English
新闻公告
More
化学进展 2019, Vol. 31 Issue (8): 1148-1158 DOI: 10.7536/PC190131 前一篇   后一篇

• •

功能化多孔材料的制备及其在特异性识别分离中的应用

贾强, 宋洪伟, 唐盛, 王静**(), 彭银仙**()   

  1. 江苏科技大学环境与化学工程学院 镇江 212003
  • 收稿日期:2019-01-21 出版日期:2019-08-15 发布日期:2019-05-13
  • 通讯作者: 王静, 彭银仙
  • 基金资助:
    国家自然科学基金项目(21705060); 国家自然科学基金项目(21605105); 镇江市社会发展重点项目基金(SH2018011)

Synthesis of the Functionalized Porous Materials and Their Applications in the Specific Recognition and Separation

Qiang Jia, Hongwei Song, Sheng Tang, Jing Wang**(), Yinxian Peng**()   

  1. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • Received:2019-01-21 Online:2019-08-15 Published:2019-05-13
  • Contact: Jing Wang, Yinxian Peng
  • About author:
    ** E-mail: (Jing Wang)
    (Yinxian Peng)
  • Supported by:
    National Natural Science Foundation of China(21705060); National Natural Science Foundation of China(21605105); Social Development Key Project Fund of Zhenjiang(SH2018011)

功能化多孔材料(FPMs)具有优良的结构可控性、极大的比表面积、独特的空间互联孔结构,是一类理想的特异性识别、分离材料。本文系统介绍了FPMs的制备方法及其在特异性识别、分离中的应用。首先,对FPMs制备的基本理论和前沿设计理念进行阐述;继而深入剖析了FPMs的制备原理和合成过程中的关键因素,综述了FPMs在特异性识别和提取天然物功能成分、分离去除污染物以及催化反应等方面的作用机理及相关应用,分析和展望了FPMs在特异性识别、催化、分离等领域应用中存在的问题和发展趋势。

Functionalized porous materials(FPMs) as ideal materials for specific idenpngication and separation have attracted a great deal of attention due to their excellent controllability of preparation, great specific surface area and unique three-dimensional macrostructures with well-defined interconnected porous networks. In this paper, the preparation of FPMs and their applications in specific recognition and separation are reviewed and prospected systematically. Firstly, the basic theory of the preparation of FPMs and the concept of frontier design are expounded systematically. Then, through the in-depth analysis of the preparation principle and key factors during synthesis of FPMs, the mechanism and applications for FPMs in the fields of specific recognition, extraction natural functional ingredients, separation and removal pollutants and catalytic reaction are reviewed. The problems and development trends of FPMs in the fields of specific recognition, catalysis and separation are analyzed and forecasted.

()
图1 磁性多微孔吸附剂的形成机理[33]
Fig. 1 Formation mechanism of magnetic porous adsorbent[33]
图2 CMP(0~4)网络的典型分子结构[34]
Fig. 2 Representative molecular structures for networks CMP(0~4)[34].Reprinted with permission from ref. 34. Copyright [2008] American Chemical Society
图3 聚合物微球(PMMA)的形态特征:a和b为PMMA微球的扫描电镜,c为透射电镜显微照片[47]
Fig. 3 Morphological characterizations of the polymer microspheres. SEM(a and b) and TEM(c) micrographs of PMMA Reprinted with permission from ref 47. Copyright [2005] American Chemical Society.
图4 Pickering 乳液合成MPMMA 的示意图[82]
Fig. 4 Schematic illustration for the synthesis of MPMMA by Pickering emulsion polymerization[82]
图5 Cr3+-HPFs-1-H+的制备以及大气压下纤维素在[EMIM]Cl中制备HMF的流程图[84]
Fig. 5 Schematic illustration of the synthesis of Cr3+-HPFs-1-H+ and the conversion of carbohydrate into HMF in [Emim]Cl under atmospheric pressure[84]
图6 中空SnO2多孔材料的制备过程及分离提取木犀草素的流程图[87]
Fig. 6 Schematic of fabrication process of the Ho-SnO2@MIPs[87]
图7 化合物TFSE(a), NUS-30(b), NUS-31(c) 和 NUS-32(d)的化学结构[89]
Fig. 7 The chemical structures of TFSE compound(a), NUS-30(b), NUS-31(c) and NUS-32(d). Reprinted with permission from ref 89. Copyright [2019] American Chemical Society.
图8 [4+6] 席夫碱环亚胺化反应合成CC10[94]
Fig. 8 Synthesis of CC10 by [4 + 6] Schiff-base cycloimination reaction[94]
[1]
Xie S, Wu S, Bao S, Wang Y, Zheng Y, Deng D, Huang L, Zhang L, Lee M, Huang Z . Advanced Materials, 2018,1800683.
[2]
Schneider D, Mehlhorn D, Zeigermann P, Kärger J, Valiullin R . Chemical Society Reviews, 2016,47:3439.
[3]
Pan J, Chen W, Ma Y, Pan G . Chemical Society Reviews, 2018,47:5574. https://www.ncbi.nlm.nih.gov/pubmed/29876564

