English
新闻公告
More
化学进展 2019, Vol. 31 Issue (5): 681-689 DOI: 10.7536/PC180930 前一篇   后一篇

• •

含胍基抗菌聚合物的合成及应用

张浩1,2, 刘静1,2, 崔崑1, 姜涛2*,**(), 马志1,**()   

  1. 1. 中国科学院上海有机化学研究所 分子合成卓越中心 中国科学院有机功能分子合成与组装化学重点实验室 上海 200032
    2. 天津科技大学化工与材料学院 天津 300457
  • 收稿日期:2018-09-28 出版日期:2019-05-15 发布日期:2019-03-21
  • 通讯作者: 姜涛, 马志
  • 基金资助:
    国家自然科学基金项目(21374130); 国家自然科学基金项目(21074146); 中国科学院有机功能分子合成与组装化学重点实验室开放课题项目(K2018-5)

Synthesis and Application of Guanidine-Based Antibacterial Polymers

Hao Zhang1,2, Jing Liu1,2, Kun Cui1, Tao Jiang2*,**(), Zhi Ma1,**()   

  1. 1. Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
    2. College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
  • Received:2018-09-28 Online:2019-05-15 Published:2019-03-21
  • Contact: Tao Jiang, Zhi Ma
  • About author:
    ** E-mail: (Zhi Ma);
  • Supported by:
    National Natural Science Foundation of China(21374130); National Natural Science Foundation of China(21074146); Opening Project of Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Chinese Academy of Sciences(K2018-5)

开发能与细菌非特异性结合的新型抗菌剂是解决细菌感染难题的方法之一。本文首先介绍了一种具有持久广谱高效抗菌性、无真核细胞毒性和细菌很难产生耐药性的含胍基抗菌聚合物;接着详细介绍了含胍基抗菌聚合物与细菌非特异性静电结合的抗菌机理;然后重点评述了主链含胍基抗菌聚合物、侧链含胍基抗菌聚合物以及表面接枝含胍基抗菌聚合物的设计理念、合成方法和抗菌性能;最后对新型含胍基抗菌聚合物的可控合成策略及应用前景进行了展望。

Exploition of novel antibacterial agents that contact non-specifically with bacteria is one of the solutions to the problem of bacterial infection. Firstly, guanidine-based antibacterial polymers having prolonged, broad-spectrum, high-efficiency antibacterial properties, without eukaryotic cytotoxicity, and making it difficult for bacteria to develop resistance are introduced briefly. Then, the antibacterial mechanism of non-specific electrostatic attraction with bacteria is reviewed. In addition, the design, synthesis, and antimicrobial property of the main-chained guanidine-based antibacterial polymers, side-chained guanidine-based antibacterial polymers, and surface-grafted guanidine-based antibacterial polymers are described in detail. Finally, the future development of controllable synthetic strategy and practical application of the novel guanidine-based antibacterial polymers are prospected.

