English
新闻公告
More
化学进展 2019, Vol. 31 Issue (6): 847-857 DOI: 10.7536/PC181027 前一篇   后一篇

• •

肿瘤外泌体的分析检测

乔斌, 陈虹妃, 张卉**(), 蔡称心   

  1. 江苏省新型动力电池重点实验室 南京师范大学化学与材料科学学院 南京 210023
  • 收稿日期:2018-10-23 出版日期:2019-06-15 发布日期:2019-04-26
  • 通讯作者: 张卉
  • 基金资助:
    国家自然科学基金项目(21375063); 江苏省自然科学基金面上项目(BK20181382)

Analysis and Detection of Tumor Exosomes

Bin Qiao, Hongfei Chen, Hui Zhang**(), Chenxin Cai   

  1. Jiangsu Key Laboratory of New Power Batteries, College of Chemical and Materials Science, Nanjing Normal University, Nanjing 210023, China
  • Received:2018-10-23 Online:2019-06-15 Published:2019-04-26
  • Contact: Hui Zhang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21375063); Natural Science Foundation of Jiangsu Province(BK20181382)

肿瘤外泌体是由肿瘤细胞释放到细胞外环境的微小囊泡,其直径约为30~150 nm,主要存在于血液、尿液、唾液等多种体液中,是早期肿瘤诊断的标志物之一。肿瘤外泌体具有较好的稳定性且含量丰富,因此是液体活检标志物的研究热点。肿瘤外泌体携带母细胞相关的蛋白、脂质和核酸等生物活性物质,为生物检测提供了多种特征标志物。本文就肿瘤外泌体的生成、分离、表征及分析检测进行了论述,重点讨论了肿瘤外泌体检测的研究进展。

Tumor exosomes are nanoscale membrane-enclosed vesicles with a diameter of 30~150 nm released from tumor cells into the extracellular environment. They are present in human blood, urine, saliva and many other body fluids and are one of the biomarkers for early tumor diagnosis. Tumor exosomes have the characteristics of good stability and abundance, which is a hot spot in liquid biopsy. Tumor exosomes carry a considerable amount of molecular information derived from the originating cell such as proteins, lipids and nucleic acids, providing a variety of characteristic biomarkers that can be used for cancer detection. In this paper, the formation, isolation, characterization and detection of tumor exosomes are discussed, and the research progress of the detection of tumor exosomes is discussed in detail.

()
图1 外泌体的结构[6]
Fig. 1 Structure of exosome[6]. Copyright 2018 American Chemical Society.
图2 外泌体的生成[6]
Fig. 2 Schematic illustration of exosome biogenesis[6]. Copyright 2018 American Chemical Society.
图3 各种电子显微镜的外泌体表征图。(a)扫描电子显微镜[47](b)透射电子显微镜[48](c)冷冻电子显微镜[50](d)原子力显微镜[51]
Fig. 3 Various micrographs of exosomes.(a) Scanning electron microscopy(SEM)[47]. Copyright 2012 Nature Publishing Group.(b) Transmission electron microscopy(TEM)[48]. Copyright 2018 American Chemical Society. (c) Cryo-electron microscopy(Cryo-EM)[50]. Copyright 2013 Taylor & Francis Ltd.(d) Atomic force microscopy(AFM)[51]. Copyright 2010 American Chemical Society.
图4 采用免疫亲和分离和基于胆固醇的信号放大相结合的方法对外泌体进行定量的原理图[78]
Fig. 4 Working principle of the proposed method for exosome quantifi cation by a combination of immunoaffinity separation and cholesterol-based signal amplification[78]. Copyright 2017 American Chemical Society.
图5 一种基于铜介导的信号放大的方法用于检测肿瘤细胞分泌的外泌体的工作原理图[83]
Fig. 5 Working principle of the proposed method for exosome detection based on a copper-mediated signal amplification strategy[83]. Copyright 2018 American Chemical Society.
图6 基于表面增强拉曼(SERS)检测肺癌细胞外泌体的原理图[86]。(a,b)肺癌细胞和正常细胞通过多囊泡内涵体与细胞质膜融合向细胞外环境释放外泌体。(c,d)肺癌细胞和正常细胞外泌体的拉曼光谱。(e)用面板c和d的方法获得了SERS光谱。红线代表着肺癌细胞外泌体的特定光谱峰。(f)外泌体的分类是通过SERS光谱的主成分分析(PCA)进行的
Fig. 6 Schematic diagram of lung cancer diagnosis by SERS classification of exosome[86].(a, b) Lung cancer cell and normal cell release exosomes to the extracellular environment having their own profiles by fusing multivesicular endosomes to plasma membrane, respectively.(c, d) Raman spectra of lung cancer cell and normal cell derived exosomes were achieved by SERS respectively.(e) SERS spectra achieved by methods of panels c and d are shown. Red lines indicate specific peaks of lung cancer derived exosomes.(f) Exosome classification is done by PCA of SERS spectra. Copyright 2017 American Chemical Society.
图7 外泌体的检测图[48]。(A) 适配体识别结合外泌体,释放mDNAs。(B)检测释放的mDNAs;(a)P1修饰金电极,并用MCH封闭;(b)捕捉mDNAs;(c)核酸外切酶Ⅲ作用;(d)DPV电化学检测
Fig. 7 Detection of tumor exosomes[48].(A) Aptamers recognize and combine with exosomes and release mDNAs.(B) Detection of the released mDNAs:(a) P1-modified gold electrode blocked with MCH,(b) capture of mDNAs,(c) treated with Exo Ⅲ exonuclease,(d) DPV measurement in the electrochemical buffer. Copyright 2018 American Chemical Society.
[1]
Tadimety A, Syed A, Nie Y, Long C R, Kready K M, Zhang J X J . Integr. Biol.(Camb.), 2017,9:22. https://www.ncbi.nlm.nih.gov/pubmed/27929582

