化学进展 2019, Vol. 31 Issue (5): 752-759 DOI: 10.7536/PC180904 前一篇   后一篇

• •


展侠1,2,**(), 孙晓芳1, 徐恒俐1, 李继定2   

  1. 1. 中国轻工业清洁生产和资源综合利用重点实验室 北京工商大学 北京 100048
    2. 清华大学化学工程联合国家重点实验室 北京 100084
  • 收稿日期:2018-09-05 出版日期:2019-05-15 发布日期:2019-03-21
  • 通讯作者: 展侠
  • 基金资助:
    北京市自然科学基金委-北京市教委联合资助项目(KZ201910011012); 化学工程联合国家重点实验室开放基金(SKL-ChE-18A01); 国家自然科学基金项目(21736001); 国家自然科学基金项目(21776153); 国家自然科学基金项目(21206001)

Membrane Materials for Desulfurization of Gasoline via Pervaporation

Xia Zhan1,2,**(), Xiaofang Sun1, Hengli Xu1, Jiding Li2   

  1. 1. Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry,Beijing Technology and Business University,Beijing 100048,China
    2. State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2018-09-05 Online:2019-05-15 Published:2019-03-21
  • Contact: Xia Zhan
  • About author:
  • Supported by:
    Beijing Natural Science Committee-Beijing Education Committee Joint Foundation(KZ201910011012); State Key Laboratory of Chemical Engineering(SKL-ChE-18A01); National Natural Science Foundation of China(21736001); National Natural Science Foundation of China(21776153); National Natural Science Foundation of China(21206001)


The membrane based pervaporation process for sulfur removal from gasoline is a new kind of desulfurization technology, which maintains distinct advantages such as low investment and operating cost, low octane value loss, etc. The research background of pervaporation desulphurization is briefly introduced. Based on solution-diffusion model, the selection of polymer membrane materials used for desulfurization is analyzed under the guidance of solubility parameter theory. Based on the research progress of pervaporation desulfurization membranes reported in recent 20 years, the polymeric membrane materials and inorganic/organic hybrid membrane materials used for desulfurization are introduced in detail, including polydimethylsiloxane, polyethylene glycol, polyimide, polyether amide, cellulose acetate, poly-phosphate nitrile, etc. The structural characteristics, modification methods and the relationship between structure and properties of membrane materials are also discussed. The desulfurization performances of different membrane materials are compared and the primary challenge for advancement of pervaporation desulfurization membrane is summarized. Finally, the prospect and research direction of pervaporation desulfurization are proposed.

表1 常见主要硫分及烷烃的溶解度参数及其各分量[1,2,3]
Table 1 Solubility parameters of typical sulfur species in FCC gasoline[1,2,3]
表2 聚合物膜材料的溶解度参数及其各分量[1,2,3]
Table 2 Solubility parameters of typical polymeric membrane materials[1,2,3]
图1 PDMS/BTESE有机硅复合膜的结构示意图[11]
Fig. 1 Schematic structure of the PDMS/BTESE-derived organosilica hybrid membrane[11]
图2 SiO2/PDMS纳米复合膜的制备[16]
Fig. 2 Fabrication of PDMS-SiO2 nanocomposite membranes[16]
图3 Ag+@COF/ PEBAX复合膜的渗透汽化原理图[29]
Fig. 3 Schematic diagram of hybrid films by pervaporation[29]
图4 PPP表面修饰离子变化示意图[40]
Fig. 4 Schematic for ion exchange treatment on modified PPP membrane surface[40]
图5 文献报道渗透汽化脱硫性能对比
Fig. 5 Comparison of pervaporation desulfurization performances reported in literatures
Fihri A, Mahfouz R, Shahrani A, Taie I, Alabedi G . Chem. Eng. Process., 2016,107:94.
Mortaheb H R, Ghaemmaghami F A, Mokhtarani B . Chem. Eng. Res. Des., 2012,90:409.
Lin L G, Zhang Y Z, Kong Y . Fuel, 2009,88:1799.
White L S . J. Membr. Sci., 2006,286(1):26.
Lin L G, Kong Y, Wang G, Qu H M, Yang J R, Shi D Q . J. Membr. Sci., 2006,285(1/2):144.
Li B, Xu D, Jiang Z Y, Zhang X F, Liu W P, Dong X . J. Membr. Sci., 2008,322(2):293.
Liu G P, Wei W, Jin W Q, Xu N P . Chinese J. Chem. Eng., 2012,20(1):62.
Chen J, Li J, Qi R B, Ye H, Chen C X . J. Membr. Sci., 2008,322(1):113. https://linkinghub.elsevier.com/retrieve/pii/S0376738808004651