()
图1 精氨酸和赖氨酸的分子式
Fig. 1 Molecular formulas of arginine and lysine
图2 胍基聚合物和细菌细胞膜结合的示意图[30]
Fig. 2 Schematic diagram of the combination of guanidine-based polymer and bacterial cytomembrane[30]
图3 PHMG和PHMB的合成[37, 38]
Fig. 3 Synthesis of PHMG and PHMB[37, 38]
图4 PHMG的七种分子结构[39, 40]
Fig. 4 Seven types of molecular structures in the PHMG[39, 40]
图5 PHMG-PAAm水凝胶的合成[47]
Fig. 5 Synthesis of PHMG-PAAm hydrogel[47]
图6 两亲性抗菌嵌段共聚物PHMG-PPGDE的合成[48]
Fig. 6 Synthesis of the amphiphilic and antibacterial block copolymer PHMG-PPGDE[48]
图7 微波辐射下胍基化壳聚糖的合成过程[49]
Fig. 7 Synthetic process of guanidinylated chitosan under microwave irradiation[49]
图8 GPHMG的合成[8]
Fig. 8 Synthesis of GPHMG[8]
图9 胍基功能化降冰片烯单体及其均聚物的合成[50]
Fig. 9 Synthesis of guanidine-functionalized norbornene monomer and its homopolymer[50]
图10 3-胍基丙基甲基丙烯酰胺(GPMA)的合成及其水相RAFT聚合制备均聚物PGPMA(a)、嵌段共聚物PGPMA-b-PHPMA(b)和无规共聚物P(GPMA-co-APMA)(c)[24, 51]
Fig. 10 Synthesis of 3-guanidinopropyl methacrylamide(GPMA) and subsequent RAFT polymerization in water to prepare PGPMA homopolymers(a) and PGPMA-b-PHPMA block copolymers(b) and P(GPMA-co-APMA) copolymers(c)[24, 51]
图11 MAGH, PMAGH和PMAGH-b-PS-b-PMAGH的合成[52]
Fig. 11 Synthesis of MAGH, PMAGH and PMAGH-b-PS-b-PMAGH[52]
图12 四甲基胍功能化的聚氨酯的两种合成策略[53]
Fig. 12 Two synthetic strategies for tetramethylhydrazine functionalized polyurethanes[53]
图13 AGG均聚物、共聚物及其衍生物的合成[54, 56]
Fig. 13 Synthesis of AGG homopolymers, copolymers and their derivatives[54, 56]
图14 通过侧链胺基转化合成侧链含胍基聚合物[18, 19]
Fig. 14 Synthesis of guanidine-based polymers via the transformation of amino groups on the side chain[18, 19]
图15 PHMG接枝的PSGMA微球的制备[58]
Fig. 15 Preparation of PHMG-grafted PSGMA microspheres[58]
图16 聚丙烯伤口敷料的表面修饰过程[59]
Fig. 16 Surface modification procedure of polypropylene wound dressing[59]
图17 PHMG接枝PVC的合成[60]
Fig. 17 Synthesis of the PHMG-grafted PVC[60]
图18 胍和偕胺肟协同功能化的聚丙烯无纺布的制备[61]
Fig. 18 Preparation of guanidine and amidoxime cofunctionalized polypropylene nonwoven fabric[61]
[1]
Fernandes P . Nat. Biotechnol., 2006,24:1497. https://www.ncbi.nlm.nih.gov/pubmed/17160049

doi: 10.1038/nbt1206-1497     URL     pmid: 17160049
[2]
Fischbach M A, Walsh C T . Science, 2009,325:1089. https://www.ncbi.nlm.nih.gov/pubmed/19713519

doi: 10.1126/science.1176667     URL     pmid: 19713519
[3]
McDonnell G, Russell A D . Clin. Microbiol. Rev., 2001,14:227.
[4]
Levy S B, Marshall B . Nat. Med., 2004,10:S122. https://www.ncbi.nlm.nih.gov/pubmed/15577930

doi: 10.1038/nm1145     URL     pmid: 15577930
[5]
Nathan C . Nature, 2004,431:899. https://www.ncbi.nlm.nih.gov/pubmed/15496893

doi: 10.1038/431899a     URL     pmid: 15496893
[6]
Denyer S P, Stewart G S A B . Int. Biodeterior. Biodegrad., 1998,41:261.
[7]
Kenawy E, Worley S D, Broughton R . Biomacromolecules, 2007,8:1359. https://www.ncbi.nlm.nih.gov/pubmed/17425365

doi: 10.1021/bm061150q     URL     pmid: 17425365
[8]
Ding W, Peng K M, Zou T, Wang R N, Guo J S, Tu W P, Liu C, Hu J Q . Pigm. Resin Technol., 2017,46:458.
[9]
Siedenbiedel F, Tiller J C . Polymers, 2012,4:46.
[10]
彭开美(Peng K M), 丁伟(Ding W), 涂伟萍(Tu W P), 胡剑青(Hu J Q), Liu Chao(Liu C), Yang Jian(Yang J) . 化学学报 (Acta Chimica Sinica), 2016,74(9):713.
[11]
Hui F, Debiemme-Chouvy C . Biomacromolecules, 2013,14:585. https://www.ncbi.nlm.nih.gov/pubmed/23391154

