English
新闻公告
More
化学进展 2019, Vol. 31 Issue (5): 714-722 DOI: 10.7536/PC180929 前一篇   后一篇

• •

钙钛矿太阳电池电子传输层与光吸收层的界面工程

单雪燕1,2, 王时茂1,3, 孟钢1,3, 方晓东1,2,3,**()   

  1. 1. 中国科学院安徽光学精密机械研究所 光子器件与材料安徽省重点实验室 合肥 230031
    2. 中国科学技术大学 合肥 230026
    3. 中国科学院光伏与节能材料重点实验室 合肥 230031
  • 收稿日期:2018-09-25 出版日期:2019-05-15 发布日期:2019-03-21
  • 通讯作者: 方晓东
  • 基金资助:
    国家自然科学基金项目(11674324); 国家自然科学基金项目(11604339); 中国科学院“百人计划”

Interface Engineering of Electron Transport Layer/Light Absorption Layer of Perovskite Solar Cells

Xueyan Shan1,2, Shimao Wang1,3, Gang Meng1,3, Xiaodong Fang1,2,3,**()   

  1. 1. Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
    2. University of Science and Technology of China, Hefei 230026, China
    3. Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
  • Received:2018-09-25 Online:2019-05-15 Published:2019-03-21
  • Contact: Xiaodong Fang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(11674324); National Natural Science Foundation of China(11604339); “100 Talents Project” of Chinese Academy of Sciences

钙钛矿太阳电池(PSCs)自2009年出现至今经历了光伏领域前所未有的快速发展,目前经认证的最高光电转换效率已超过23%,极具应用前景。界面工程是提升PSCs性能的有效途径之一,本文回顾了PSCs中电子传输层和钙钛矿光吸收层间界面工程的主要研究工作,根据作用效果将相关研究按照改善钙钛矿光吸收层质量、提高电子传输层与钙钛矿层间的能级匹配度和提升电池稳定性等三类进行了梳理和总结,并对电子传输层和钙钛矿光吸收层间界面工程的前景进行了展望。

Perovskite solar cells (PSCs) has been developing rapidly at an unprecedented speed in the field of photovoltaics since 2009 and its certified record power conversion efficiency has exceeded 23%. Interface engineering is one of the most effective approaches for improving the performance of PSCs. This paper reviews the main progress in the interface engineering of electron transport layer/light absorption layer of PSCs. The related investigations have been classified into three categories, improving the quality of perovskite film, improving the energy level matching between the electron transport layer and the perovskite layer, and improving the stability of the solar cells, according to their effects. Finally, the prospect of improving the performance of PSCs through the interface engineering is prospected.