doi: 10.1039/c6ib00202a     URL     pmid: 27929582
[2]
Bardelli A, Pantel K . Cancer Cell. 2017,31:172 https://www.ncbi.nlm.nih.gov/pubmed/28196593

doi: 10.1016/j.ccell.2017.01.002     URL     pmid: 28196593
[3]
Venesio T, Siravegna G, Bardelli A, Sapino A . Pathobiology, 2017.
[4]
Jina K, Erica C, David I . Analyst, 2016,141:450. https://www.ncbi.nlm.nih.gov/pubmed/26378496

doi: 10.1039/c5an01610j     URL     pmid: 26378496
[5]
Théry C, Amigorena S, Raposo G, Clayton A . Curr. Protoc. Cell Biol., 2006,3:22. https://www.ncbi.nlm.nih.gov/pubmed/12188931

doi: 10.1186/1471-2121-3-22     URL     pmid: 12188931
[6]
Das C K, Jena B C, Banerjee I, Das S, Parekh A, Bhutia S K, Mandal M . Mol. Pharmaceutics, 2019,16:24.
[7]
Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, Valle M, Elortza F, Lu S C, Mato J M, Falcon-Perez J M .J. Proteome Res., 2008,7:5157.
[8]
Vlassov A V, Magdaleno S, Setterquist R, Conrad R . Biochim.Biophys. Acta, 2012,1820:940.
[9]
Kowal J, Tkach M, Théry C . Curr. Opin. Cell Biol., 2014,29:116.
[10]
Stoorvogel W, Kleijmeer M J, Geuze H J, Raposo G . Traffc., 2002,3:321.
[11]
Ostrowski M, Carmo N B, Krumeich S, Fanget I, Raposo G, Savina A, Moita C F, Schauer K, Hume A N, Freitas R P, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra M C, Darchen F, Amigorena S, Moita L F, Thery C . Nat. Cell Biol., 2010,12:19.
[12]
Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita L F C, Thery G, Raposo J . Cell Sci., 2013,126:5553. https://www.ncbi.nlm.nih.gov/pubmed/24105262

doi: 10.1242/jcs.128868     URL     pmid: 24105262
[13]
Théry C, Zitvogel L, Amigorena S . Nat. Rev. Immunol. 2002,2:569. https://www.ncbi.nlm.nih.gov/pubmed/12154376

doi: 10.1038/nri855     URL     pmid: 12154376
[14]
Huotari J, Helenius A . EMBO J., 2011,30:3481. https://www.ncbi.nlm.nih.gov/pubmed/21878991