doi: 10.1016/j.memsci.2008.05.032     URL    
Chen J, Li J D, Qi R B, Ye H . Appl. Biochem. Biotechnol., 2010,160(2):486. https://www.ncbi.nlm.nih.gov/pubmed/18830823

doi: 10.1007/s12010-008-8368-z     URL     pmid: 18830823
Liu L L, Han X L, Hu W L, Zhao B X, Fan A . Org. Lett., 2017,57(10):1127.
Xu R, Zou L, Lin P, Zhang Q, Zhong J . Fuel Processing Technology, 2016,154:188. https://linkinghub.elsevier.com/retrieve/pii/S0378382016303836

doi: 10.1016/j.fuproc.2016.08.031     URL    
Qi R B, Wang Y J, Chen J, Li J D, Zhu S L . Sep. Purif. Technol., 2007,57(1):170. https://linkinghub.elsevier.com/retrieve/pii/S1383586607001761

doi: 10.1016/j.seppur.2007.04.001     URL    
Cao R J, Zhang X F, Wu H, Wang J T, Liu X F, Jiang Z Y . Journal of Hazardous Materials, 2011,187(1):324.
Nair S, Tatarchuk B J . Fuel, 2010,89(11):3218.
Han X L, Sun H X, Liu L L, Wang Y Q, He G H, Li J D . Sep. Purif. Technol., 2019,217:86. https://linkinghub.elsevier.com/retrieve/pii/S1383586618330156

doi: 10.1016/j.seppur.2019.01.075     URL    
Li B, Liu W P, Wu H, Yu S N, Cao R J, Jiang Z Y . J. Membr. Sci., 2012,(415/416):278.
Xu R, Liu G P, Dong X L, Jin W Q . Desalination, 2010,258(1):106.
Yang D, Yang S, Jiang Z Y, Yu S N, Zhang J L, Pan F S, Cao X Z, Wang B Y, Yang J . Membr. Sci., 2015,487:152.
Yu S N, Pan F S, Yang S, Di H, Jiang Z Y, Wang B Y, Liu Z X, Cao X Z . Chem. Eng. Sci., 2015,135:479.
Yu S N, Jiang Z Y, Ding H, Pan F S, Wang B Y, Yang J, Cao X Z . J. Membr. Sci., 2015,481:73.
Zhang Q G, Fan B C, Liu Q L, Zhu A M, Shi F F . J. Membr. Sci., 2011,366:335.
Qi R B, Wang Y J, Chen J, Li J D, Zhu S . Sep. Purif. Technol., 2007,295:114.
Liu W P, Li B, Cao R, Jiang Z Y, Yu S N, Liu G H, Wu H . J. Membr. Sci., 2011,378(1/2):382.
Rychlewska K, Kujawski W, Konieczny K . Chemical Engineering Journal, 2017,309:435.
Li W D, Pan F S, Song Y M, Wang M D, Wang H J, Walker S, Wu H, Jiang Z Y . Chinese Journal of Chemical Engineering, 2017,25:1563.
Ding H, Pan F S, Mulalic E, Gomaa H, Li W D, Yang H, Wu H, Jiang Z Y, Wang B Y, Cao X Z, Zhang P . J. Membr. Sci., 2017,526:94.
Pan F S, Ding H, Li W D, Song Y M, Yang H, Wu H, Jiang Z Y, Wang B Y, Cao X Z . J. Membr. Sci., 2017,545:29.
Yu S N, Jiang Z Y, Yang S, Di H, Zhou B F, Gu K, Yang D, Pan F S, Wang B Y, Wang S, Cao X Z . J. Membr. Sci., 2016,514:440.
Pan F S, Wang M D, Ding H, Song Y M, Li W D, Hu H, Jiang Z Y, Wang B Y, Cao X Z . J. Membr. Sci., 2018,552:1.
Pan F S, Li W D, Zhang Y, Sun J, Wang M D, Wu H, Jiang Z H . AIChE J., 2019,65(1):196.
Lin L G, Wang G, Qu H M, Yang J R, Wang Y F, Shi D Q, Kong Y . J. Membr. Sci., 2006,280(1/2):651.
Lin L G, Kong Y, Xie K K, Lu F W, Liu R K, Guo L, Shao S, Yang J R, Shi D Q, Zhang Y Z . Sep. Purif. Methods., 2008,61(3):293.
Hu W L, Han X L, Liu L L, Zhang X, Xu J Q, Wang B Y, Zhang P, Cao X Z . Can. J. Chem. Eng. 2017,95:364.
Yang Z J, Zhang W V, Li J D, Chen J . Desalin. Water. Treat., 2012,46(1/3):321.
Han X L, Hu T T, Wang Y, Chen H Y, Wang Y Q, Yao R Q, Ma X X, Li J D, Li X F . Sep. Purif. Technol., 2018, https://doi.org/10.1016/j.seppur.2018.02.035 https://doi.org/10.1016/j.seppur.2018.02.035
Hou Y F, Liu M, Huang Y Q, Zhao L L, Wang J F, Cheng Q, Niu Q S . J. Membr. Sci., 2016,134(6):43409.
Sha S, Kong Y, Yang J R . J. Membr. Sci., 2012,415/416(10):835. https://linkinghub.elsevier.com/retrieve/pii/S0376738812004607

