English
新闻公告
More
化学进展 2019, Vol. 31 Issue (5): 643-653 DOI: 10.7536/PC180911 前一篇   后一篇

• •

表面活性剂在非极性有机溶剂中的自组装

赵剑曦**(), 顾攀攀, 曾慧, 邓生禄   

  1. 福州大学化学化工学院 胶体与界面化学研究所 福州 350108
  • 收稿日期:2018-09-08 出版日期:2019-05-15 发布日期:2019-05-30
  • 通讯作者: 赵剑曦
  • 基金资助:
    国家自然科学基金项目(21473032)

Self-Assembly of Surfactants in Non-Polar Organic Solvents

Jianxi Zhao**(), Panpan Gu, Hui Zeng, Shenglu Deng   

  1. Institute of Colloid and Interface Chemistry, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108, China
  • Received:2018-09-08 Online:2019-05-15 Published:2019-05-30
  • Contact: Jianxi Zhao
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21473032)

本文总结了表面活性剂在非极性有机溶剂中复杂反相聚集的研究进展。首先突破了表面活性剂在非极性溶剂(油)中溶解的难题,通过设计合成大头基的新表面活性剂,或引入合适添加剂使之与表面活性剂头基相互作用,由此增大头基有效尺寸,这些均能有效促进表面活性剂形成核-壳完整的聚集体,进而带动表面活性剂分散(溶解)在非极性溶剂中。基于聚集体带动溶解的思路,建立了制备表面活性剂/油均相溶液的直接溶解方法,讨论了制备方法的关键要素,它比文献常用的甲醇预溶解法方便且有效。列举了若干典型的表面活性剂/环己烷均相体系,以此评述了聚集体带动溶解的方法,也展现了丰富多样的反相聚集形貌,讨论了表面活性剂头基尺寸对聚集结构的影响。

The progress in the study on complicated reverse aggregation of surfactants in non-polar organic solvents is reviewed. Firstly, the problem of surfactant dissolution in non-polar organic solvents(oils) is resolved. The inverted aggregates with full core-shell structure can be expected to form using synthesized new surfactants with a large headgroup or by introducing suitable additives to interact with the head of surfactant and increase the effective size of the head of surfactant. These steps of promoting aggregate formation drive the surfactants to disperse and dissolve in non-polar solvents. Based on this way, a one-step method of directly dissolving and preparing homogeneous solutions of surfactants in oils is developed and the key factors about this method are discussed. Comparatively, the direct dissolution method is more convenient and also more effective than the methanol dissolution method as reported in literature. Some typical homogeneous systems of surfactants in cyclohexane are exhibited and the dissolution method upon aggregate formation is reviewed. In these systems, the aggregates show varied morphologies. The effect of surfactant head size on aggregate morphology is also discussed.

