English
新闻公告
More
化学进展 2019, Vol. 31 Issue (5): 690-698 DOI: 10.7536/PC180928 前一篇   后一篇

• •

基于超分子聚合物的自修复材料

侯瑞, 李桂群, 张岩*(), 李明俊, 周桂明, 柴晓明   

  1. 山东非金属材料研究所 济南 250031
  • 收稿日期:2018-09-25 出版日期:2019-05-15 发布日期:2019-03-21
  • 通讯作者: 张岩

Self-Healing Polymers Materials Based on Dynamic Supramolecular Motifs

Rui Hou, Guiqun Li, Yan Zhang*(), Mingjun Li, Guiming Zhou, Xiaoming Chai   

  1. Shandong Institude of Non-metallic Materials, Jinan 250031, China
  • Received:2018-09-25 Online:2019-05-15 Published:2019-03-21
  • Contact: Yan Zhang
  • About author:

材料的自修复功能对于材料应用具有重要的意义,如键组装/解组装常数、键的方向和链的弛豫时间等因素会影响自修复效率。根据提供修复功能的物质构成形式,可以分为外援型自修复材料和本征型自修复材料,其中本征型自修复材料是当前的热点方向,在本征型自修复材料中,超分子自修复材料以其独特的可逆性组装,以及在快速、可逆、多重响应方面的优势而成为研究重点。本文重点阐述了基于不同结合效应的超分子自修复聚合物的研究进展,并对今后的研究方向作了展望,认为材料的耐环境性能能否达标是未来能否获得应用的关键因素之一。

The self-healing function of materials has high application value in many fields. It is reported some factors impact the self-healing efficiency, such as the constants of bond disassemble/assemble, the direction of bonding, chain relaxation time. According to the materials’ properties, self-healing materials can be divided into extrinsic self-healing polymer materials and intrinsic self-healing polymer materials. The possibility to disassemble structurally dynamic polymers is the basic of intrinsic self-healing materials, and a Diels-Alder reaction is used to realize this idea. Within the intrinsic self-healing materials, supramolecular chemistry is highly attractive to achieve self-healing for the fast equilibrium state, bonding directionality, and sensitivity. The research of self-healing polymers materials based on dynamic supramolecular motifs is built on the work on hydrogen-bonded monomer units. In this paper, the research progress of supramolecular self-healing polymer is the center of attention. The design and synthesis of supramolecular are summarized, at the same time, the application of supramolecular materials is introduced. At the end of the paper, the future research direction and development trend are prospected. It is considered that whether the environmental resistance of self-healing polymers materials can reach the standard is the key to its future application.

()
图1 丙烯酸聚合物PBA-UPy结构原理示意图
Fig. 1 Structure and schematic diagram of PBA-UPy polymer
图2 自修复-力致变色聚合物示意图[38]
Fig. 2 Schematic diagram of self-healing polymer with force chromogenic performance[38]
图3 超分子聚氨酯弹性体分子结构及自修复效果图[46]
Fig. 3 Molecular structure and self-healing effect of supramolecular polyurethane elastomer[46]
[1]
Bekas D G, Tsirka K, Baltzis D, Paipetis A S . Compos. Part A-APPL. S, 2016,87:92.
[2]
Carlson H C, Goretta K . Mater. Sci. Eng. B, 2006,132:2.
[3]
Scheiner M, Dickens T J, Okoli O . Polymer., 2016,83:260.
[4]
Murphy E B, Wudl F . Prog. Polym. Sci., 2010,35:223.
[5]
李思超(Li S C), 韩朋(Han P), 许华平(Xu H P) . 化学进展 (Progress in Chemistry), 2012,24(07):1346.
[6]
Brown E N, White S R, Sottos N R . J. Mater. Sci., 2004,39:1703. http://link.springer.com/10.1023/B:JMSC.0000016173.73733.dc

doi: 10.1023/B:JMSC.0000016173.73733.dc     URL    
[7]
Toohey K S, Sottos N R, Lewis J A, Moore J S, White S R . Nat. Mater., 2007,6:581. https://www.ncbi.nlm.nih.gov/pubmed/17558429

doi: 10.1038/nmat1934     URL     pmid: 17558429
[8]
Hansen C J, White S R, Sottos N R, Lewis J A . Adv. Funct. Mater., 2011,21:4320.
[9]
Lee J Y, Buxton G A, Balazs A C . J. Chem. Phys., 2004,121:5531. https://www.ncbi.nlm.nih.gov/pubmed/15352848

