English
新闻公告
More
化学进展 2019, Vol. 31 Issue (7): 969-979 DOI: 10.7536/PC181109 前一篇   后一篇

• •

聚电解质型正渗透汲取液

张赛晖1,3,4,**(), 王悦2,3, 柳开鹏1,3,4, 王捷2,3   

  1. 1.天津工业大学化学与化工学院 天津 300387
    2.天津工业大学环境科学与工程学院 天津 300387
    3.省部共建分离膜与膜过程国家重点实验室 天津 300387
    4.天津市绿色化工过程工程重点实验室 天津 300387
  • 收稿日期:2018-11-13 出版日期:2019-07-15 发布日期:2019-04-26
  • 通讯作者: 张赛晖
  • 作者简介:
  • 基金资助:
    国家自然科学基金项目(21104034); 天津市教委科研计划项目(2017KJ078); 省部共建分离膜与膜过程国家重点实验室(天津工业大学)开放课题(Z2-2015062); 大学生创新创业计划(201510058031)

Polyelectrolyte-Based Draw Solution in Forward Osmosis

Saihui Zhan1,3,4,**(), Yue Wang2,3, Kaipeng Liu1,3,4, Jie Wang2,3   

  1. 1.School of Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    2.School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    3.State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
    4.Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, Tianjin 300387, China
  • Received:2018-11-13 Online:2019-07-15 Published:2019-04-26
  • Contact: Saihui Zhan
  • Supported by:
    National Natural Science Foundation of China(21104034); Scientific Research Project of Tianjin Education Commission(2017KJ078); State Key Laboratory of Separation Membranes and Membrane Processes(Tianjin Polytechnic University)(Z2-2015062); Student’s Platform for Innovation and Entrepreneurship Training Program(201510058031)

聚电解质作为正渗透汲取液具有渗透压高、溶质反向渗透、易于回收等特点,符合理想正渗透汲取液的要求。此外,多种分离方法诸如纳滤、超滤和热处理可用于其回收,使得聚电解质型汲取液成为诸如氯化钠等的传统无机汲取液的理想代替物。近年来关于聚电解质型汲取液的研究日益增加,而聚电解质型汲取液较无机型汲取液有许多独特的性质,应对相关研究进展予以总结。本文以聚电解质的化学结构分类对其研究进展进行了概述。重点总结了不同种类聚电解质的分子量、渗透压、黏度等性质,以及正渗透过程的水通量及溶质反向渗透情况,同时还介绍了相应的正渗透机理。最后,探讨和总结了各类汲取液的特点,并展望了未来的研究方向。

Polyelectrolyte-based draw solution(PBDS) exhibit high osmotic pressure, and low reverse solute leakage, which are highly demanded in forward osmosis process. Additionally, various separation methods such as nanofiltration, ultrafiltration and thermal treatment can be utilized for its recycle, rendering PBDS an ideal substitute for the traditional inorganic draw solution such as sodium chloride. In the past two decades, research works concerning PBDS have been intensively reported. Because PBDS has distinctive properties in comparison with inorganic draw solution, thus, it is necessary to review these developments in PBDS and present an outline. This paper aims to review the recent developments in PBDS in consideration of their chemical structures, which are categorized into carboxylate type, sulfonate type, amine type and amide type. In the beginning, the general considerations for an ideal PBDS are introduced. Subsequently, the molecular weight of the polyelectrolytes, the osmotic pressure and viscosity of the draw solutions, the water flux and reverse solute leakage in forward osmosis process are introduced in detail. The corresponding mechanisms of forward osmosis are also described. Finally, the characteristics, advantages and drawbacks of the PBDS are summarized, and the opportunities and challenges are discussed.