()
图1 Gemini表面活性剂12-Ph-12和G14-azo
Fig. 1 Gemini surfactants 12-Ph-12 and G14-azo
图2 卵磷脂/SDC(100/40 mmol·L-1)/环己烷体系的两种制备方法比较,样品(a、a')和(b、b')分别通过甲醇溶解法和直接溶解法制得
Fig. 2 Comparison between two preparation methods for the system of lecithin/SDC(100/40 mmol·L-1)/cyclohexane: Samples of(a,a') and (b,b') prepared by methanol dissolving method and directly dissolving method, respectively
图3 微量水促进C16En的POE链构型改变,进而形成反相囊泡[24]
Fig. 3 A trace amount of water induced the change of POE conformation,resulting in the formation of reverse vesicles[24]
图4 DETA与油酸羧基相互作用增大了头基有效尺寸,痕量水的加入增强了这一效应[22]
Fig. 4 DETA interacted with the carboxyl of OA to increase the head effective size,in which the addition of trace amounts of water strengthened this effect[22]
图5 G14-azo/CTAB光敏有机流体的光照胶束类型变化示意[21]
Fig. 5 A schematic for the transition of aggregate morphology under light irradiation for G14-azo/CTAB system[21]
图6 偶氮基在反相聚集体中反/顺构型转变的受限示意图[21]
Fig. 6 Schematic for the limit to the transition of trans- to cis-conformation in the inverted structure of an aggregate[21]
图7 芳香反离子与吡啶基相互作用增大了CPC头基有效尺寸,进而形成反相六方液晶
Fig. 7 Aromatic counterions interacted with the pyridinium group,which increased the effective size of CPC head and resulted in the formation of inverted hexagonal liquid crystalline mesophases
图8 等摩尔混合SDS/TAABr或SDS/BTMABr在环己烷中形成了I2或H2液晶亚相
Fig. 8 Equi-molar mixed SDS/TAABr or SDS/BTMABr in cyclohexane to form I2 or H2 LC mesophase
图9 季铵Gemini表面活性剂12-s-12
Fig. 9 Quaternary ammonium gemini surfactants
图10 Gemini表面活性剂联接链长度对形成聚集体结构的影响[29]
Fig. 10 Effect of spacer length of gemini surfactants on the structures of formed aggregates[29]
图11 12-s-12/盐在环己烷中形成的复杂反相聚集体[32]
Fig. 11 12-s-12/salt formed complex inverted aggregates in cyclohexane[32]
图12 水杨酸钠对12-s-12在环己烷中聚集的特殊盐效应机理[32]
Fig. 12 Mechanism of NaSal special effect on 12-s-12 aggregation in cyclohexane[32]
图13 SB-12/C12E4不同摩尔比混合分别形成了反相蠕虫胶束和反相囊泡[35]
Fig. 13 Reverse wormlike micelles and reverse vesicles formed by mixed SB-12 and C12E4 with different molar ratios,β[35]
图14 在环己烷中等摩尔SB-12/TEA混合形成了3D六方密堆积(hcp)的P63/mmc液晶
Fig. 14 3D hexagonal close-packing(hcp) P63/mmc liquid crystalline formed by equi-molar mixed SB-12/TEAB in cyclohexane
[1]
Evans D F, Wennerström H . The Colloidal Domain: Where Physics, Chemistry, and Biology Meet. Wiley-VCH: New York, 1994.
[2]
Scartazzini R, Luisi P L . J. Phys. Chem., 1988,92:829.
[3]
Angelico R, Olsson U, Palazzo G, Ceglieb A . Phys. Rev. Lett., 1998,81:2823.
[4]
Tung S H, Huang Y E, Raghavan S R . J. Am.Chem. Soc., 2006,128:5751. https://www.ncbi.nlm.nih.gov/pubmed/16637643

doi: 10.1021/ja0583766     URL     pmid: 16637643
[5]
Lee H Y, Diehn K K, Ko S W, Tung S H, Raghavan S R . Langmuir, 2010,26:13831. https://www.ncbi.nlm.nih.gov/pubmed/20677736

doi: 10.1021/la1019108     URL     pmid: 20677736
[6]
Imai M, Hashizaki K, Taguchi H, Saito Y, Motohashi S J . Colloid Interface Sci., 2013,403:77. https://www.ncbi.nlm.nih.gov/pubmed/23684226

doi: 10.1016/j.jcis.2013.04.033     URL     pmid: 23684226
[7]
Kunieda H, Nakamura K, Evans D F . J. Am. Chem. Soc., 1991,113:1051. https://pubs.acs.org/doi/abs/10.1021/ja00003a054

doi: 10.1021/ja00003a054     URL    
[8]
Kunieda H, Nakamura K, Davis H T, Evans D F . Langmuir, 1991,7:1915. https://pubs.acs.org/doi/abs/10.1021/la00057a016

doi: 10.1021/la00057a016     URL    
[9]
Kunieda H, Yamagata M J . Colloid Interface Sci., 1992,150:277. https://linkinghub.elsevier.com/retrieve/pii/002197979290287V

doi: 10.1016/0021-9797(92)90287-V     URL    
[10]
Kunieda H, Nakamura K, Olsson U, Lindman B . J. Phys. Chem., 1993,97:9525. https://pubs.acs.org/doi/abs/10.1021/j100139a043

doi: 10.1021/j100139a043     URL    
[11]
Kunieda H, Kanei N, Uemoto A, Tobita I . Langmuir, 1994,10:4006. https://www.ncbi.nlm.nih.gov/pubmed/21514815