doi: 10.1063/1.1784432     URL     pmid: 15352848
[10]
Tyagi S, Lee J Y, And G A B, Balazs A C . Macromolecules, 2004,37:9160.
[11]
Corten C C, Urban M W, Shelby F . Adv. Mater., 2009,21:5011. https://www.ncbi.nlm.nih.gov/pubmed/25377855

doi: 10.1002/adma.200901940     URL     pmid: 25377855
[12]
Huang L, Yi N, Wu Y, Zhang Y, Zhang Q, Huang Y . Adv. Mater., 2013,25:2224. https://www.ncbi.nlm.nih.gov/pubmed/23417742

doi: 10.1002/adma.201204768     URL     pmid: 23417742
[13]
Toohey K S, Hansen C J, Lewis J A, White S R, Sottos N R . Adv. Funct. Mater., 2010,19:1399.
[14]
Wei Z, Yang J H, Zhou J, Xu F, Zrínyi M, Patrick H D, Yoshihito O, Chen Y M . Chem. Soc. Rev., 2014,43:8114. https://www.ncbi.nlm.nih.gov/pubmed/25144925

doi: 10.1039/c4cs00219a     URL     pmid: 25144925
[15]
Yang Y, Urban M W . Chem. Soc. Rev., 2013,42:7446. https://www.ncbi.nlm.nih.gov/pubmed/23864042

doi: 10.1039/c3cs60109a     URL     pmid: 23864042
[16]
Yang Y, Ding X, Urban M W . Prog. Polym. Sci., 2015,49/50:34.
[17]
Roy N, Bruchmann B, Lehn J M . Chem. Soc. Rev., 2015,44:3786. https://www.ncbi.nlm.nih.gov/pubmed/25940832

doi: 10.1039/c5cs00194c     URL     pmid: 25940832
[18]
Lehn J M . J. Inclusion Phenom., 1988,6:351.
[19]
Jorgensen W L . Proc. Natl. Acad. Sci. U. S. A., 1993,90:1635. https://www.ncbi.nlm.nih.gov/pubmed/8446574

doi: 10.1073/pnas.90.5.1635     URL     pmid: 8446574
[20]
Ghoneim M M, El Sonbaty A Z, Diab M A, El Bindary A A, Serag L S . Polym.-Plast. Technol. Eng., 2015,54:100.
[21]
de Espinosa L M, Fiore G L, Weder C, Foster E J, Simon Y C . Prog. Polym. Sci., 2015,49/50:60.
[22]
Yang L, Tan X, Wang Z, Zhang X . Chem. Rev., 2015,115:7196. https://www.ncbi.nlm.nih.gov/pubmed/25768045

doi: 10.1021/cr500633b     URL     pmid: 25768045
[23]
Roy N, Tomović Ž, Buhler E, Lehn J M . Chemistry, 2016,22:13513. https://www.ncbi.nlm.nih.gov/pubmed/27226034

doi: 10.1002/chem.201601378     URL     pmid: 27226034
[24]
Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L . Nature, 2008,451:977. https://www.ncbi.nlm.nih.gov/pubmed/18288191

doi: 10.1038/nature06669     URL     pmid: 18288191
[25]
Zhang A, Yang L, Lin Y, Yan L, Lu H, Wang L . J. Appl. Polym. Sci., 2013,129:2435.
[26]
Faghihnejad A, Feldman K E, Yu J, Tirrell M V, Israelachvili J N, Hawker C J, Kramer E J, Zeng H B . Adv. Funct. Mater., 2014,24:2322. http://doi.wiley.com/10.1002/adfm.v24.16

doi: 10.1002/adfm.v24.16     URL    
[27]
Chen Y L, Kushner A M, Williams G A, Guan Z B . Nat. Chem., 2012,4:467. 9073180c-4421-4644-a572-00963606043ahttp://dx.doi.org/10.1038/NCHEM.1314

doi: 10.1038/NCHEM.1314     URL    
[28]
Hentschel J, Kushner A M, Ziller J, Guan Z B . Angew. Chem., 2012,124, 10713.
[29]
Yan M, Tang J, Xie H L, Ni B, Zhang H L, E Q Chen . J. Mater. Chem. C, 2015,3:8526.
[30]
Ni B, Xie H L, Tang J, Zhang H L, Chen E Q . Chem. Commun., 2016,52:10257. https://www.ncbi.nlm.nih.gov/pubmed/27465691

doi: 10.1039/c6cc04199j     URL     pmid: 27465691
[31]
Yanagisawa Y, Nan Y, Okuro K, Aida T . Science, 2018,359:72. https://www.ncbi.nlm.nih.gov/pubmed/29242235