()
图1 正渗透原理图
Fig. 1 Schematic illustration of forward osmosis
图2 (a)PAA-Na的化学结构式[34];(b)PAspNa的化学结构式[44]
Fig. 2 Molecular structures of:(a) PAA-Na[34];(b) PAspNa[44]
图3 (a)PESA的化学结构式[48];(b)PIAM-Na的化学结构式[49]
Fig. 3 Molecular structures of:(a) PESA[48];(b) PIAM-Na[49]
图4 (a)PMAS和(b)P(IA-co-AA) 的化学结构式[50]
Fig. 4 Molecular structure of:(a) PMAS;(b) P(IA-co-AA)[50]
图5 (a)PSSP的化学结构式[54];(b)PBET的化学结构式[58]
Fig. 5 Molecular structures of:(a) PSSP[54];(b) PBET[58]
图6 (a)PSS-co-MA的化学结构式[59];(b)PSS-co-AA的化学结构式[60]
Fig. 6 Molecular structure of the:(a) PSS-co-MA[59];(b) PSS-co-AA[60]
图7 PEI的化学结构式[67]
Fig. 7 Molecular structure of PEI[67]
图8 (a)CASSs的化学结构式[68];(b)DTPMP-Na/TPHMP-Na的化学结构式[71];(c)PEI-600P/1800P-Na的化学结构式[71]
Fig. 8 Molecular structures of:(a) CASSs[68];(b) DTPMP-Na/TPHMP-Na[71];(c) PEI-600P/1800P -Na[71]
图9 (a)PNIPAM-SA(AA)的化学结构式[83, 85];(b)PSSS-PNIPAM的化学结构式[86]
Fig. 9 Molecular structures of:(a) PNIPAM-SA(AA)[83, 85];(b) PSSS-PNIPAM[86]
表1 聚电解质的性能
Table 1 Properties of polyelectrolyte-based draw solution
Category
of the
polyelectrolytes
Polyelectrolyte(Mw-Da) Concentration(g/mL) Osmotic pressure
or Osmolality
(bar or
mOsmol/kg)
Viscosity(cP) Waterflux(LMH) Reverse solute
flux(gMH)
Advantages Drawbacks ref
Carboxylate type PAA-Na(1800) 0.72 ~54 bar 127 ~19 ~1.2 Commercial available High viscosity 34
PAspNa(1313) 0.30 2150
mOsmol/kg
4.4 31.8 - Non-toxic; - 44
PESA(400~1500) 0.20 1250
mOsmol/kg
~2.2 15.4 3.19 Degradable - 48
PIAM-Na(5919) 0.375 ~2000
mOsmol/kg
~32 34 - Low leakage High viscosity 49
PMAS(559) ~0.28 143 bar ~10 30.6 ~0.9 High osmotic
pressure
High viscosity 50
P(IA-co-AA)
(533)
~0.267 ~57 bar ~30 27 0.68 Low leakage - 50
PAMAM-COONa(~2806) 0.333 3603
mOsmol/kg
9.16 29.7 7.5 Low leakage High reverse solute flux 51
Sulfonate type PSS(70 000) 0.24 - ~19 18.2 ~5.5 High water flux High reverse solute flux 52
PSSP(4700) 0.20 ~15 bar 12.62 14.50 0.14 Thermo-sensitive - 54
PBET(18 000) 0.20 898
mOsmol/kg
17.69 3.22 0.36 Thermo-sensitive Low water flux 58
PSS-co-MA-Na-1(20 000) 0.25 32.8±0.89 bar 5.89 15 0.04 Low leakage 59
PSS-co-AA
(96 308)
0.18 ~23 bar 5.4 11.77 0.1 Low leakage 60
Amine type PEI(800) 0.05 125.7
mOsmol/kg
0.62 ~1.2 0.01 Low leakage Low osmotic
presure at
high pH value
66
PEI(1200) 0.05 88.3 mOsmol/kg 0.75 ~0.75 0.05 66
PEI(25 000) 0.10 ~7 bar 1.93 24 0.7~1.0 67
TTHP-4Na
(666.21)
0.50 ~165 bar ~7 23.07 0.75 High osmotic
pressure
- 68
TPHMP-Na 0.05 ~105 bar ~17 54 0.83 High water flux High viscosity 71
ETAC-starch 0.3 11.91 bar 118.0 4.1 1.62 Low reverse
flux
Low water flux 72
Amide type PAM(3 000 000) 0.30 544