doi: 10.1016/j.bios.2011.03.014     URL     pmid: 21514815
[12]
Nakamura K, Uemoto A, Imae T, Solans C, Kunieda H . J. Colloid Interface Sci., 1995,170:367. https://linkinghub.elsevier.com/retrieve/pii/S0021979785711149

doi: 10.1006/jcis.1995.1114     URL    
[13]
Olsson U, Nakamura K, Kunieda H . Langmuir, 1996,12:3045. https://www.ncbi.nlm.nih.gov/pubmed/26937559

doi: 10.1021/acs.langmuir.5b04500     URL     pmid: 26937559
[14]
Kunieda H, Shigeta K, Suzuki M . Langmuir, 1999,15:3118. https://pubs.acs.org/doi/10.1021/la9814844

doi: 10.1021/la9814844     URL    
[15]
Wang D, Wei G, Dong R, Hao J . Chem. Eur. J., 2013,19:8253. https://www.ncbi.nlm.nih.gov/pubmed/23613301

doi: 10.1002/chem.201300132     URL     pmid: 23613301
[16]
Mollee H, de Vrind J, de Vringer T . J. Pharm. Sci., 2000,89:930. https://www.ncbi.nlm.nih.gov/pubmed/10861594

doi: 10.1002/1520-6017(200007)89:7【-逻*辑*与-】amp;amp;lt;930::AID-JPS10【-逻*辑*与-】amp;amp;gt;3.0.CO;2-H     URL     pmid: 10861594
[17]
Shrestha L K, Kaneko M, Sato T, Acharya D P, Iwanaga T, Kunieda H . Langmuir, 2006,22:1449. https://www.ncbi.nlm.nih.gov/pubmed/16460060

doi: 10.1021/la052622+     URL     pmid: 16460060
[18]
赵剑曦(Zhao J X) . 化学进展 (Progress in Chemistry), 2015,27(2/3):168. 185e5124-d82b-4e1a-afbc-dc3da8ac02d4http://www.progchem.ac.cn//CN/abstract/abstract11488.shtml

doi: 10.7536/PC140835     URL    
[19]
Shearman G C, Tyler A I I, Brooks N J, Templer R H, Ces O, Law R V, Seddon J M . Liquid Crystals, 2010,37:679. http://www.tandfonline.com/doi/abs/10.1080/02678292.2010.484917

doi: 10.1080/02678292.2010.484917     URL    
[20]
Yang G, Zhao J X . Rheologica Acta, 2016,55(9):709. http://link.springer.com/10.1007/s00397-016-0954-3

doi: 10.1007/s00397-016-0954-3     URL    
[21]
Yang D P, Zhao J X . Soft Matter, 2016,12:4044. https://www.ncbi.nlm.nih.gov/pubmed/27021435

doi: 10.1039/c6sm00207b     URL     pmid: 27021435
[22]
Yang G, Zhao J X . RSC Advances, 2016,6:48810. http://xlink.rsc.org/?DOI=C6RA05176F

doi: 10.1039/C6RA05176F     URL    
[23]
Kumar R, Ketner A M, Raghavan S R . Langmuir, 2010,26:5405. https://www.ncbi.nlm.nih.gov/pubmed/20030346

doi: 10.1021/la903834q     URL     pmid: 20030346
[24]
Yang D P, Zhao J X . Colloid Polym. Sci., 2016,294(6):1037. http://link.springer.com/10.1007/s00396-016-3857-z

doi: 10.1007/s00396-016-3857-z     URL    
[25]
Raghavan S R, Kaler E W . Langmuir, 2001,17:300. https://pubs.acs.org/doi/10.1021/la0007933

doi: 10.1021/la0007933     URL    
[26]
Zheng O, Zhao J X, Fu X M . Langmuir, 2006,22:3528. https://www.ncbi.nlm.nih.gov/pubmed/16584224

doi: 10.1021/la052772k     URL     pmid: 16584224
[27]
Zheng O, Zhao J X, Chen R T, Fu X M . J. Colloid Interface Sci., 2006,300:310. https://www.ncbi.nlm.nih.gov/pubmed/16631777