doi: 10.1126/science.aam7588     URL     pmid: 29242235
[32]
Chirila T V, Hui H L, Oddon M, Uieuwenhuizen M M L, Blakey I, Nicholson T M . J. Appl. Polym. Sci., 2013,131:1001.
[33]
Corte L, Maes F, Montarnal D, Cantournet S, Tournilhac F, Leibler L . Soft Matter, 2012,8:1681. https://www.ncbi.nlm.nih.gov/pubmed/28145557

doi: 10.1039/c6sm02524b     URL     pmid: 28145557
[34]
Van Gemert G M L, Peeters J W, Söntjens S H M, Janssen H M, Bosman A W . Macromol. Chem. Phys., 2012,213:234.
[35]
Burnworth M, Tang L, Kumpfer J R, Buncan A J, Beyer F L, Fiore G L . Nature, 2011,472:334. https://www.ncbi.nlm.nih.gov/pubmed/21512571

doi: 10.1038/nature09963     URL     pmid: 21512571
[36]
Bode S, Zedler L, Schacher F H, Dietzek B, Schmitt M, Popp J, Hager M D, Schubert U S . Adv. Mater., 2013,25:1634. https://www.ncbi.nlm.nih.gov/pubmed/23355192

doi: 10.1002/adma.201203865     URL     pmid: 23355192
[37]
Yuan J C, Fang X L, Zhang L X, Hong G N, Lin Y G, Zheng Q F, Xu Y Z, Ruan Y H, Weng W G, Xia H P, Chen G H . J. Mater. Chem., 2012,22:11515.
[38]
Hong G N, Zhang H, Lin Y G, Chen YJ, Xu Y Z, Weng W G, Xia H P . Macromolecules, 2013,46:8649.
[39]
Wang Z, Urban M W . Polym. Chem., 2013,4:4897.
[40]
Zheng Q, Ma Z, Gong S . J. Mater. Chem. A, 2016,4:3324. https://www.ncbi.nlm.nih.gov/pubmed/32263267

doi: 10.1039/c6tb00278a     URL     pmid: 32263267
[41]
Hunter C A, Sanders J K M . J. Am. Chem. Soc., 1990,112:5525.
[42]
Colquhoun H M, Goodings E P, Maud J M, Stoddart J F, Wolstenholme J B, Williams D J . Chem. Informationsdienst., 1985,16:607.
[43]
Burattini S, Colquhoun H M, Greenland B W, Hayes W . Faraday Discuss., 2009,143:251. https://www.ncbi.nlm.nih.gov/pubmed/20334106

doi: 10.1039/b900859d     URL     pmid: 20334106
[44]
Burattini S, Colquhoun H M, Fox J D, Friedmann D, Greenland B W, Harris P J . Chem. Commun., 2009,44:6717. https://www.ncbi.nlm.nih.gov/pubmed/19885456

doi: 10.1039/b910648k     URL     pmid: 19885456
[45]
Xu Z, Peng J, Yan N, Yu H, Zhang S, Liu K Q, Fang Y . Soft Matter, 2012,9:1091.
[46]
Feula A, Pethybridge A, Giannakopoulos I, Tang X, Chippindale A, Siviour C R, Buckley C P, Hamley I W, Haye W S . Macromolecules, 2015,48:6132.
[47]
Bhattacharjee S, Bhattacharya S . J. Mater. Chem. A, 2014,2(42):17889.
[48]
Huang C W, Mohamed M G, Zhu C Y, Kuo S W . Macromolecules, 2016,49:5374.
[49]
He L, Ran X, Li J X, Gao Q Q, Kuang Y M, Guo L J . J. Mater. Chem. A, 2018,6:16600.
[50]
Amaral A J R, Pasparakis G . Polym. Chem., 2017,8, 6464.
[51]
Nakahata M, Takashima Y, Harada A . Macromol. Rapid Commun., 2015,37:86. https://www.ncbi.nlm.nih.gov/pubmed/26398922

doi: 10.1002/marc.201500473     URL     pmid: 26398922
[52]
Kakuta T, Takashima Y, Nakahata M, Otsubo M, Yamaguchi H, Harada A . Adv. Mater., 2013,25:2849. https://www.ncbi.nlm.nih.gov/pubmed/23423947

doi: 10.1002/adma.201205321     URL     pmid: 23423947
[53]
Yu C, Wang C, Chen S . Adv. Funct. Mater., 2014,24:1235. http://doi.wiley.com/10.1002/adfm.v24.9