()
图1 Pb(Ac)2·3H2O溶液修饰前后钙钛矿薄膜的SEM图[21]
Fig. 1 Top view SEM images of the perovskite thin films modified with and without Pb(Ac)2·3H2O respectively[21]. Copyright 2016, RSC
图2 3-氨基丙酸修饰ZnO/CH3NH3PbI3界面作用示意图[23]
Fig. 2 A schematic diagram of the effect of 3-aminopropanioc acid on the modification of ZnO/CH3NH3PbI3 interface[23]. Copyright 2015, ACS
图3 TiCl4和UV(O3)处理的TiO2表面的接触角变化[25]
Fig. 3 Contact angle measurements of water on TiO2 surfaces without, with TiCl4 treatment and UV(O3) treatment[25]. Copyright 2015, CSJ
图4 (a) PCBM浓度分别为0、10、20、30和40 mg·mL-1 时钙钛矿的XRD图谱;(b)不同浓度的PCBM修饰后钙钛矿(110)衍射峰的FWHM[30]
Fig. 4 (a) XRD patterns of perovskite layers without and with different PCBM intermediate layers(0, 10, 20, 30 and 40 mg·mL-1);(b) the FWHM of the(110) diffraction peaks[30]. Copyright 2017, RSC
图5 ITO、ZnO、ZnO/PCBM和CH3NH3PbI3的能级结构[38]
Fig. 5 Energy-level diagrams of the ITO, ZnO, ZnO/PCBM, and CH3NH3PbI3[38]. Copyright 2014, RSC
图6 FTO/ETLs/CH3NH3PbI3/spiro-OMeTAD/Au的能级图[41]
Fig. 6 Schematic energy diagram of FTO/ETLs/CH3NH3PbI3/spiro-OMeTAD/Au device[41]. Copyright 2016, RSC
图7 FTO/TiO2(离子液体)/CH3NH3PbICl2/PTAA/Au PSCs的能级图[45]
Fig. 7 The energy level diagram of the FTO/TiO2(ionic liquid)/CH3NH3PbICl2/PTAA/Au PSCs[45]. Copyright 2016, RSC
图8 a)PSCs的结构示意图; b) TiO2/ZnS/FASnI3/PTAA/Au能级图和FASnI3的晶体结构示意图[49]
Fig. 8 a) Schematic diagram of PSCs structure; b)The energy level diagram of the TiO2/ZnS/FASnI3/PTAA/Au and crystal structure of the FASn3[49], Copyright 2016, ACS
图9 (a)介孔TiO2表面有无MgO修饰的XPS全谱;(b)介孔TiO2表面有无MgO修饰的O 1s峰谱图[57]
Fig. 9 (a) An overview;(b) the corresponding high-resolution XPS O 1s spectra of mp-TiO2 with and without MgO coating[57]. Copyright 2015, Wiley
[1]
Gao P, Grätzel M, Nazeeruddin M K . Energy Environ. Sci., 2014,7:2448.
[2]
Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I . Energy Environ. Sci., 2014,7:2642.
[3]
Heo J H, Song D H, Han H J, Kim S Y, Kim J H, Kim D, Shin H W, Ahn T K, Wolf C, Lee T W, Im S H . Adv. Mater., 2015,27:3424. https://www.ncbi.nlm.nih.gov/pubmed/25914242

doi: 10.1002/adma.201500048     URL     pmid: 25914242
[4]
Chen Y, Li B B, Huang W, Gao D Q, Liang Z Q . Chem. Commun., 2015,51:11997. https://www.ncbi.nlm.nih.gov/pubmed/26120826

doi: 10.1039/c5cc03615a     URL     pmid: 26120826
[5]
Yang T Y, Gregori G, Pellet N, Grätzel M, Maier J . Angew. Chem. Int. Ed., 2015,54:7905. https://www.ncbi.nlm.nih.gov/pubmed/25980541

doi: 10.1002/anie.201500014     URL     pmid: 25980541
[6]
Kojima A, Teshima K, Shirai Y, Miyasaka T . J. Am. Chem. Soc., 2009,131:6050. https://www.ncbi.nlm.nih.gov/pubmed/19366264

doi: 10.1021/ja809598r     URL     pmid: 19366264
[7]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G . Sci. Rep., 2012,2:591. https://www.ncbi.nlm.nih.gov/pubmed/22912919

doi: 10.1038/srep00591     URL     pmid: 22912919
[8]
https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg[2018-09-18]. https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg
[9]
Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S, Lee J, Seo J . Nat. Energy, 2018,3:682.
[10]
Loi M A, Hummelen J C . Nat. Mater., 2013,12:1087.
[11]
Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S, Hong Z, You J, Liu Y, Yang Y . Science, 2014,345:542. https://www.ncbi.nlm.nih.gov/pubmed/25082698

doi: 10.1126/science.1254050     URL     pmid: 25082698
[12]
Bi D Q, Yang L, Boschloo G, Hagfeldt A, Johansson E M J . J. Phys. Chem. Lett., 2013,4:1532. https://www.ncbi.nlm.nih.gov/pubmed/26282310

doi: 10.1021/jz400638x     URL     pmid: 26282310
[13]
Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M . Nature, 2013,499:316. https://www.ncbi.nlm.nih.gov/pubmed/23842493

doi: 10.1038/nature12340     URL     pmid: 23842493
[14]
Liu M Z, Michael B, Snaith H J . Nature, 2013,501:395. https://www.ncbi.nlm.nih.gov/pubmed/24025775

doi: 10.1038/nature12509     URL     pmid: 24025775
[15]
Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y . J. Am. Chem. Soc., 2014,136:622. https://www.ncbi.nlm.nih.gov/pubmed/24359486