doi: 10.1016/j.jcis.2006.03.061     URL     pmid: 16631777
[28]
Zheng O, Zhao J X, Yan H, Gao S K . J. Colloid Interface Sci., 2007,310:331. https://www.ncbi.nlm.nih.gov/pubmed/17303155

doi: 10.1016/j.jcis.2007.01.056     URL     pmid: 17303155
[29]
Deng S L, Zhao J X . Soft Matter, 2018,14:734. https://www.ncbi.nlm.nih.gov/pubmed/29340416

doi: 10.1039/c7sm02333b     URL     pmid: 29340416
[30]
Israelachvili J N, Mitchell D J, Ninham B W . J. Chem. Soc., Faraday Trans. 1, 1976,72:1525.
[31]
Israelachvili I. San Diego:Intermolecular & Surface Forces Academic Press, 1992.
[32]
Deng S L, Zhao J X, Wen Z X . RSC Advances, 2018,8:18880. http://xlink.rsc.org/?DOI=C8RA02720J

doi: 10.1039/C8RA02720J     URL    
[33]
Zhao L, Zhang H, Wang W, Wang G . J. Mol. Liq., 2017,225:897. https://linkinghub.elsevier.com/retrieve/pii/S0167732216331075

doi: 10.1016/j.molliq.2016.11.019     URL    
[34]
Shchipunov Y A, Shumilina E V . Mater. Sci. Engin., 1995,43.
[35]
Yang G, Zhao J X . RSC Advances, 2016,6:15694. http://xlink.rsc.org/?DOI=C5RA27360A

doi: 10.1039/C5RA27360A     URL    
[36]
Shearman G C, Tyler A I I, Brooks N J, Templer R H, Ces O, Law R V, Seddon J M . J. Am. Chem. Soc., 2009,131:1678. https://www.ncbi.nlm.nih.gov/pubmed/19146371

doi: 10.1021/ja809280r     URL     pmid: 19146371
[37]
Tiberg F, Johnsson M, Jankunec M, Barauskas J . Chem. Lett., 2012,41:1090. http://www.journal.csj.jp/doi/10.1246/cl.2012.1090

doi: 10.1246/cl.2012.1090     URL    
[38]
(a) Schurtenberger P, Scartazzini R, Luisi P L . Rheol. Acta, 1989,28:372 http://link.springer.com/10.1007/BF01336804

doi: 10.1007/BF01336804     URL    
(b) Luisi P L, Scartazzini R, Haering G, Schurtenberger P . Colloid Polym. Sci., 1990,268:356
(c) Schurtenberger P, Scartazzini R, Magid L J, Leser M E, Luisi P L . J. Phys. Chem., 1990,94:3695 https://pubs.acs.org/doi/abs/10.1021/j100372a062

doi: 10.1021/j100372a062     URL    
(d) Schurtenberger P, Magid L J, King S M, Lindner P . J. Phys. Chem., Lindner P. J. Phys. Chem., 1991,95:4173.
[39]
(a) Angelico R, Balinov B, Ceglie A, Olsson U, Palazzo G, Soderman O . Langmuir, 1999,15:1679 https://pubs.acs.org/doi/10.1021/la9813782

doi: 10.1021/la9813782     URL    
(b) Angelico R, Burgemeister D, Ceglie A, Olsson U, Palazzo G, Schmidt C . J. Phys. Chem. B, 2003,107:10325
(c) Olsson U, Börjesson J, Angelico R, Ceglieb A, Palazzo G . Soft Matter, 2010,6:1769 http://xlink.rsc.org/?DOI=b920115g

doi: 10.1039/b920115g     URL    
(d) Angelico R, Amin S, Monduzzi M, Murgia S, Olsson U, Palazzo G . Soft Matter, 2012,8:10941.
[40]
(a) Tung S H, Huang Y E, Raghavan S R . Langmuir, 2007,23:372 https://www.ncbi.nlm.nih.gov/pubmed/17209579

doi: 10.1021/la063037r     URL     pmid: 17209579
(b) Tung S H, Raghavan S R . Langmuir, 2008,24:8405

pmid: 17209579
(c) Lee H Y, Diehn K K, Sun K, Chen T, Raghavan S R . J. Am. Chem. Soc., 2011,133:8461. 8dbc0e0e-45be-4327-9133-2d5ab2028a50http://dx.doi.org/10.1021/ja202412z