doi: 10.1039/c7cs00854f     URL     pmid: 29876564
[4]
Gunathilake T M S U, Ching Y C, Ching K Y, Cheng H C, Abdullah L C . Polymers, 2017,9:160.
[5]
Blin J L, Impérorclerc M . Chemical Society Reviews, 2013,42:4071. https://www.ncbi.nlm.nih.gov/pubmed/23258529

doi: 10.1039/c2cs35362h     URL     pmid: 23258529
[6]
Cai R, Ellis P R, Yin J, Liu J, Brown C M, Griffin R, Chang G, Yang D, Ren J, Cooke K . Small, 2018,14:1703734.
[7]
Wu R, Ma Y, Pan J, Lee S H, Liu J, Zhu H, Gu R, Shea K J, Pan G . Biosensors & Bioelectronics, 2018,101:52. https://www.ncbi.nlm.nih.gov/pubmed/29040914

doi: 10.1016/j.bios.2017.10.003     URL     pmid: 29040914
[8]
Xu X, Li Y, Yang D, Zheng X, Wang Y, Pan J, Zhang T, Xu J, Qiu F, Yan Y . Journal of Cleaner Production, 2017,171:264.
[9]
Easun T L, Moreau F, Yan Y, Yang S, Schroeder M . Chemical Society Reviews, 2017,46:239. https://www.ncbi.nlm.nih.gov/pubmed/27896354

doi: 10.1039/c6cs00603e     URL     pmid: 27896354
[10]
Li H, Meng B, Mahurin S M, Chai S, Nelson K, Baker D C, Liu H, Dai S . Journal of Materials Chemistry A, 2015,3(42):20913.
[11]
Cote A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M . Science, 2005,310:1166. https://www.ncbi.nlm.nih.gov/pubmed/16293756

doi: 10.1126/science.1120411     URL     pmid: 16293756
[12]
Wang X, Lu S, Li J, Liu Y, Li C . Catalysis Science & Technology, 2015,5(5):2585.
[13]
任浩(Ren H), 朱广山(Zhu G S) . 化学学报( Acta Chimica Sinica), 2015,73:587.
[14]
Xu X, Qiu F, Yang D, Zheng X, Wang Y, Pan J, Zhang T, Xu J, Li C . Applied Organometallic Chemistry, 2017,32:e4114
[15]
Pan J, Liu J, Ma Y, Huang X, Niu X, Zhang T, Chen X, Qiu F . Chemical Engineering Journal, 2017,317:317.
[16]
Hyuk I S, Jeong U, Xia Y . Nature Materials, 2005,4:671. https://www.ncbi.nlm.nih.gov/pubmed/16086022

doi: 10.1038/nmat1448     URL     pmid: 16086022
[17]
Yu L, Yu X Y, Lou X W D . Advanced Materials, 2018,1800939.
[18]
Ma F X, Hu H, Wu H B, Xu C Y, Xu Z, Zhen L, Lou X W D . Advanced Materials, 2015,27:4097. https://www.ncbi.nlm.nih.gov/pubmed/26038182