doi: 10.1021/ja411509g     URL     pmid: 24359486
[16]
Ball J M, Lee M M, Hey A, Snaith H J . Energy Environ. Sci., 2013,6:1739.
[17]
Dualeh A, Moehl T, Tétreault, N, Teuscher J, Nazeeruddin M K, Grätzel M . ACS Nano, 2013,8:362. https://www.ncbi.nlm.nih.gov/pubmed/24341597

doi: 10.1021/nn404323g     URL     pmid: 24341597
[18]
Dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M . Adv. Funct. Mater., 2014,24:3250.
[19]
Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A . Energy Environ. Sci., 2014,7:1377.
[20]
Congreve D N, Lee J, Thompson N J, Hontz E, Yost S R, Reusswig P D, Bahlke M E, Reineke S, Voorhis T V, Baldo M A . Science, 2013,340:334. https://www.ncbi.nlm.nih.gov/pubmed/23599489

doi: 10.1126/science.1232994     URL     pmid: 23599489
[21]
Liang X Y, Li W Z, Li J W, Niu G D, Wang L D . J. Mater. Chem. A, 2016,4:16913.
[22]
Dong Y, Li W, Zhang X J, Xu Q, Liu Q, Li C H, Bo Z S . Small, 2016,8:1098.
[23]
Zuo L J, Gu Z W, Ye T, Fu W F, Wu G, Li H Y, Chen H Z . J. Am. Chem. Soc., 2015,137:2674. https://www.ncbi.nlm.nih.gov/pubmed/25650811

doi: 10.1021/ja512518r     URL     pmid: 25650811
[24]
Yang G, Wang C L, Lei H W, Zheng X L, Qin P L, Xiong L B, Zhao X Z, Yan Y F, Fang G J . J. Mater. Chem. A, 2017,5:1658
[25]
Cojocaru L, Uchida S, Sanehira Y, Nakazaki J, Kubo T, Segawa H . Chem. Lett., 2015,44:674.
[26]
Zhu L Z, Shao Z P, Ye J J, Zhang X H, Pan X, Dai S Y . Chem. Commun., 2016,52:970.
[27]
Zhu L Z, Ye J J, Zhang X H, Zheng H Y, Liu G Z, Pan X, Dai S Y . J. Mater. Chem. A, 2017,5:3675.
[28]
Shin S S, Yeom E J, Yang W S, Hur S, Kim M G, Im J, Seo J, Noh J H, Seok S . Science, 2017,356:167. https://www.ncbi.nlm.nih.gov/pubmed/28360134

doi: 10.1126/science.aam6620     URL     pmid: 28360134
[29]
Hou Y R, Yang J Y, Jiang Q H, Li W X, Zhou Z W, Li X, Zhou S Q . Sol. Energ. Mat., Sol. C, 2016,155:101. https://linkinghub.elsevier.com/retrieve/pii/S092702481630099X

doi: 10.1016/j.solmat.2016.05.004     URL    
[30]
Li H C, Xue Y B, Zheng B, Tian J Q, Wang H Y, Gao C X, Liu X Z . RSC Adv., 2017,7:30422.
[31]
Cho A N, Park N G . ChemSusChem, 2017,10:3687. https://www.ncbi.nlm.nih.gov/pubmed/28736950

doi: 10.1002/cssc.201701095     URL     pmid: 28736950
[32]
Jacobs D A, Wu Y, Shen H, Barugkin C, Beck F J, White T P, Weber K, Catchpole K R . Phys. Chem. Chem. Phys., 2017,19:3094. https://www.ncbi.nlm.nih.gov/pubmed/28079207

doi: 10.1039/c6cp06989d     URL     pmid: 28079207
[33]
Chen B, Yang M, Priya S, Zhu K . J. Phys. Chem. Lett., 2016,7:905. https://www.ncbi.nlm.nih.gov/pubmed/26886052

doi: 10.1021/acs.jpclett.6b00215     URL     pmid: 26886052
[34]
Richardson G, O’Kane S E, Niemann R G, Peltola T A, Foster J M, Cameron P J, Walker A B . Energy Environ. Sci., 2016,9:1476.
[35]
Wojciechowski K, Stranks S D, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C Z, Friend R H, Jen A K Jen A K, Snaith H J . ACS Nano, 2014,8:12701. https://www.ncbi.nlm.nih.gov/pubmed/25415931