doi: 10.1021/bm301980q     URL     pmid: 23391154
[12]
Palermo E F, Kuroda K . Appl. Microbiol. Biotechnol., 2010,87:1605. https://www.ncbi.nlm.nih.gov/pubmed/20563718

doi: 10.1007/s00253-010-2687-z     URL     pmid: 20563718
[13]
Kuroda K, Caputo G A . Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2013,5:49.
[14]
Xue Y, Xiao H N, Zhang Y . Int. J. Mol. Sci., 2015,16:3626. http://www.mdpi.com/1422-0067/16/2/3626

doi: 10.3390/ijms16023626     URL     pmid: 25667977
[15]
Tashiro T . Macromol. Mater. Eng., 2001,286:63. http://doi.wiley.com/10.1002/%28ISSN%291439-2054

doi: 10.1002/(ISSN)1439-2054     URL    
[16]
Timofeeva L, Kleshcheva N . Appl. Microbiol. Biotechnol., 2011,89:475. https://www.ncbi.nlm.nih.gov/pubmed/20953604

doi: 10.1007/s00253-010-2920-9     URL     pmid: 20953604
[17]
Mitchell D J, Kim D T, Steinman L, Fathman C G, Rothbard J B . J. Pept. Res., 2000,56:318. https://www.ncbi.nlm.nih.gov/pubmed/11095185

doi: 10.1034/j.1399-3011.2000.00723.x     URL     pmid: 11095185
[18]
Locock K E, Michl T D, Valentin J D, Vasilev K, Hayball J D, Qu Y, Traven A, Griesser H J, Meagher L, Haeussler M . Biomacromolecules, 2013,14:4021. https://www.ncbi.nlm.nih.gov/pubmed/24099527

doi: 10.1021/bm401128r     URL     pmid: 24099527
[19]
Mattheis C, Wang H, Meister C, Agarwal S . Macromol. Biosci., 2013,13:242. https://www.ncbi.nlm.nih.gov/pubmed/23255254

doi: 10.1002/mabi.201200217     URL     pmid: 23255254
[20]
Motta G J, Milne C T, Corbett L Q . Ostomy Wound Manage., 2004,50:48.
[21]
Wu D Q, Zhu J, Han H, Zhang J Z, Wu F F, Qin X H, Yu J Y . Acta Biomater., 2018,65:305. https://www.ncbi.nlm.nih.gov/pubmed/28867649

doi: 10.1016/j.actbio.2017.08.048     URL     pmid: 28867649
[22]
Kawabata A, Taylor J . Dyes Pigm., 2006,68:197.
[23]
Li Z L, Chen J, Cao W, Wei D, Zheng A N, Guan Y . Carbohydr. Polym., 2018,180:192. https://www.ncbi.nlm.nih.gov/pubmed/29103495

doi: 10.1016/j.carbpol.2017.09.080     URL     pmid: 29103495
[24]
Treat N J, Smith D, Teng C, Flores J D, Abel B A, York A W, Huang F, McCormick C L . ACS Macro Lett., 2012,1:100. https://www.ncbi.nlm.nih.gov/pubmed/22639734

doi: 10.1021/mz200012p     URL     pmid: 22639734
[25]
Heydari A, Doostan F, Khoshnood H, Sheibani H . RSC Adv., 2016,6:33267.
[26]
Cui P F, Zhuang W R, Hu X, Xing L, Yu R Y, Qiao J B, He Y J, Li F Y, Ling D S, Jiang H L . Chem. Commun., 2018,54:8218. https://www.ncbi.nlm.nih.gov/pubmed/29985496

doi: 10.1039/c8cc04363a     URL     pmid: 29985496
[27]
Parsons K H, Mondal M H, McCormick C L, Flynt A S . Biomacromolecules, 2018,19:1111. https://www.ncbi.nlm.nih.gov/pubmed/29446934

doi: 10.1021/acs.biomac.7b01717     URL     pmid: 29446934
[28]
Kim B R, Anderson J E, Mueller S A, Gaines W A, Kendall A M . Water Res., 2002,36:4433. https://www.ncbi.nlm.nih.gov/pubmed/12418646