doi: 10.1002/adfm.v24.9     URL    
[54]
Zhang M M, Xu D H, Yan X Z, Chen J Z, Dong S Y, Zheng B, Huang F H . Angew. Chem., 2012,51:7011. https://www.ncbi.nlm.nih.gov/pubmed/22653895

doi: 10.1002/anie.201203063     URL     pmid: 22653895
[55]
Li S, Lu H Y, Shen Y, Chen C F . Macromol. Chem. Phys., 2013,214:1596.
[56]
Pluth M D, Raymond K N . Cheminform, 2007,36:161.
[57]
Wei P, Yan X, Huang F . Chem. Soc. Rev., 2015,44:815. https://www.ncbi.nlm.nih.gov/pubmed/25423355

doi: 10.1039/c4cs00327f     URL     pmid: 25423355
[58]
Deng Z X, Guo Y, Zhao X, Ma P X, Guo B L . Chem. Mater., 2018, 30(5): acs.chemmater.8b00008. https://www.ncbi.nlm.nih.gov/pubmed/29606799

doi: 10.1021/acs.chemmater.8b00179     URL     pmid: 29606799
[59]
Peng L, Zhang M J, Lin M S, Fu Q . RSC Adv., 2018,8:25313.
[60]
王梅祥(Wang M X) . 化学进展 (Progress in Chemistry), 2018,30(5):463.
[61]
Jeon I, Cui J, Illeperuma W R, Aizenberg J, Viassak JJ . Adv. Mater., 2016,28:4678. https://www.ncbi.nlm.nih.gov/pubmed/27061799

doi: 10.1002/adma.201600480     URL     pmid: 27061799
[62]
Kalista S J, Pflug J R, Varley R J . Polym. Chem., 2013,4:4910.
[63]
Pu W, Jiang F, Chen P, Wei B . Soft Matter, 2017,13:5645. https://www.ncbi.nlm.nih.gov/pubmed/28828421

doi: 10.1039/c7sm01492a     URL     pmid: 28828421
[64]
Huang Y, Lawrence P G, Lapitsky Y . Langmuir, 2014,30:7771. https://www.ncbi.nlm.nih.gov/pubmed/24476067

doi: 10.1021/la404606y     URL     pmid: 24476067
[65]
Aboudzadeh M A, Muñoz M E, Santamaría A, Marcilla R, Mecerreyes D . Macromol. Rapid Commun., 2012,33:314. https://www.ncbi.nlm.nih.gov/pubmed/22262519

doi: 10.1002/marc.201100728     URL     pmid: 22262519
[66]
Nejadnik M R, Yang X, Bongio M, Alghamdi H S, Jeroen J J P van den Beucken, Huysmans M C, Jansen J A, Hilborn J, Ossipov D, Leeuwenburgh S C G . Biomaterials, 2014,35:6918. https://www.ncbi.nlm.nih.gov/pubmed/24862440

doi: 10.1016/j.biomaterials.2014.05.003     URL     pmid: 24862440
[67]
Froimowicz P, Klinger D, Landfester K . Chem. - Eur. J., 2011,17:12465. https://www.ncbi.nlm.nih.gov/pubmed/21938746

doi: 10.1002/chem.201100685     URL     pmid: 21938746
[68]
Xue C H, Zhang Z D, Zhang J, Jia S T . J. Mater. Chem. A, 2014,2:15001. http://xlink.rsc.org/?DOI=C4TA02396J

doi: 10.1039/C4TA02396J     URL    
[69]
Ji X, Shi B, Wang H, Xia D, Jie K, Wu Z L, Huang F H . Adv. Mater., 2015,27:8062. https://www.ncbi.nlm.nih.gov/pubmed/26540139

doi: 10.1002/adma.201504355     URL     pmid: 26540139
[70]
Zhang Q, Shi C Y, Qu D H, Long Y T, Feringa B L, Tian H . Sci. Adv., 2018, 4: eaat8192. https://www.ncbi.nlm.nih.gov/pubmed/30062126

doi: 10.1126/sciadv.aat8192     URL     pmid: 30062126
[71]
Yan X, Xu D, Chi X, Chen J, Dong S, Ding X, Yu Y H, Huang F H . Adv. Mater., 2012,24:362. https://www.ncbi.nlm.nih.gov/pubmed/22161963

doi: 10.1002/adma.201103220     URL     pmid: 22161963
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[7] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[8] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[9] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[10] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[11] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[12] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
[13] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[14] 曹新华, 韩晴晴, 高爱萍, 王桂霞. 气态酸和有机胺响应的超分子凝胶[J]. 化学进展, 2021, 33(9): 1538-1549.
[15] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
阅读次数
全文


摘要

基于超分子聚合物的自修复材料