doi: 10.1021/nn505723h     URL     pmid: 25415931
[36]
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J . Science, 2012,338:643. https://www.ncbi.nlm.nih.gov/pubmed/23042296

doi: 10.1126/science.1228604     URL     pmid: 23042296
[37]
Ryu S, Noh J H, Jeon N J, Kim Y C, Yang W S, Seo J W, Seok S . Energy Environ. Sci., 2014,7:2614.
[38]
Kim J, Kim G, Kim T K, Kwon S, Back H, Lee J, Lee S H, Kang H, Lee K . J. Mater. Chem. A, 2014,2:17291.
[39]
Li Y W, Zhao Y, Chen Q, Yang Y, Liu Y S, Hong Z R, Liu Z H, Hsieh Y T, Meng L, Li Y F, Yang Y . J. Am. Chem. Soc., 2015,137:15540. https://www.ncbi.nlm.nih.gov/pubmed/26592525

doi: 10.1021/jacs.5b10614     URL     pmid: 26592525
[40]
Marin-Beloqui J M, Lanzetta L, Palomares E . Chem. Mater., 2016,28:207.
[41]
Shaikh S F, Kwon H C, Yang W, Hwang H, Lee H, Lee E, Ma S, Moon J . J. Mater.Chem. A, 2016,4:15478.
[42]
Han G S, Chung H S, Kim B J, Kim D H, Lee J W, Swain B S, Mahmood K, Yoo J S, Park N G, Lee J H, Jung H S . J. Mater. Chem. A, 2015,3:9160.
[43]
Abayev I, Zaban A, Fabregat-Santiago F, Bisquert J . Phys. Stat. Sol., 2003,196:4.
[44]
Hu Q, Wu J, Jiang C, Liu T, Que X, Zhu R, Gong Q . ACS Nano, 2014,8:10161. https://www.ncbi.nlm.nih.gov/pubmed/25259736

doi: 10.1021/nn5029828     URL     pmid: 25259736
[45]
Yang D, Zhou X, Yang R, Yu W, Wang X, Li C, Liu S, Chang R P H . Energy Environ. Sci., 2016,9:3071. http://xlink.rsc.org/?DOI=C6EE02139E

doi: 10.1039/C6EE02139E     URL    
[46]
Wu Q L, Zhou W R, Liu Q, Zhou P C, Chen T, Lu Y, Qiao Q Q, Yang S F . ACS Appl., Mater. Interfaces, 2016,8:34464. https://www.ncbi.nlm.nih.gov/pubmed/27998137

doi: 10.1021/acsami.6b12683     URL     pmid: 27998137
[47]
Li W Z, Zhang W, Reenen S V, Sutton R J, Fan J D, Haghighirad A A, Johnston M B, Wang L D, Snaith H J . Energy Environ. Sci., 2016,9:490.
[48]
Han F, Luo J S, Zhao B W, Wan Z Q, Wang R L, Jia C Y . Electrochim. Acta, 2017,236:122.
[49]
Ke W, Stoumpos C C, Logsdon J L, Wasielewski M R, Yan Y F, Fang G J, Kanatzidis M G . J. Am. Chem. Soc., 2016,138:14998. https://www.ncbi.nlm.nih.gov/pubmed/27776416

doi: 10.1021/jacs.6b08790     URL     pmid: 27776416
[50]
Noh J H, Im S H, Heo J H, Mandal T N, Seok S . Nano Lett., 2013,13:1764. https://www.ncbi.nlm.nih.gov/pubmed/23517331

doi: 10.1021/nl400349b     URL     pmid: 23517331
[51]
Niu G, Li W Z, Meng F, Wang L D, Dong H P, Qiu Y . J. Mater. Chem. A, 2014,2:705.
[52]
Niu G D, Guo X D, Wang L D . J. Mater. Chem. A, 2015,3:8970.
[53]
Zheng L, Chung Y H, Ma Y Z, Zhang L P, Xiao L X, Chen Z J, Wang S F Q, Bo Q, Gong Q H . Chem. Commun., 2014,50:11196. https://www.ncbi.nlm.nih.gov/pubmed/25111693