doi: 10.1038/emboj.2011.286     URL     pmid: 21878991
[15]
Hurley J H, Hanson P I . Nature Reviews Molecular Cell biology, 2010,11:556. https://www.ncbi.nlm.nih.gov/pubmed/20588296

doi: 10.1038/nrm2937     URL     pmid: 20588296
[16]
Luzio J P, Gray S R, Bright N A . Biochemical Society Transactions, 2010,38:1413. https://www.ncbi.nlm.nih.gov/pubmed/21118098

doi: 10.1042/BST0381413     URL     pmid: 21118098
[17]
Stoorvogel W, Strous G J, Geuze H J, Oorschot V, Schwartzt A L . Cell, 1991,65:417. https://www.ncbi.nlm.nih.gov/pubmed/1850321

doi: 10.1016/0092-8674(91)90459-c     URL     pmid: 1850321
[18]
Hood J L, Wickline S A . Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2012,4:458. https://www.ncbi.nlm.nih.gov/pubmed/22648975

doi: 10.1002/wnan.1174     URL     pmid: 22648975
[19]
Schorey J S, Bhatnagar S . Traffic., 2008,9:871. https://www.ncbi.nlm.nih.gov/pubmed/18331451

doi: 10.1111/j.1600-0854.2008.00734.x     URL     pmid: 18331451
[20]
Mathivanan S, Ji H, Simpson R J . J. Proteomics., 2010,73:1907. https://www.ncbi.nlm.nih.gov/pubmed/20601276

doi: 10.1016/j.jprot.2010.06.006     URL     pmid: 20601276
[21]
Duijvesz D, Versluis C Y, van der Fels C A, Vredenbregt-van den Berg M S, Leivo J, Peltola M T, Bangma C H, Pettersson K S, Jenster G . Int. J. Cancer, 2015,137:2869.
[22]
Raposo G, Nijman H W, Stoorvogel W, Liejendekker R, Harding C V, Melief C J, Geuze H J . Exp J. Med., 1996,183:1161. https://www.ncbi.nlm.nih.gov/pubmed/8642258

doi: 10.1084/jem.183.3.1161     URL     pmid: 8642258
[23]
Kogure T, Lin W L, Yan I K, Braconi C, Patel T . Hepatology, 2011,54:1237. https://www.ncbi.nlm.nih.gov/pubmed/21721029

doi: 10.1002/hep.24504     URL     pmid: 21721029
[24]
Witwer K W, Buzás E I, Bemis L T, Bora A, Lässer C, LötvallE J, Nolte’t Hoen N, Piper M G, Sivaraman S, Skog J, Théry C, Wauben M H, Hochberg F .J. Extracell Vesicles, 2013,2:20360.
[25]
Lässer C, Eldh M, Lötvall J . J. Visualized Exp., 2012,59:e3037. https://www.ncbi.nlm.nih.gov/pubmed/22257828

doi: 10.3791/3037     URL     pmid: 22257828
[26]
Li P, Yu X Y, Han W J, Kong Y, Bao W Y, Zhang J Q, Zhang W C, Gu Y Q . ACS Sensors, 2019.
[27]
Tauro B J, Greening D W, Mathias R A, Ji H, Mathivanana S, Scottc A M, Simpsona R J . Methods, 2012,56:293. https://www.ncbi.nlm.nih.gov/pubmed/22285593

doi: 10.1016/j.ymeth.2012.01.002     URL     pmid: 22285593
[28]
Taylor D D, Zacharias W, Gerceltaylor C . Methods Mol. Biol., 2011,728:235.
[29]
Daaboul G G, Gagni P, Benussi L, Bettotti P, Ciani M, Cretich M, Freedman D S, Ghidoni R, Ozkumur A Y, Piotto C, Prosperi D, Santini B, Ünlü M S, Chiari M . Sci Rep., 2016,6:37246. https://www.ncbi.nlm.nih.gov/pubmed/27853258

doi: 10.1038/srep37246     URL     pmid: 27853258
[30]
Dioufa N, Clark A M, Ma B, Beckwitt CH, Wells A . Molecular Cancer, 2017,16:172. https://www.ncbi.nlm.nih.gov/pubmed/29137633