doi: 10.1002/adma.201501130     URL     pmid: 26038182
[19]
Jiang B, Li C, Qian H, Msa H, Malgras V, Yamauchi Y . Angew. Chem. Int. Ed. Engl., 2017,129:7836.
[20]
Ovcharov M, Shcherban N, Filonenko S, Mishura A, Skoryk M, Shvalagin V, Granchak V . Materials Science & Engineering B, 2015,202:1.
[21]
Wang Y, Chang B, Guan D, Pei K, Chen Z, Yang M, Dong X . Materials Letters, 2014,135:172.
[22]
Yang X Y, Chen L H, Li Y, Rooke J C, Sanchez C, Su B L . Chemical Society Reviews, 2017,46:481. https://www.ncbi.nlm.nih.gov/pubmed/27906387

doi: 10.1039/c6cs00829a     URL     pmid: 27906387
[23]
Kaneti Y V, Tang J, Salunkhe R R, Jiang X, Yu A, Wu C W, Yamauchi Y . Advanced Materials, 2017,29:1604898.
[24]
Okubo M, Takekoh R, Suzuki A . Colloid & Polymer Science, 2002,280:1057.
[25]
Okubo M, Konishi Y, Inohara T, Minami H . Colloid & Polymer Science, 2003,281:302.
[26]
Song T, Luo W, Mu J, Cai Y, Wei , Li H . Journal of Colloid and Interface Science, 2019,535:371. https://www.ncbi.nlm.nih.gov/pubmed/30316124

doi: 10.1016/j.jcis.2018.09.103     URL     pmid: 30316124
[27]
Ohta S, Hashimoto K, Fu X, Kamihira M, Sakai Y, Ito T . Journal of Bioscience & Bioengineering, 2018,126(4):533. https://www.ncbi.nlm.nih.gov/pubmed/29776730

doi: 10.1016/j.jbiosc.2018.04.017     URL     pmid: 29776730
[28]
Akamatsu K, Ide Y, Inabe T, Nakao S I . Industrial & Engineering Chemistry Research, 2018,57(29):9465.
[29]
Kamio E, Yonemura S, Ono T, Yoshizawa H . Langmuir, 2008,24:13287. https://www.ncbi.nlm.nih.gov/pubmed/18666759

doi: 10.1021/la800758d     URL     pmid: 18666759
[30]
Xu S, Chen L, Li J, Qin W, Ma J . Journal of Materials Chemistry, 2011,21:12047.
[31]
Côtél A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M . Science, 2005,310(5751):1166 https://www.ncbi.nlm.nih.gov/pubmed/16293756

doi: 10.1126/science.1120411     URL     pmid: 16293756
[32]
Ji W, Sun R, Geng Y, Liu W, Wang X . Analytica Chimica Acta, 2018,1001:179. https://www.ncbi.nlm.nih.gov/pubmed/29291801

doi: 10.1016/j.aca.2017.12.001     URL     pmid: 29291801
[33]
Ma Y, Zhou Q, Li A, Shuang C, Shi Q, Zhang M . Journal of Hazardous Materials, 2014,266:84. https://www.ncbi.nlm.nih.gov/pubmed/24380891

doi: 10.1016/j.jhazmat.2013.12.015     URL     pmid: 24380891
[34]
Jiang J, Su F, Trewin A, Wood C D, Niu H, Jones J T A, Khimyak Y Z, Cooper A I . Journal of the American Chemical Society, 2008,130(24):7710. https://www.ncbi.nlm.nih.gov/pubmed/18500800

doi: 10.1021/ja8010176     URL     pmid: 18500800
[35]
Jiang J, Su F, Trewin A, Wood C D, Campbell N L, Niu H, Dickinson C, Ganin A Y, Rosseinsky M J, Khimyak Y Z, Cooper A I . Angewandte Chemie International Edition, 2007,46(45):8574. https://www.ncbi.nlm.nih.gov/pubmed/17899616