doi: 10.1016/s0043-1354(02)00188-4     URL     pmid: 12418646
[29]
Yeaman M R, Yount N Y . Pharmacol. Rev., 2003,55:27. https://www.ncbi.nlm.nih.gov/pubmed/12615953

doi: 10.1124/pr.55.1.2     URL     pmid: 12615953
[30]
Wender P A, Galliher W C, Goun E A, Jones L R, Pillow T H . 2008,60:452.
[31]
Palermo E F, Sovadinova I, Kuroda K . Biomacromolecules, 2009,10:3098. https://www.ncbi.nlm.nih.gov/pubmed/19803480

doi: 10.1021/bm900784x     URL     pmid: 19803480
[32]
Binder W H . Angew. Chem. Int. Ed., 2008,47:3092. https://www.ncbi.nlm.nih.gov/pubmed/18338350

doi: 10.1002/anie.200800269     URL     pmid: 18338350
[33]
Oren Z, Shai Y . Biopolymers, 1998,47:451. https://www.ncbi.nlm.nih.gov/pubmed/10333737

doi: 10.1002/(SICI)1097-0282(1998)47:6【-逻*辑*与-】amp;amp;lt;451::AID-BIP4【-逻*辑*与-】amp;amp;gt;3.0.CO;2-F     URL     pmid: 10333737
[34]
Matsuzaki K, Sugishita K, Fujii N, Miyajima K . Biochemistry, 1995,34:3423. https://www.ncbi.nlm.nih.gov/pubmed/7533538

doi: 10.1021/bi00010a034     URL     pmid: 7533538
[35]
Gabriel G J, Som A, Madkour A E, Eren T, Tew G N . Mater. Sci. Eng., R. Rep., 2007,57:28.
[36]
Paltrinieri L, Wang M, Sachdeva S, Besseling N A M, Sudhölter E J R, Smet L C P M . J. Mater. Chem. A, 2017,5:18476.
[37]
Zhang Y M, Jiang J M, Chen Y M . Polymer, 1999,40:6189.
[38]
Zhou Z X, Wei D F, Guan Y, Zheng A N, Zhong J J . Mater. Sci. Eng. C Mater. Biol. Appl., 2011,31:1836.
[39]
Albert M, Feiertag P, Hayn G, Saf R, Hönig H . Biomacromolecules, 2003,4:1811. https://www.ncbi.nlm.nih.gov/pubmed/14606913

doi: 10.1021/bm0342180     URL     pmid: 14606913
[40]
Wei D F, Ma Q X, Guan Y, Hu F Z, Zheng A N, Zhang X, Teng Z, Jiang H . Mater. Sci. Eng. C Mater. Biol. Appl., 2009,29:1776.
[41]
Choi H, Kim K, Lee D G . Fungal Biol., 2017,121:53. https://www.ncbi.nlm.nih.gov/pubmed/28007216

doi: 10.1016/j.funbio.2016.09.001     URL     pmid: 28007216
[42]
Wang X, Lu P, Li Y, Xiao H N, Liu X Y . RSC Adv., 2016,6:8763.
[43]
Sahraro M, Yeganeh H, Sorayya M . Mater. Sci. Eng. C Mater. Biol. Appl., 2016,59:1025. https://www.ncbi.nlm.nih.gov/pubmed/26652461

doi: 10.1016/j.msec.2015.11.038     URL     pmid: 26652461
[44]
Rogalskyy S, Bardeau J, Tarasyuk O, Fatyeyeva K . Polym. Int., 2012,61:686.
[45]
Rogalsky S, Bardeau J, Wu H, Lyoshina L, Bulko O, Tarasyuk O, Makhno S, Cherniavska T, Kyselov Y, Koo J H . J. Mater. Sci., 2016,51:7716. http://link.springer.com/10.1007/s10853-016-0054-x