doi: 10.1186/s12943-017-0740-6     URL     pmid: 29137633
[31]
Saeed-Zidane M, Linden L, Salilew-Wondim D, Held E, Neuhoff C, Tholen E, Hoelker M, Schellander K, Tesfaye D . PLoS One, 2017,12:e0187569. https://www.ncbi.nlm.nih.gov/pubmed/29117219

doi: 10.1371/journal.pone.0187569     URL     pmid: 29117219
[32]
Hong X, Schouest B, Xu H . Sci Rep., 2017,7.
[33]
Zarovni N, Corrado A, Guazzi P, Zocco D, Lari E, Radano G, Muhhina J, Fondeui C, Gavrilova J, Chiesi A . Methods, 2015,87:46. https://www.ncbi.nlm.nih.gov/pubmed/26044649

doi: 10.1016/j.ymeth.2015.05.028     URL     pmid: 26044649
[34]
Poliakov A, Spilman M, Dokland T, Amling C L, Mobley J A . Prostate., 2009,69:159. https://www.ncbi.nlm.nih.gov/pubmed/18819103

doi: 10.1002/pros.20860     URL     pmid: 18819103
[35]
Cheruvanky A, Zhou H, Pisitkun T, Kopp J B, Knepper M A, Yuen P S T, Star R A . Am. J. Physiol. Renal Physiol., 2007,292:F1657. https://www.physiology.org/doi/10.1152/ajprenal.00434.2006

doi: 10.1152/ajprenal.00434.2006     URL    
[36]
Grant R, Ansa-Addo E, Stratton D, Antwi-Baffour S, Jorf S, Kholia S, Krige L, Lange S, Inal J, Immunol J . Methods, 2011,371:143.
[37]
Batrakova E V, Kim M S . J. Controlled Release., 2015,219:396. https://www.ncbi.nlm.nih.gov/pubmed/26241750

doi: 10.1016/j.jconrel.2015.07.030     URL     pmid: 26241750
[38]
[2018-12-01]. www.BiooScientific.com. www.BiooScientific.com
[39]
Wang K, Zhang S, Weber J, Baxter D, Galas D J . Nucleic Acids Res., 2010,38:7248. https://www.ncbi.nlm.nih.gov/pubmed/20615901

doi: 10.1093/nar/gkq601     URL     pmid: 20615901
[40]
Van der Pol E, Boing A N, Gool E L, Nieuwland R, Thromb J . Haemostasis., 2015,14:48.
[41]
Alvarez M L, Khosroheidari M, Kanchi Ravi R, DiStefano J K . Kidney Int., 2012,82:1024. https://www.ncbi.nlm.nih.gov/pubmed/22785172

doi: 10.1038/ki.2012.256     URL     pmid: 22785172
[42]
[2018-12-01]. www.SystemBio.com. www.SystemBio.com
[43]
Chen C, Skog J, Hsu C H, Lessard R T, Balaj L, Wurdinger T, Carter B S, Breakefield X O, Toner M, Irimia D . Lab Chip., 2010,10:505. https://www.ncbi.nlm.nih.gov/pubmed/20126692

doi: 10.1039/b916199f     URL     pmid: 20126692
[44]
Mathivanan S, Lim J W E, Tauro B J, Moritz R L, Simpson R J . Mol. Cell. Proteomics., 2010,9:197. https://www.ncbi.nlm.nih.gov/pubmed/19837982

doi: 10.1074/mcp.M900152-MCP200     URL     pmid: 19837982
[45]
Franquesa M, Hoogduijn M J, Ripoll E, Luk F, Salih M, Betjes M G H, Torras J, Baan C C, Grinyó J M, Merino A M . Front. Immunol., 2014,5:525. https://www.ncbi.nlm.nih.gov/pubmed/25374572

doi: 10.3389/fimmu.2014.00525     URL     pmid: 25374572
[46]
Zarovni N, Corrado A, Guazzi P, Zoccoa D, Laria E, Radanoa G, Muhhinab J, Fondellia C, Gavrilovab J, Chiesia A . Methods, 2015,87:46. https://www.ncbi.nlm.nih.gov/pubmed/26044649

doi: 10.1016/j.ymeth.2015.05.028     URL     pmid: 26044649
[47]
Shao H, Chung J, Balaj L, Charest A, Bigner D D, Carter B S, Hochberg F H, Breakefield X O, Weissleder R, Lee H . Nat. Med., 2012,18:1835. https://www.ncbi.nlm.nih.gov/pubmed/23142818