doi: 10.1016/j.memsci.2012.06.001     URL    
Sha S, Kong Y, Yang J R . Energ Fuel., 2012,26(11):6925. e0aad2ea-4d80-4700-9efb-e3e751c28f8ahttp://dx.doi.org/10.1021/ef300986n

doi: 10.1021/ef300986n     URL    
Lu F W, Kong Y, Lv H L, Ding J, Yang J R . Adv. Mater. Res., 2011,150/151:317.
Yang Z J, Zhang W, Wang T, Li J D . J. Membr. Sci., 2014,454(6):463. https://linkinghub.elsevier.com/retrieve/pii/S0376738813009897

doi: 10.1016/j.memsci.2013.12.036     URL    
Yang Z J, Zhang W Y, Li J D, Chen J X . Sep. Purif. Methods., 2012,93(3):15.
Yang Z J, Wang Z Q, Li J D, Chen J X . RSC Adv., 2012,2(30):11432. http://xlink.rsc.org/?DOI=c2ra21418k

doi: 10.1039/c2ra21418k     URL    
Yang Z J, Wang T, Zhan X, Li J D, Chen J X . Ind. Eng. Chem. Res., 2013,52(38):13801. https://pubs.acs.org/doi/10.1021/ie402022a

doi: 10.1021/ie402022a     URL    
Liu G P, Huan W S, Shen J, Li Q Q, Huang Y H, Jin W Q, Lee K R, Lai J Y . J. Mater. Chem. A, 2015,3(8):4510. http://xlink.rsc.org/?DOI=C4TA05881J

doi: 10.1039/C4TA05881J     URL    
[1] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[2] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[3] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[4] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[5] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[6] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[7] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[8] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[9] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[10] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[11] 刘育坚, 刘智敏, 许志刚, 李攻科. 搅拌棒吸附萃取技术[J]. 化学进展, 2020, 32(9): 1334-1343.
[12] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[13] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
[14] 陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 锂电池用全固态聚合物电解质[J]. 化学进展, 2020, 32(4): 481-496.
[15] 李梁君, 邓建辉, 郭建维, 岳航勃. 金刚烷基微孔有机聚合物的合成与性能[J]. 化学进展, 2020, 32(2/3): 190-203.