doi: 10.1002/anie.200701595     URL     pmid: 17899616
[36]
Cheng G, Hasell T, Trewin A, Adams D J . Angewandte Chemie International Edition, 2012,51(51):12727. https://www.ncbi.nlm.nih.gov/pubmed/23143745

doi: 10.1002/anie.201205521     URL     pmid: 23143745
[37]
Geng T, Zhang C, Chen G, Ma L, Zhang W, Xia H . Microporous and Mesoporous Materials, 2019, doi.: 10.1016/j.micromeso.2019.04.036.
[38]
Ding H, Zhang Y, Wang S, Xu J, Xu S, Li G . Chemistry of Materials, 2012,24:4572.
[39]
Luis A D S, Bonnefond A, Barrado M, Guraya T, Iturrondobeitia M, Okariz A, Paulis M, Leiza J R . Chemical Engineering Journal, 2016,313:261.
[40]
Tan X, Fang M, Tan L, Liu H, Ye X, Hayat T, Wang X . Environmental Science Nano, 2018,5:1140.
[41]
Tan C, Zhu G, Hojamberdiev M, Lokesh K S, Luo X, Lei J, Zhou J, Peng L . Journal of Hazardous Materials, 2014,278:572. https://www.ncbi.nlm.nih.gov/pubmed/25016456

doi: 10.1016/j.jhazmat.2014.06.019     URL     pmid: 25016456
[42]
Cho M S, Kim J W, Chung G Y . Korean Journal of Chemical Engineering, 1996,13:515.
[43]
Zeng X, Liu G, Tao W, Ma Y, Zhang X, He F, Pan J, Mei L, Pan G . Advanced Functional Materials, 2017,27:1605985.
[44]
Wang Y, Xu J, Xu X, Yang D, Zheng X, Pan J, Zhang T, Qiu F, Li C . Applied Organometallic Chemistry, 2017,32:e4182.
[45]
Yu B, Xue T, Pang L, Zhang X, Shen Y, Cong H . Materials, 2018,11:705.
[46]
Okubo M, Ise E, Yonehara H, Yamashita T . Colloid & Polymer Science, 2001,279:539.
[47]
He X, Ge X W, Liu H, Wang M Z, Zhang Z . Chemistry of Materials, 2005,17:5891.
[48]
He X, Ge X W, Liu H, Wang M Z, Zhang Z . Journal of Polymer Science Part A Polymer Chemistry, 2007,45:933.
[49]
Huang H, Li J, Wang K, Han T, Tong M, Li L, Xie Y, Yang Q, Liu D, Zhong C . Nature Communications, 2015,6:8847. https://www.ncbi.nlm.nih.gov/pubmed/26548441

doi: 10.1038/ncomms9847     URL     pmid: 26548441
[50]
Wu T, Ge Z, Liu S Y . Chemistry of Materials, 2011,23:2370.
[51]
Park M K, Xia C, Advincula R C . Langmuir, 2001,17:7670.
[52]
Liu W, Chen G, He G, He Z, Qian Z . Journal of Materials Science, 2011,46:6758.
[53]
Zhang X, Yan W, Yang H, Liu B, Li H . Polymer, 2008,49:5446.
[54]
Flores P A, Ojeda J, Irala C, Zalts A, Montserrat J . Waste Management, 2018,78:532.
[55]
Tahiri Y, Reinisch J . Clinics in Plastic Surgery, 2019,46(2):223. https://www.ncbi.nlm.nih.gov/pubmed/30851753

doi: 10.1016/j.cps.2018.11.006     URL     pmid: 30851753
[56]
Stephan S, Reinisch J . Facial Plastic Surgery Clinics of North America, 2018,26(1):69. https://www.ncbi.nlm.nih.gov/pubmed/29153190