doi: 10.1038/nm.2994     URL     pmid: 23142818
[48]
Dong H L, Chen H F, Jiang J J, Zhang H, Cai C C, Shen Q M . Anal. Chem., 2018,90:4507. https://www.ncbi.nlm.nih.gov/pubmed/29512380

doi: 10.1021/acs.analchem.7b04863     URL     pmid: 29512380
[49]
Tatischeff I, Larquet E, Falcón-Pérez J M, Turpin P Y, Kruglik S G . J. Extracell. Vesicles., 2012,1:19179. https://www.tandfonline.com/doi/full/10.3402/jev.v1i0.19179

doi: 10.3402/jev.v1i0.19179     URL    
[50]
Yuana Y, Koning R I, Kuil M E, Rensen P C, Koster A J, Bertina R M, Osanto S . J. Extracell. Vesicles., 2013,2:21494.
[51]
Sharma S, Rasool H I, Palanisamy V, Mathisen C, Schmidt M, Wong D T, Gimzewski J K . ACS Nano, 2010,4:1921. https://www.ncbi.nlm.nih.gov/pubmed/20218655

doi: 10.1021/nn901824n     URL     pmid: 20218655
[52]
Yuana Y, Oosterkamp T H, Bahatyrova S, Ashcroft B, Garcia Rodriguez P, Bertina R M, Osanto S . J. Thromb. Haemostasis., 2010,8:315. https://www.ncbi.nlm.nih.gov/pubmed/19840362

doi: 10.1111/j.1538-7836.2009.03654.x     URL     pmid: 19840362
[53]
Lawrie A S, Albanyan A, Cardigan R A, Mackie I J, Harrison P . Vox Sang., 2009,96:206. https://www.ncbi.nlm.nih.gov/pubmed/19175566

doi: 10.1111/j.1423-0410.2008.01151.x     URL     pmid: 19175566
[54]
Casals E, Pfaller T, Duschl A, Mackie I J, Harrison P . ACS Nano, 2010,4:3623. https://www.ncbi.nlm.nih.gov/pubmed/20553005

doi: 10.1021/nn901372t     URL     pmid: 20553005
[55]
Pyrgiotakis G, Blattmann C, Demokritou P . ACS Sustain. Chem. Eng., 2014,2:1681. https://www.ncbi.nlm.nih.gov/pubmed/25068097

doi: 10.1021/sc500152g     URL     pmid: 25068097
[56]
Nel A E, Mädler L, Velegol D, Xia T, Hoek E M V, Somasundaran P, Klaessig F, Castranova V, Thompson M . Nat. Mater., 2009,8:543. https://www.ncbi.nlm.nih.gov/pubmed/19525947

doi: 10.1038/nmat2442     URL     pmid: 19525947
[57]
Pino P, Pelaz B, Zhang Q, Maffre P, Nienhaus G U, Parak W J . Mater. Horiz., 2014,1:301.
[58]
Maulucci G, De S M, Arcovito G, Boffi F, Castellano A C, Briganti G . Biophys. J., 2005,88:3545. https://www.ncbi.nlm.nih.gov/pubmed/15695632

doi: 10.1529/biophysj.104.048876     URL     pmid: 15695632
[59]
Parasassi T, De S M, Mei G, Brunelli R, Greco G, Lenzi L, Maulucci G, Nicolai E, Papi M, Arcovito G, Nicolai E, Papi M, Arcovito G, Tosatto S C E, Ursini F . FASEB J., 2008,22:2350. https://www.ncbi.nlm.nih.gov/pubmed/18292214

doi: 10.1096/fj.07-097774     URL     pmid: 18292214
[60]
Andreasi B F, Arcovito G, De S M, Mordente A, Martorana G E . Biophys J., 1995,69:2720. https://www.ncbi.nlm.nih.gov/pubmed/8599678

doi: 10.1016/S0006-3495(95)80143-8     URL     pmid: 8599678
[61]
Zhou C, Krueger A B, Barnard J G, Qi W, Carpenter J F . J. Pharm. Sci., 2015,104:2441. https://www.ncbi.nlm.nih.gov/pubmed/26017684