doi: 10.1039/c4cc04680c     URL     pmid: 25111693
[54]
Leijtens T, Giovenzana T, Habisreutinger S N, Tinkham J S, Noel N K, Kamino B A, Sadoughi G, Sellinger A, Snaith H J . ACS Appl., Mater. Interfaces, 2016,8:5981. https://www.ncbi.nlm.nih.gov/pubmed/26859777

doi: 10.1021/acsami.5b10093     URL     pmid: 26859777
[55]
Kwon Y S, Lim J C, Yun H J, Kim Y H, Park T . Energy Environ. Sci., 2014,7:1454.
[56]
Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W . Science, 2014,345:295. https://www.ncbi.nlm.nih.gov/pubmed/25035487

doi: 10.1126/science.1254763     URL     pmid: 25035487
[57]
Guo X D, Dong H P, Li W Z, Li N, Wang L D . ChemPhysChem, 2015,16:1727. https://www.ncbi.nlm.nih.gov/pubmed/25851999

doi: 10.1002/cphc.201500163     URL     pmid: 25851999
[58]
Wang Q, Dong Q F, Li T, Gruverman A, Huang J S . Adv. Mater., 2016,28:6734. https://www.ncbi.nlm.nih.gov/pubmed/27184864

doi: 10.1002/adma.201600969     URL     pmid: 27184864
[59]
Bai Y, Dong Q F, Shao Y C, Deng Y H, Wang Q, Shen L, Wang D, Wei W, Huang J S . Nat. Commun., 2016,7:12806. https://www.ncbi.nlm.nih.gov/pubmed/27703136

doi: 10.1038/ncomms12806     URL     pmid: 27703136
[60]
Fujishima A, Rao T N, Tryk D A . J. Photochem. Photobiol. C, 2000,1:1.
[61]
Li W Z, Li J W, Niu G D, Wang L D . J. Mater. Chem. A, 2016,4:11688. http://xlink.rsc.org/?DOI=C5TA09165A

doi: 10.1039/C5TA09165A     URL    
[62]
Ito S, Tanaka S, Manabe K, Nishino H . J. Phys. Chem. C, 2014,118:16995.
[63]
Park N, Grätzel M, Miyasaka T, Zhu K, Emery K . Nat. Energy, 2016,1:16152.
[64]
Singh T, Singh J, Miyasaka T . ChemSusChem, 2016,9:2559. https://www.ncbi.nlm.nih.gov/pubmed/27554065

doi: 10.1002/cssc.201601004     URL     pmid: 27554065
[65]
Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M . Nat. Commun., 2016,7:13422. https://www.ncbi.nlm.nih.gov/pubmed/27830709

doi: 10.1038/ncomms13422     URL     pmid: 27830709
[66]
You S, Wang H, Bi S, Zhou J, Qin L, Qiu X, Zhao Z, Xu Y, Zhang Y, Shi X, Zhou H, Tang Z . Adv. Mater., 2018,1706924.
[67]
Peneg J, Wu Y, Ye W, Jacobs D A, Shen H, Fu X, Wan Y, Duong T, Wu N, Barugkin C, Nguyen H T, Zhong D, Li J, Lu T, Liu Y, Lockrey M N, Weber K J, Catchpole K R, White T P . Energy Environ. Sci., 2017,10:1792.
[68]
Tan H, Jain A, Voznyy O, Lan X, García de Arquer F P, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zaho Y, Lu Z H, Yang Z, Hoogland S, Sargent E H . Science, 2017,355:722. https://www.ncbi.nlm.nih.gov/pubmed/28154242

doi: 10.1126/science.aai9081     URL     pmid: 28154242
[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[5] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[6] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[7] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[8] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[11] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[12] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[13] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[14] 林巧霞, 殷萌, 魏延, 杜晶晶, 陈维毅, 黄棣. 钛及钛合金表面羟基磷灰石涂层结合强度及稳定性[J]. 化学进展, 2020, 32(4): 406-416.
[15] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.