doi: 10.1016/j.fsc.2017.09.009     URL     pmid: 29153190
[57]
Ke Y, Wang F, Xu P, Yang B . Building and Environment, 2018,145:85.
[58]
Fan X, Fan P, Li S, Wu Y, Shao S, Zhai L . Polymer Materials Science & Engineering, 2018,34:185.
[59]
Zeng H, Wang W, Li J, Luo J, Chen S. ACS Appl . Mater. Interfaces, 2018,8721.
[60]
Li Y, Wang S, Hao P, Tian J, Cui H, Wang X . Sensors & Actuators B Chemical, 2018,273:751.
[61]
Wang J, Tang J, Ding B, Malgras V, Chang Z, Hao X, Wang Y, Dou H, Zhang X, Yamauchi Y . Nature Communications, 2017,8:15717. https://www.ncbi.nlm.nih.gov/pubmed/28604671

doi: 10.1038/ncomms15717     URL     pmid: 28604671
[62]
Bing Y, Zeng Y, Liu C, Qiao L, Sui Y, Zou B, Zheng W, Zou G . Sensors & Actuators B Chemical, 2014,190:370.
[63]
Silverstein M S . Progress in Polymer Science, 2014,39:199.
[64]
Li Z, Liu H, Zeng L, Liu H, Wang Y . Journal of Materials Science, 2016,51:9005.
[65]
Zhu Y, Zheng Y, Feng W, Wang A . Chemical Engineering Journal, 2016,284:422.
[66]
Huå S, Kolar M, Krajnc P . Journal of Chromatography A, 2016,1437:168. https://www.ncbi.nlm.nih.gov/pubmed/26875120

doi: 10.1016/j.chroma.2016.02.012     URL     pmid: 26875120
[67]
Liu S, Jin M, Chen Y, Gao H, Shi X, Cheng W, Ren L, Wang Y . Journal of Materials Chemistry B, 2017,5:2671. https://www.ncbi.nlm.nih.gov/pubmed/32264046

doi: 10.1039/c7tb00145b     URL     pmid: 32264046
[68]
Woodward R T, De L F, Roberts A D . Bismarck A. Materials, 2016,9:776.
[69]
Peng H, Ma G, Sun K, Mu J, Zhang Z, Lei Z . Journal of Physical Chemistry C, 2014,118:29507.
[70]
Lissant K J . Journal of Colloid & Interface Science, 1966,22:462.
[71]
Fan X, Zhang S, Zhu Y, Chen J . RSC Advances, 2018,8:10141.
[72]
Grant N C, Cooper A I, Zhang H. ACS Appl . Mater. Interfaces, 2010,2:1400.
[73]
Woodward R T, Markoulidis F, Luca F D, Anthony D B, Malko D, McDonald T O, Shaffer M S P, Bismarck A . Journal of Materials Chemistry A, 2018,6(4):1840.
[74]
Zhang W, Ruan G, Li X, Jiang X, Huang Y, Du F Y, Li J . Analytica Chimica Acta, 2019, doi: 10.1016/j.aca.2019.04.041.
[75]
Velev O D, Furusawa K, Nagayama K . Langmuir, 1996,12:2385. https://pubs.acs.org/doi/10.1021/la950679y

doi: 10.1021/la950679y     URL    
[76]
Velev O D, Nagayama K . Langmuir, 1997,13:1856.
[77]
Dinsmore A D, Ming F H, Nikolaides M G, Marquez M, Bausch A R, Weitz D A . Science, 2002,298:1006. https://www.ncbi.nlm.nih.gov/pubmed/12411700

doi: 10.1126/science.1074868     URL     pmid: 12411700
[78]
Yang Y, Wei Z, Wang C, Tong Z . Chemical Communications, 2013,49:7144. https://www.ncbi.nlm.nih.gov/pubmed/23831814

doi: 10.1039/c3cc42270d     URL     pmid: 23831814
[79]
Azhar U, Huo Z, Yaqub R, Xu A, Zhang S, Geng B . Polymer, 2019,172:160.
[80]
Jiao B, Shi A, Wang Q, Binks B P . Angewandte Chemie International Edition, 2018,57:9274. https://www.ncbi.nlm.nih.gov/pubmed/29845713