doi: 10.1002/jps.24510     URL     pmid: 26017684
[62]
Bootz A, Vogel V, Schubert D, Kreuter J . Eur. J. Pharm. Biopharm., 2004,57:369. https://www.ncbi.nlm.nih.gov/pubmed/15018998

doi: 10.1016/S0939-6411(03)00193-0     URL     pmid: 15018998
[63]
Urban C, Schurtenberger P . J. Colloid Interface Sci., 1998,207:150. https://www.ncbi.nlm.nih.gov/pubmed/9778402

doi: 10.1006/jcis.1998.5769     URL     pmid: 9778402
[64]
Dragovic R A, Gardiner C, Brooks A S, Tannetta D S, Ferguson D J P, Hole P, Carr B, Redman C W G, Harris A L, Dobson P J, Harrison P, Sargent I L . Nanomedicine., 2011,7:780. https://www.ncbi.nlm.nih.gov/pubmed/21601655

doi: 10.1016/j.nano.2011.04.003     URL     pmid: 21601655
[65]
Wang C S, Friedlander S K J . Colloid Interface Sci., 1966,24:170.
[66]
Filipe V . Pharm. Res., 2010,27:796. https://www.ncbi.nlm.nih.gov/pubmed/20204471

doi: 10.1007/s11095-010-0073-2     URL     pmid: 20204471
[67]
Riley C M, Rosanske T W, Riley S R R . Elsevier Pub. Co., 2014.
[68]
Raheman F, Deshmukh S, Ingle A, Gade A K, Rai M . Nano Biomed. Eng., 2011,3:174.
[69]
Boyd R D, Pichaimuthu S K, Cuenat A . Colloids Surf. A., 2011,387:35.
[70]
O'Donnell C P, Fagan C, Cullen P J . Process Analytical Technology for the Food Industry. New York: Springer, 2014.
[71]
Pol E, Coumans F A W, Grootemaat A E, Gardiner C, Sargent I L, Harrison P, Sturk A, van Leeuwen T G, Nieuwland R J . Thromb. Haemost., 2014,12:1182. https://www.ncbi.nlm.nih.gov/pubmed/24818656

doi: 10.1111/jth.12602     URL     pmid: 24818656
[72]
Lobb R J, Becker M, Shu W W, Wong C S F, Wiegmans A P, Leimgruber A, Möller A .J. Extracell Vesicles, 2015,4:27031.
[73]
Mueller S K, Nocera A L, Bleier B S . Nanomedicine: Nanotechnology, Biology and Medicine, 2018,14:269.
[74]
Lässer C, Eldh M, Lötvall J . Journal of Visualized Experiments: JoVE., 2012.
[75]
Petersen K E, Manangon E, Hood J L, Wickline S A, Fernandez D P, Johnson W P, Gale B K . Anal. Bioanal. Chem., 2014,406:7855. https://www.ncbi.nlm.nih.gov/pubmed/25084738

doi: 10.1007/s00216-014-8040-0     URL     pmid: 25084738
[76]
Jiang Y, Shi M, Liu Y, Wan S, Cui C, Zhang L, Tan W . Angew. Chem., 2017,56:11916. https://www.ncbi.nlm.nih.gov/pubmed/28834063

doi: 10.1002/anie.201703807     URL     pmid: 28834063
[77]
Xia Y, Liu M, Wang L, Yan A, He W H, Chen M, Lan J, Xu J, Guan L H, Chen J H . Biosens. Bioelectron., 2017,92:8. https://www.ncbi.nlm.nih.gov/pubmed/28167415

doi: 10.1016/j.bios.2017.01.063     URL     pmid: 28167415
[78]
He F, Liu H, Guo X, Yin B C, Ye B C . Anal. Chem., 2017,89:12968. https://www.ncbi.nlm.nih.gov/pubmed/29139297

doi: 10.1021/acs.analchem.7b03919     URL     pmid: 29139297
[79]
Zhang P, He M, Zeng Y . Lab Chip., 2016,16:3033. https://www.ncbi.nlm.nih.gov/pubmed/27045543