doi: 10.1021/ja202412z     URL     pmid: 17209579
[41]
(a) Hashizaki K, Taguchi H, Saito Y . Colloid Polym. Sci., 2009,287:1099 http://link.springer.com/10.1007/s00396-009-2076-2

doi: 10.1007/s00396-009-2076-2     URL     pmid: 23684226
(b) Hashizaki K, Chiba T, Taguchi H, Saito Y . Colloid Polym. Sci., 2009,287:927

pmid: 23684226
(c) Hashizaki K, Taguchi H, Saito Y . Chem. Lett., 2009,38:1036 http://www.journal.csj.jp/doi/10.1246/cl.2009.1036

doi: 10.1246/cl.2009.1036     URL     pmid: 23684226
(d) Hashizaki K, Watanabe N, Imai M, Taguchi H, Saito Y . Chem. Lett., 2012,41:427

pmid: 23684226
(e) Imai M, Hashizaki K, Taguchi H, Saito Y, Motohashi S . J. Colloid Interface Sci., 2013,403:77. https://www.ncbi.nlm.nih.gov/pubmed/23684226

doi: 10.1016/j.jcis.2013.04.033     URL     pmid: 23684226
[42]
Lin S T, Lin C S, Chang Y Y, Whitten A E, Sokolova A, Wu C M, Ivanov V A, Khokhlov A R, Tung S H . Langmuir, 2016,32:12166. https://www.ncbi.nlm.nih.gov/pubmed/27802053

doi: 10.1021/acs.langmuir.6b03449     URL     pmid: 27802053
[43]
Hashizaki K, Imai M, Yako S, Tsusaka H, Sakanishi Y, Saito Y, Fujii M . J. Oleo Sci., 2017,66:997. https://www.ncbi.nlm.nih.gov/pubmed/28794316

doi: 10.5650/jos.ess17091     URL     pmid: 28794316
[44]
Cautelaa J, Giustinia M, Pavela N V, Palazzob G, Galantini L . Colloids Surf. A, 2017,532:411. https://linkinghub.elsevier.com/retrieve/pii/S0927775717303849

doi: 10.1016/j.colsurfa.2017.04.052     URL    
[45]
Tung S H, Huang Y E, Raghavan S R . Soft Matter, 2008,4:1086. http://xlink.rsc.org/?DOI=b718145k

doi: 10.1039/b718145k     URL    
[46]
Hellweg T, Eimer W . Colloids Surf. A, 1998,136:97. https://linkinghub.elsevier.com/retrieve/pii/S0927775797003075

doi: 10.1016/S0927-7757(97)00307-5     URL    
[47]
Shrestha L K, Yamamoto M, Arima S, Aramaki K . Langmuir, 2011,27:2340. https://www.ncbi.nlm.nih.gov/pubmed/21338089

doi: 10.1021/la104884j     URL     pmid: 21338089
[48]
Aramaki K, Ooishi K, Fujii M, Ariga K, Shrestha L K . Langmuir, 2018,34:8670. https://www.ncbi.nlm.nih.gov/pubmed/29940738

doi: 10.1021/acs.langmuir.8b01632     URL     pmid: 29940738
[49]
Kunieda H, Nakamura K, Infante M R, Solans C . Adv. Mater., 1992,4:291.
[50]
Tung S H, Lee H Y, Raghavan S R . J. Am. Chem. Soc., 2008,130:8813. https://www.ncbi.nlm.nih.gov/pubmed/18543921

doi: 10.1021/ja801895n     URL     pmid: 18543921
[51]
Horie W, Olsson U, Aramaki K . J. Desper. Sci. Technol., 2017,38:1804.
[52]
Martiel I, Sagalowicz L, Mezzenga R . Langmuir, 2013,29:15805. https://www.ncbi.nlm.nih.gov/pubmed/24295511

doi: 10.1021/la404307x     URL     pmid: 24295511
[53]
Rodriguez Abreu C, Shrestha L K, Varade D, Aramaki K, Maestro A, Quintela A L, Solans C . Langmuir, 2007,23:11007. https://www.ncbi.nlm.nih.gov/pubmed/17910486