mOsmol/kg
244.7 ~5 1.5 Stable water flux High viscosity 73
4%PNIPAM-SA 0.40 ~2 bar - 0.347 - Thermo-sensitive Low water flux 83
PNSA-10(3530) 0.38 7.2 bar 59.8 2.95 - Thermo-sensitive High viscosity 85
PSSS-PNIPAM
(3500)
0.333 2137
mOsmol/kg
68 4.0 2 Thermo-sensitive High viscosity 86
[1]
Cath T, Childress A, Elimelech M . J.Membr. Sci., 2006,281:70.
[2]
Zhao S, Zou L, Tang C Y, Mulcahy D . J.Membr. Sci., 2012,396:1.
[3]
Mi B, Elimelech M . J.Membr. Sci., 2008,320:292.
[4]
Shaffer D L, Werber J R, Jaramillo H, Lin S, Elimelech M . Desalination, 2015,356:271.
[5]
Xu W, Ge Q . Rev. Chem. Eng., 2018,0:1.
[6]
Johnson D J, Suwaileh W A, Mohammed A W, Hilal N . Desalination, 2018,434:100.
[7]
唐媛媛(Tang Y Y), 徐佳(Xu J), 陈幸(Chen X), 高从堦(Gao C J) . 化学进展 (Progress in Chemistry), 2015,27(7):818.
[8]
Holloway R W, Childress A E, Dennett K E, Cath T Y . Water Res., 2007,41:4005.
[9]
Achilli A, Cath T Y, Childress A E . J.Membr. Sci., 2010,364:233.
[10]
Hau N T, Chen S S, Nguyen N C, Huang K Z, Ngo H H, Guo W . J.Membr. Sci., 2014,455:305.
[11]
Yen S K, Mehnas Haja N F, Su M, Wang K Y, Chung T S . J. Membr. Sci., 2010,364:242.
[12]
McCutcheon J R, McGinnis R L, Elimelech M . Desalination, 2005,174:1.
[13]
高婷婷(Gao T T), 解利昕(Xie L X), 徐世昌(Xue S C), 冯丽媛(Feng L Y), 杜亚威(Du Y W),周晓凯(Zhou X K) . 化工进展 (Chemical Industry and Engineering Progress), 2017,36(6):2051.
[14]
Li D, Zhang X, Yao J, Simon G P, Wang H . Chem. Commun.(Camb) 2011,47:1710.
[15]
Li D, Wang H . J. Mater. Chem. A., 2013,1:14049.
[16]
Ling M M, Wang K Y, Chung T S . Ind. Eng. Chem. Res., 2010,49:5869.
[17]
Ge Q, Su J, Chung T S, Amy G . Ind. Eng. Chem. Res., 2010,50:382.
[18]
Ling M M, Chung T S . Desalination, 2011,278:194.
[19]
Cai Y, Hu X M . Desalination, 2016,391:16.
[20]
Klaysom C, Cath T Y, Depuydt T, Vankelecom I F . Chem. Soc. Rev., 2013,42:6959.
[21]
Zhao S, Zou L . J.Membr. Sci., 2011,379:459.
[22]
Sweeney T E, Beuchat C A . Am. J. Physiol., 1993,264:469.
[23]
Kiyosawa K . Biophys. Chem., 2003,104:171.
[24]
Chahine N O, Chen F H, Hung C T, Ateshian G A . Biophys. J., 2005,89:1543.
[25]
Grattoni A, Canavese G, Montevecchi F M, Ferrari M . Anal. Chem., 2008,80:2617.
[26]
Ge Q, Ling M, Chung T S . J.Membr. Sci., 2013,442:225.
[27]
谢朋(Xie P), 张忠国(Zhang Z G), 孙涛(Sun T), 吴月(Wu Y), 吴秋燕(Wu Q Y), 李继定(Li J D), 李珊(Li S) . 化工进展 (Chemical Industry and Engineering Progress), 2015,34(10):3540.
[28]
Yang Q, Wang K Y, Chung T S . Sep. Purif. Technol., 2009,69:269.
[29]
Klaysom C, Cath T Y, Depuydt T, Vankelecom I F J . Chem. Soc. Rev., 2013,42:6959. https://www.ncbi.nlm.nih.gov/pubmed/23778699