doi: 10.1039/c6lc00279j     URL     pmid: 27045543
[80]
Ko J, Hemphill M A, Gabrieli D, Wu L, Yelleswarapu V, Lawrence G, Pennycooke W, Singh A, Meaney D F, Issadore D . Sci Rep., 2016,6:31215 https://www.ncbi.nlm.nih.gov/pubmed/27498963

doi: 10.1038/srep31215     URL     pmid: 27498963
[81]
Kanwar S S, Dunlay C J, Simeone D M, Nagrath S . Lab Chip., 2014,14:1891. https://www.ncbi.nlm.nih.gov/pubmed/24722878

doi: 10.1039/c4lc00136b     URL     pmid: 24722878
[82]
He M, Crow J, Roth M, Zeng Y, Godwin A K . Lab Chip., 2014,14:3773. https://www.ncbi.nlm.nih.gov/pubmed/25099143

doi: 10.1039/c4lc00662c     URL     pmid: 25099143
[83]
He F, Wang J, Yin B C, Ye B C . Anal. Chem., 2018,90:8072. https://www.ncbi.nlm.nih.gov/pubmed/29890831

doi: 10.1021/acs.analchem.8b01187     URL     pmid: 29890831
[84]
Xu X, Li H, Hasan D, Ruoff R S, Wang A X, Fan D. L . Adv. Funct. Mater., 2013,23:4332.
[85]
Zong S, Wang L, Chen C, Lu J, Zhu D, Zhang Y Z, Wang Z Y, Cui Y P . Anal. Methods, 2016,8:5001.
[86]
Park J, Hwang M, Choi B H, Jeong H, Jung J H, Kim H K, Hong S, Park J H, Choi Y . Anal. Chem., 2017,89:6695. https://www.ncbi.nlm.nih.gov/pubmed/28541032

doi: 10.1021/acs.analchem.7b00911     URL     pmid: 28541032
[87]
Wang Z L, Zong S F, Wang Y J, Li N, L L, Lu J, Wang Z Y, Chen B A, Cui Y P . Nanoscale., 2018,10:9053. https://www.ncbi.nlm.nih.gov/pubmed/29718044

doi: 10.1039/c7nr09162a     URL     pmid: 29718044
[88]
Li T D, Zhang R, Chen H, Huang Z P, Ye X, Wang H, Deng A M, Kong J L . Chem. Sci., 2018,9:5372. https://www.ncbi.nlm.nih.gov/pubmed/30009009

doi: 10.1039/c8sc01611a     URL     pmid: 30009009
[89]
Rupert D L M, Lässer C, Edh M, Block S, Zhdanov V P, Lotvall J O, Bally M, Höök F . Anal. Chem., 2014,86:5929. https://www.ncbi.nlm.nih.gov/pubmed/24848946

doi: 10.1021/ac500931f     URL     pmid: 24848946
[90]
Zhu L, Wang K, Cui J, Liu H, Bu X, Ma H, Wang W, Gong H, Lausted C, Hood L, Yang G, Hu Z . Anal. Chem., 2014,86:8857. https://www.ncbi.nlm.nih.gov/pubmed/25090139

doi: 10.1021/ac5023056     URL     pmid: 25090139
[91]
Thakur A, Qiu G, Ng S P, Guan J, Yue J, Lee Y, Wu C L . Biosens. Bioelectron., 2017,94:400. https://www.ncbi.nlm.nih.gov/pubmed/28324860

doi: 10.1016/j.bios.2017.03.036     URL     pmid: 28324860
[92]
Im H, Shao H, Park Y I, Peterson V M, Castro C M, Weissleder R, Lee H . Nat. Biotechol., 2014,32:490.
[93]
Brolo A G . Nature Photonics, 2012,6:709.
[94]
Gordon R, Sinton D, Kavanagh K L, Brolo A G . Acc. Chem. Res., 2008,41:1049. https://www.ncbi.nlm.nih.gov/pubmed/18605739

doi: 10.1021/ar800074d     URL     pmid: 18605739
[95]
Im H, Wittenberg N J, Lesuffleur A, Lindquist N C, Oh S H . Chem. Sci., 2010,1:688. https://www.ncbi.nlm.nih.gov/pubmed/21218136

doi: 10.1039/C0SC00365D     URL     pmid: 21218136
[96]
Escobedo C . Lab Chip., 2013,13:2445. https://www.ncbi.nlm.nih.gov/pubmed/23584239