doi: 10.1021/la701722f     URL     pmid: 17910486
[54]
May A, Aramaki K, Gutierrez J M . Langmuir, 2011,27:2286. https://www.ncbi.nlm.nih.gov/pubmed/21288036

doi: 10.1021/la104539q     URL     pmid: 21288036
[55]
Alexandridis P, Olsson U, Lindman B . Langmuir, 1998,14:2627.
[56]
Amar-Yuli I, Garti N . Colloids Surf. B, 2005,43:72. https://www.ncbi.nlm.nih.gov/pubmed/15921902

doi: 10.1016/j.colsurfb.2005.03.011     URL     pmid: 15921902
[57]
Amar Yuli I, Wachtel E, Shalev D E, Moshe H, Aserin A, Garti N . J. Phys. Chem. B, 2007,111:13544. https://www.ncbi.nlm.nih.gov/pubmed/17988117

doi: 10.1021/jp076662t     URL     pmid: 17988117
[58]
Amar Yuli I, Wachtel E, Shoshan E B, Danino D, Aserin A, Garti N . Langmuir, 2007,23:3637. https://www.ncbi.nlm.nih.gov/pubmed/17328564

doi: 10.1021/la062851b     URL     pmid: 17328564
[59]
Pouzot M, Mezzenga R, Leser M, Sagalowicz L, Guillot S, Glatter O . Langmuir, 2007,23:9618. https://www.ncbi.nlm.nih.gov/pubmed/17696371

doi: 10.1021/la701206a     URL     pmid: 17696371
[1] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[2] 刘宁, 刘水林, 伍素云, 付琳, 吴智, 李来丙. 金属基介孔固体碱催化剂的制备与应用[J]. 化学进展, 2020, 32(5): 536-547.
[3] 冯盛, 杨芳, 刘梦瑶, 范红显, 徐念. 抗癌药物多烯紫杉醇载体[J]. 化学进展, 2019, 31(2/3): 368-380.
[4] 赵剑曦. 表面活性剂在非极性有机溶剂中的复杂反相聚集体[J]. 化学进展, 2015, 27(2/3): 168-173.
[5] 周妍, 赵雪冰, 刘德华. 非离子型表面活性剂对木质纤维素酶催化水解的影响及机理[J]. 化学进展, 2015, 27(11): 1555-1565.
[6] 张文彬, 王晓曼, 王晓威, 刘栋, 韩帅元, 程正迪. 基于分子纳米粒子的巨型分子[J]. 化学进展, 2015, 27(10): 1333-1342.
[7] 赵剑曦. Gemini表面活性剂:联接链在自组织中的作用及意义[J]. 化学进展, 2014, 26(08): 1339-1351.
[8] 陈景飞, 郝京诚. 表面活性剂溶液行为的粗粒化模拟[J]. 化学进展, 2012, (10): 1890-1896.
[9] 赵学艳, 郑利强, 曹桂荣, 肖瑞杰. 离子液体参与构建的胶束[J]. 化学进展, 2012, 24(05): 686-695.
[10] 赵剑曦, 谢丹华. 阴离子蠕虫胶束[J]. 化学进展, 2012, 24(04): 456-462.
[11] 孟雅莉, 李臻, 陈静, 夏春谷. 离子液体微乳液体系的应用研究[J]. 化学进展, 2011, 23(12): 2442-2456.
[12] 张永民, 郭赞如, 张继超, 冯玉军, 王碧清, 王九霞. 智能型蠕虫状胶束体系[J]. 化学进展, 2011, 23(10): 2012-2020.
[13] 王九霞 苏鑫 Philip G. Jessop 冯玉军. CO2开关型溶剂、溶质及表面活性剂*[J]. 化学进展, 2010, 22(11): 2099-2105.
[14] 吕志卿 吴连斌 蒋剑雄 陈遒. 桥联型有机-杂化介孔材料(PMOs)[J]. 化学进展, 2010, 22(06): 1152-1160.
[15] 解战峰,冯玉军. 环境刺激响应型表面活性剂* [J]. 化学进展, 2009, 21(6): 1164-1170.