doi: 10.1039/c3cs60051c     URL     pmid: 23778699
[30]
Yong J S, Phillip W A, Elimelech M . J. Membr. Sci., 2012,392/393:9.
[31]
Yangali-Quintanilla V, Li Z, Valladares R, Li Q, Amy G . Desalination, 2011,280:160.
[32]
Tan C H, Ng H Y . Desalin. Water. Treat., 2010,13:356.
[33]
Ling M M, Chung T S . Desalination, 2011,278:194.
[34]
Ge Q, Su J, Amy G L, Chung T S . Water Res., 2012,46:1318.
[35]
Wang K Y, Teoh M M, Nugroho A, Chung T S . Chem. Eng. Sci., 2011,66:2421.
[36]
McGinnis R L, McCutcheon J R, Elimelech M . J.Membr. Sci., 2007,305:13.
[37]
李轻轻(Li Q Q), 马伟芳(Ma W F), 聂超(Nie C), 严玉林(Yan Y L) . 环境工程 (Environmental Engineering), 2016,34(3):11.
[38]
李洁(Li J), 王军(Wang J), 白羽(Bai Y), 李国亮(Li G L), 侯得印(Hou D Y), 栾兆坤(Luan Z K) . 水处理技术 (Technology of Water Treatment), 2014,1(1):16.
[39]
Phuntsho S, Shon H K, Hong S, Lee S, Vigneswaran S . J.Membr. Sci., 2011,375:172.
[40]
Peng W, Escobar I C . Environ. Sci. Technol., 2003,37:4435.
[41]
Wang X L, Tsuru T, Nakao S I, Kimura S . J.Membr. Sci., 1997,135:19.
[42]
Verliefde A R D, Cornelissen E R, Heijman S G J, Hoek E M V, Amy G L, Bruggen B V D, Dijk J C V . Environ. Sci. Technol., 2009,43:2400.
[43]
Ge Q, Wang P, Wan C, Chung T S . Environ. Sci. Technol., 2012,46:6236.
[44]
Gwak G, Jung B, Han S, Hong S . Water Res., 2015,80:294.
[45]
Ramachandran S, Katha A R, Kolake S M, Jung B, Han S . J. Phys. Chem. B, 2013,117:13906.
[46]
Vlachy V . Pure Appl. Chem., 2008,80:1253.
[47]
He F, Sirkar K K, Gilron J . J.Membr. Sci., 2009,345:53.
[48]
Wang C, Gao B, Zhao P, Li R, Yue Q, Shon H K . RSC Advances, 2017,7:30687.
[49]
Kumar R, Al-Haddad S, Al-Rughaib M, Salman M . Desalination, 2016,394:148.
[50]
Long Q, Huang J, Xiong S, Shen L, Wang Y . Chem. Eng. Res. Des., 2018,138:77.
[51]
Zhao D, Chen S, Wang P, Zhao Q, Lu X . Ind. Eng. Chem. Res., 2014,53:16170.
[52]
Tian E L, Hu C, Qin Y, Ren Y, Wang X, Wang X, Xiao P, Yang X . Desalination, 2015,360:130.
[53]
Qi S, Li Y, Wang R, Tang C Y . J.Membr. Sci., 2016,498:67.
[54]
Kim J, Kang H, Choi Y-S, Yu Y A, Lee J C . Desalination, 2016,381:84.
[55]
Kohno Y, Ohno H . Phys. Chem. Chem. Phys., 2012,14:5063.
[56]
Lord R . Postgrad. Med. J., 1999,75:67.
[57]
Hancock N T, Cath T Y . Environ. Sci. Technol., 2009,43:6769.
[58]
Ju C, Kang H . RSC Advances, 2017,7:56426.
[59]
Huang J, Long Q, Xiong S, Shen L, Wang Y . Desalination, 2017,421:40.
[60]
Cui H, Zhang H, Jiang W, Yang F . Environ. Sci. Pollut. Res. Int., 2018,25:5752.
[61]
杨晶(Yang J), 李玉平(Li Y P), 李海波(Li H B), 曹宏斌(Cao H B), 张懿(Zhang Y) . 过程工程学报 (The Chinese Journal of Process Engineering), 2014,14(3):395.
[62]
Chen D P, Yu C, Chang C Y, Wan Y, Frechet J M, Goddard W A, 3rd, Diallo M S . Environ. Sci. Technol., 2012,46:10718.
[63]
Park S J, Cheedrala R K, Diallo M S, Kim C, Kim I S, Goddard W A . J.Nanopart. Res., 2012,884:1.
[64]
Rao Kotte M, Hwang T, Han J I, Diallo M S . J.Membr. Sci., 2015,474:277.
[65]
Hobson L J, Feast W J . Polymer, 1999,40:1279.
[66]
Jun B M, Nguyen T P N, Ahn S H, Kim I C, Kwon Y N . J. Appl. Polym. Sci., 2015,132:1. https://www.ncbi.nlm.nih.gov/pubmed/25866416