doi: 10.1002/anie.201801350     URL     pmid: 29845713
[81]
Pan J, Yin Y, Gan M, Meng M, Dai X, Wu R, Shi W, Yan Y . Chemical Engineering Journal, 2015,266:299.
[82]
Zeng J, Peng Y, Pan J, Gao H, Wu R, Yin Y, Yan Y . Chemical Engineering Journal, 2015,266:1.
[83]
Parlett C M, Wilson K, Lee A F . Chemical Society Reviews, 2013,42:3876. https://www.ncbi.nlm.nih.gov/pubmed/23139061

doi: 10.1039/c2cs35378d     URL     pmid: 23139061
[84]
Gao H P, Pan J, Han D, Zhang Y, Shi W, Zeng J, Peng Y, Yan Y . Journal of Materials Chemistry A, 2015,3:13507.
[85]
Salimi K, Usta D D, Celikbıcak Ö, Pınar A, Salih B, Tuncel A . Journal of Chromatography A, 2017,1496:9. https://www.ncbi.nlm.nih.gov/pubmed/28351536

doi: 10.1016/j.chroma.2017.03.052     URL     pmid: 28351536
[86]
Pan J, Huang X B, Gao L, Peng Y, Liu S, Gu R . Chemical Engineering Journal, 2017,312:263.
[87]
Jia Q, Ma Y, Peng Y, Liu Y, Zhang W . Chemical Engineering Journal, 2018,342:293.
[88]
Jia Q, Peng Y, Pan J, Huang X, Niu X, Zhang T . New Journal of Chemistry, 2017,41:3308
[89]
Dong J, Li Xu, Peh S B, Yuan Y, Wang Y, Ji D, Peng S, Liu G, Ying S, Yuan D, Jiang J, Ramakrishna S, Zhao D . Chemistry of Materials, 2019,31(1):146.
[90]
Zhang Y, Pan J, Chen Y, Shi W, Yan Y, Yu L . Chemical Engineering Journal, 2015,283:956.
[91]
Zhang Y, Chen Y, Pan J, Liu M, Jin P, Yan Y . Chemical Engineering Journal, 2017,313:1593.
[92]
Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y . Angewandte Chemie International Edition, 2014,53(11):2878. https://www.ncbi.nlm.nih.gov/pubmed/24604810

doi: 10.1002/anie.201310500     URL     pmid: 24604810
[93]
Song H, Li X, He Y, Peng Y, Pan J, Niu X, Zhao H, Lan M . Microchimica Acta, 2019,186:354. https://www.ncbi.nlm.nih.gov/pubmed/31098776

doi: 10.1007/s00604-019-3488-4     URL     pmid: 31098776
[94]
Zhang J, Xie S, Wang B, He P, Yuan L . Journal of Chromatography A, 2015,1426:174. https://www.ncbi.nlm.nih.gov/pubmed/26632517

doi: 10.1016/j.chroma.2015.11.038     URL     pmid: 26632517
[95]
Mazaj M, Logar N Z, Žagar E, Kovacic S . Journal of Materials Chemistry A, 2017,5:1967.
[96]
Chen M, Sun F, Xu W, Zhou L, Zhang F . Journal of Materials Science, 2016,51:5113.
[97]
Liu Y. Xiong Q, Song H, Peng Y, Liu L, Jiang C . Cellulose, 2019,26(4):2573
[98]
Liu J, Pan J, Ma Y, Liu S, Qiu F, Yan Y . Chemical Engineering Journal, 2018,332:517.
[99]
Yin Y, Pan J, Cao J, Ma Y, Pan G, Wu R, Dai X, Meng M, Yan Y . Chemical Engineering Journal, 2016,286:485.
[100]
Xiao Z, Zhang M, Fan W, Qian Y, Yang Z, Xu B, Kang Z, Wang R, Sun D . Chemical Engineering Journal, 2017,326:640.
[101]
Wang X, Chen X, Peng Y, Pan J . RSC Advances, 2019,9:7228.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[6] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[7] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[10] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[11] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[12] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[13] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[14] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[15] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.