Yin Y, Pan J, Cao J, Ma Y, Pan G, Wu R, Dai X, Meng M, Yan Y . Chemical Engineering Journal, 2016,286:485.
Xiao Z, Zhang M, Fan W, Qian Y, Yang Z, Xu B, Kang Z, Wang R, Sun D . Chemical Engineering Journal, 2017,326:640.
Wang X, Chen X, Peng Y, Pan J . RSC Advances, 2019,9:7228.
[1] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[2] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[3] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[4] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[5] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[6] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[7] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[8] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[9] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[10] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[11] 刘晓璐, 耿钰晓, 郝然, 刘玉萍, 袁忠勇, 李伟. 环境条件下电催化氮还原的现状、挑战与展望[J]. 化学进展, 2021, 33(7): 1074-1091.
[12] 李连欣, 曹冉冉, 张彭义. 室温催化分解空气中臭氧污染物[J]. 化学进展, 2021, 33(7): 1188-1200.
[13] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[14] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[15] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.