doi: 10.1002/app.41437     URL     pmid: 25866416
[67]
Cho M, Lee S H, Lee D, Chen D P, Kim I C, Diallo M S . J.Membr. Sci., 2016,511:278.
[68]
Long Q, Wang Y . AlChE J., 2016,62:1226.
[69]
Long Q, Wang Y . Energies, 2015,8:12917.
[70]
Long Q, Qi G, Wang Y . AlChE J., 2015,61:1309.
[71]
Long Q, Shen L, Chen R, Huang J, Xiong S, Wang Y . Environ. Sci. Technol., 2016,50:12022.
[72]
Laohaprapanon S, Fu Y J, Hu C C, You S J, Tsai H A, Hung W S, Lee K R, Lai J Y . Desalination, 2017,421:72.
[73]
Zhao P, Gao B, Xu S, Kong J, Ma D, Shon H K, Yue Q, Liu P . Chem. Eng. J., 2015,264:32.
[74]
Boo C, Lee S, Elimelech M, Meng Z, Hong S . J. Membr. Sci., 2012,390/391:277.
[75]
Chung T S, Li X, Ong R C, Ge Q, Wang H, Han G . Curr. Opin. Chem. Eng., 2012,1:246.
[76]
Zhao P, Gao B, Yue Q, Kong J, Shon H K, Liu P, Gao Y . Chem. Eng. J., 2015,273:316.
[77]
Sarp S, Lee S, Park K, Park M, Kim J H, Cho J . Desalin. Water. Treat., 2012,43:131.
[78]
Kim J, Chung J S, Kang H, Yu Y A, Choi W J, Kim H J, Lee J C . Macromol. Res., 2014,22:963.
[79]
Lessard D G, Ousalem M, Zhu X X . Can. J. Chem., 2001,79:1870.
[80]
Razmjou A, Simon G P, Wang H . Chem. Eng. J., 2013,215/216:913.
[81]
王泠沄(Wang L Y), 马兰(Ma L), 栗丽(Li L), 陈宗南(Chen Z N) . 环境科学与技术 (Environmental Science & Technology), 2016,39(1):143.
[82]
杨晶(Yang J), 于广民(Yu G M), 李玉平(Li Y P), 曹宏斌(Cao H B), 张懿(Zhang Y) . 现代化工 (Modern Chemical Industry), 2014,34(8):31.
[83]
Ou R, Wang Y, Wang H, Xu T . Desalination, 2013,318:48.
[84]
Xie R, Li Y, Chu L Y . J.Membr. Sci., 2007,289:76.
[85]
Wang Y, Yu H, Xie R, Zhao K, Ju X, Wang W, Liu Z, Chu L . Chin. J. Chem. Eng., 2016,24:86.
[86]
Zhao D, Wang P, Zhao Q, Chen N, Lu X . Desalination, 2014,348:26.
[1] 姚东梅, 张玮琦, 徐谦, 徐丽, 李华明, 苏华能. 磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极[J]. 化学进展, 2019, 31(2/3): 455-463.
[2] 徐佳, 唐媛媛, 高从堦. 正渗透膜支撑层结构优化的研究进展[J]. 化学进展, 2015, 27(8): 1025-1032.
[3] 唐媛媛, 徐佳, 陈幸, 高从堦. 正渗透脱盐过程的核心——正渗透膜[J]. 化学进展, 2015, 27(7): 818-830.
[4] 熊丽娜, 张雪勤, 孙莹, 杨洪. 全共轭嵌段共聚物的合成组装与应用[J]. 化学进展, 2015, 27(12): 1774-1783.
[5] 董航, 张林, 陈欢林, 高从堦. 混合基质水处理膜:材料、制备与性能[J]. 化学进展, 2014, 26(12): 2007-2018.
[6] 何晓燕*, 周文瑞, 徐晓君, 杨武*. 两性离子聚合物的合成及应用[J]. 化学进展, 2013, 25(06): 1023-1030.
[7] 殷明杰, 安全福, 钱锦文, 张阿平. 层层自组装聚电解质膜光纤传感器的制备和应用[J]. 化学进展, 2011, 23(12): 2568-2575.
[8] 汪凌云 曹德榕. 基于荧光共轭聚电解质的生物分子检测*[J]. 化学进展, 2010, 22(05): 905-915.
[9] 李刚 李雪梅 柳越 王铎 何涛 高从堦. 正渗透原理及浓差极化现象[J]. 化学进展, 2010, 22(05): 812-821.
[10] 计艳丽 安全福 钱锦文 陈欢林 高从堦. 聚电解质层层自组装纳滤膜*[J]. 化学进展, 2010, 22(01): 119-124.
[11] 黄艳琴,范曲立,黄维. 水溶性共轭聚电解质*[J]. 化学进展, 2008, 20(04): 574-585.
[12] 刘袖洞,于炜婷,王为,雄鹰,马小军,袁权. 海藻酸钠和壳聚糖聚电解质微胶囊及其生物医学应用*[J]. 化学进展, 2008, 20(01): 126-139.
[13] 尚婧,陈新,邵正中. 电场敏感的智能性水凝胶*[J]. 化学进展, 2007, 19(9): 1393-1399.
[14] 崔铮,相艳,张涛. 壳聚糖固体聚合物电池用膜*[J]. 化学进展, 2007, 19(04): 583-589.
[15] 田秉晖,潘纲,栾兆坤. 阳离子聚电解质强化絮凝去除有机污染物的化学成因*[J]. 化学进展, 2007, 19(0203): 205-211.
阅读次数
全文


摘要

聚电解质型正渗透汲取液