doi: 10.1007/s10853-016-0054-x     URL    
[46]
Cao C L, Wu K J, Yuan W, Zhang Y M, Wang H P . Fibers Polym., 2017,18:1040.
[47]
Zhang C, Ying Z M, Luo Q J, Du H, Wang Y, Zhang K, Yan S G, Li X D, Shen Z Q, Zhu W P . J. Polym. Sci. Part A: Polym. Chem., 2017,55:2027.
[48]
Wei D, Li Z L, Wang H, Liu J, Xiao H L, Zheng A N, Guan Y . Cellulose, 2017,24:3901.
[49]
Li J R, Ye Y, Xiao H N, He B H, Qian L Y . Polymers, 2017,9:633.
[50]
Gabriel G J, Madkour A E, Dabkowski J M, Nelson C F, Nusslein K, Tew G N . Biomacromolecules, 2008,9:2980. https://www.ncbi.nlm.nih.gov/pubmed/18850741

doi: 10.1021/bm800855t     URL     pmid: 18850741
[51]
Exley S E, Paslay L C, Sahukhal G S, Abel B A, Brown T D, McCormick C L, Heinhorst S, Koul V, Choudhary V, Elasri M O, Morgan S E . Biomacromolecules, 2015,16:3845. https://www.ncbi.nlm.nih.gov/pubmed/26558609

doi: 10.1021/acs.biomac.5b01162     URL     pmid: 26558609
[52]
Zhang H, Liu Y N, Luo T, Zhao Q L, Cui K, Huang J, Jiang T, Ma Z . Polym. Chem., 2018,9:3922.
[53]
Peng K M, Zou T, Ding W, Wang R N, Guo J S, Round J J, Tu W P, Liu C, Hu J Q . RSC Adv., 2017,7:24903.
[54]
Vorob'eva A I, Sagitova D R, Gorbunova M N, Muslukhov R R, Kolesov S V, Tolstikov A G, Monakov Y B . Polym. Sci. Ser. B, 2007,49:172.
[55]
Gorbunova M, Lemkina L . J. Biomed. Mater. Res., 2016,104:630. https://www.ncbi.nlm.nih.gov/pubmed/26489040

doi: 10.1002/jbm.a.35596     URL     pmid: 26489040
[56]
Gorbunova M, Lemkina L, Borisova I . Ostomy Wound Manage., 2018,105:426.
[57]
Grace J L, Elliott A G, Huang J X, Schneider E K, Truong N P, Cooper M A, Li J, Davis T P, Quinn J F, Velkov T, Whittaker M R . J. Mater. Chem. B, 2017,5:531. https://www.ncbi.nlm.nih.gov/pubmed/28966792

doi: 10.1039/C6TB02787C     URL     pmid: 28966792
[58]
Sun X X, Ji J H, Zhang W, Wang G X, Zhen Z C, Wang P L . J. Appl. Polym. Sci., 2017,134:44821.
[59]
Xin Z R, Du S S, Zhao C Y, Chen H, Sun M, Yan S J, Luan S F, Yin J H . Appl. Surf. Sci., 2016,365:99. https://linkinghub.elsevier.com/retrieve/pii/S0169433215032225

doi: 10.1016/j.apsusc.2015.12.217     URL    
[60]
Villanueva M E, Gonzalez J A, Rodriguez-Castellon E, Teves S, Copello G J . Mater. Sci. Eng. C Mater. Biol. Appl., 2016,67:214. https://www.ncbi.nlm.nih.gov/pubmed/27287116

doi: 10.1016/j.msec.2016.05.052     URL     pmid: 27287116
[61]
Zhang H J, Zhang L X, Han X L, Kuang L J, Hua D B . Ind. Eng. Chem. Res., 2018,57:1662. https://pubs.acs.org/doi/10.1021/acs.iecr.7b04687

doi: 10.1021/acs.iecr.7b04687     URL    
[1] 梁敬时, 曾佳铭, 李俊杰, 佘珏芹, 谭瑞轩, 刘博. 阳离子抗菌聚合物[J]. 化学进展, 2019, 31(9): 1263-1282.
[2] 周欣宇, 周春才*. 抗菌肽及类抗菌肽的设计、合成及应用[J]. 化学进展, 2018, 30(7): 913-920.
阅读次数
全文


摘要

含胍基抗菌聚合物的合成及应用