doi: 10.1039/c3lc50107h     URL     pmid: 23584239
[97]
Homola J . Chem. Rev., 2008,108:462. https://www.ncbi.nlm.nih.gov/pubmed/18229953

doi: 10.1021/cr068107d     URL     pmid: 18229953
[98]
Lee H J, Nedelkov D, Corn R M . Anal. Chem., 2006,78:6504. https://www.ncbi.nlm.nih.gov/pubmed/16970327

doi: 10.1021/ac060881d     URL     pmid: 16970327
[99]
Sina A A, Vaidyanathan R, Dey S, Carrascosa L G, Shiddiky M J, Trau M . Sci Rep., 2016,6:30460. https://www.ncbi.nlm.nih.gov/pubmed/27464736

doi: 10.1038/srep30460     URL     pmid: 27464736
[100]
Yadav S, Boriachek K, Islam N, Lobb R, Möller A, Hill M M, Hossain S, Nguyen N T, Shiddiky M J A . ChemElectroChem, 2016,3:1.
[101]
Kilic T, Valinhas A T D S, Wall I, Renaud P, Carrara S . Sci Rep., 2018,8:9402. https://www.ncbi.nlm.nih.gov/pubmed/29925885

doi: 10.1038/s41598-018-27203-9     URL     pmid: 29925885
[102]
Jeong S, Park J, Pathania D, Castro C M, Weissleder R, Lee H . ACS Nano, 2016,10:1802. https://www.ncbi.nlm.nih.gov/pubmed/26808216

doi: 10.1021/acsnano.5b07584     URL     pmid: 26808216
[103]
Boriachek K, Islam M N, Gopalan V, Lam A K, Nguyen N T, Shiddiky M J A . Analyst, 2017,142:2211. https://www.ncbi.nlm.nih.gov/pubmed/28534915

doi: 10.1039/c7an00672a     URL     pmid: 28534915
[104]
Wang S, Zhang L, Wan S, Cansiz S, Cui C, Liu Y, Cai R, Hong C, Teng I T, Shi M, Wu Y, Dong Y, Tan W . ACS Nano, 2017,11:3943. https://www.ncbi.nlm.nih.gov/pubmed/28287705

doi: 10.1021/acsnano.7b00373     URL     pmid: 28287705
[105]
Zhou Y G, Mohamadi R M, Poudineh M, Kermanshah L, Ahmed S, Safaei T S, Stojcic J, Nam R K, Sargent E H, Kelley S O . Small, 2016,12:727. https://www.ncbi.nlm.nih.gov/pubmed/26707703

doi: 10.1002/smll.201502365     URL     pmid: 26707703
[106]
Zhou Q, Rahimian A, Son K, Shinab D S, Patelc T, Revzina A . Methods, 2016,97:88. https://www.ncbi.nlm.nih.gov/pubmed/26500145

doi: 10.1016/j.ymeth.2015.10.012     URL     pmid: 26500145
[1] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[2] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[3] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[4] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[5] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[6] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[7] 朱泉霏, 郝俊迪, 严靖雯, 王雨, 冯钰锜. FAHFAs:生物功能、分析及合成[J]. 化学进展, 2021, 33(7): 1115-1125.
[8] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[9] 王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍. 多孔液体在气体捕集与分离领域的应用[J]. 化学进展, 2021, 33(10): 1874-1886.
[10] 李波, 马利建, 罗宁, 李首建, 陈云明, 张劲松. 固相萃取分离铀[J]. 化学进展, 2020, 32(9): 1316-1333.
[11] 黄炎, 刘国东, 张学记. 新型冠状病毒(COVID-19)的检测和诊断[J]. 化学进展, 2020, 32(9): 1241-1251.
[12] 高凤凤, 杨言言, 杜晓, 郝晓刚, 官国清, 汤兵. 电控离子(交换)膜分离技术——从ESIX到ESIPM[J]. 化学进展, 2020, 32(9): 1344-1351.
[13] 徐国华, 成凯, 王晨, 李从刚. 生物凝聚态物质的多层次结构表征[J]. 化学进展, 2020, 32(8): 1231-1239.
[14] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[15] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
阅读次数
全文


摘要

肿瘤外泌体的分析检测