English
新闻公告
More
化学进展 2018, Vol. 30 Issue (9): 1257-1297 DOI: 10.7536/PC180811 前一篇   后一篇

• 专论 •

Ullmann反应百年纪念及近期复兴——兼及碳-杂原子键的形成

戴立信*   

  1. 中国科学院上海有机化学研究所 金属有机化学国家重点实验室
  • 收稿日期:2018-07-27 修回日期:2018-08-15 出版日期:2018-09-15 发布日期:2018-09-25
  • 通讯作者: 戴立信 E-mail:dailx@sioc.ac.cn
  • 基金资助:
     

Ullmann Reaction,A Centennial Memory and Recent Renaissance——Related Formation of Carbon-Heteroatom Bond

Lixin Dai*   

  1. State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Received:2018-07-27 Revised:2018-08-15 Online:2018-09-15 Published:2018-09-25
  • Supported by:
     
1901年Ullmann报道了一个形成sp2C—C键的偶联反应,1903年报道了苯胺的N-芳基化反应,1905年又报道了苯酚的O-芳基化的缩合反应。这些经典的反应进入催化领域且范围又有扩展,但由于反应条件苛刻等缺点,也限制了反应的应用。20世纪末,在多位科学家的努力下,发现具有一定结构的化合物——配体,对于铜催化的Ullmann缩合反应(或交叉偶联反应)具有配体加速催化反应(LAC)的效果,于是引发了对这一反应的研究热潮。本文对于各种配体的选用,特别是草酰二胺类,对于无机碱,特别是有机离子性碱的选用以及铜源、配体的负载化、溶剂的考量和绿色化等方面进行了较为详细的讨论。鉴于在2004年已有单篇论文提出了Ullmann反应的复兴,Beletskaya则提出了精辟的问题:这就是复兴吗?在金属催化的交叉偶联反应中,铜催化是否已成为钯催化的有力竞争者?Beletskaya在历数了铜催化的优点之后,也深刻地列出了铜催化的五大不足之处。经过了十余年众多化学家的成功发展,本文对此给出了明确的回答。
In 1901, F. Ullmann reported a new coupling reaction for the formation of sp2C-sp2C bond between two molecules of aryl iodide. In 1903, another paper of the N-arylation of aniline with aryl iodide was published. In 1905, the O-arylation of aryl bromide with the potassium salt of phenol was disclosed. These reactions, one coupling reaction and two condensations (or cross coupling reactions) played great roles in the development of aromatic chemistry during the turning from 19th to 20th century, especially in the field of dyestuff industry. Despite of these applications, the very harsh reaction condition, high temperature (~200℃) for long reaction time(one or two days) of the classical reaction of Ullmann condensation usually limited their applications.
By the efforts of several chemists in the end of last century, the acceleration effect of the Cu catalyzed Ullmann condensation by compounds with certain structure units or ligands was found. Thereafter, a surge of research interest was directed to this reaction. In this paper, the selection of various types of ligands, especially the oxalyldiamide type, the consideration of bases to be used especially the organic ionic bases, the immobilization of cooper sources and ligands and the green chemistry in Ullmann condensation are reviewed.
In 2004, Irina Beletskaya queried incisively and adequately a question:Is this a renaissance? Or "In the field of metal catalyzed cross coupling reactions, is the copper catalyzed reaction already a strong competitor to the palladium catalyzed reaction?" Beletskaya pointed out profoundly the five major drawbacks of copper catalyzed reaction. After more than ten years oxtensive investigation, a clear cut answer to this question was made as a result of several hundreds research papers dealing with the Ullmann cross coupling reactions.
Contents
1 Historical review
1.1 Name and scope of ullmann reaction
1.1.1 Ullmann reaction or ullmann coupling reaction
1.1.2 Ullmann condensation
1.2 Merits of Fritz ullmann
1.3 The follow-up achievements
2 The improvements of Ullmann condensation:the ligand accelerated Ullmann condensation
2.1 Acceleration effect by amino-acids
2.2 N, N-bidentate ligands——the phenanthrolines
2.3 N, N-bidentate ligands——the 1,2-diamines
2.4 O, O-bidentate ligands
2.5 O, N-bidentate ligands
2.5.1 Salicyl type-N, O-ligands and a tetra-dentate schiff base ligand
2.5.2 Amino alcohol ligands
2.5.3 The other O,N-bidentate ligands
2.6 Phosphorous containing ligands
2.7 The ligands used in the direct hydroxylation and direct amination of aryl Halides.
2.8 Is ligand necessary or is ullmann condensation really a "ligand accelerated catalysis"?
3 The improvements of Ullmann condensation by parameters other than ligands
3.1 The modification and loading of copper sources
3.2 The consideration of bases used
3.3 The technologies of micro-wave and supersonic used in the acceleration of rates of Ullmann condensations
3.4 The selection of solvent
4 The question of Irina Beletskaya
4.1 Five major points of Beletskaya's question
4.2 The re-examination of the cu-catalyzed Ullmann condensation after the query by Beletskaya
4.2.1 To moderate the reaction condition
4.2.2 To reduce the amounts of catalyst and ligands used
4.2.3 To make the reaction to be sustainable
4.3 The discovery of excellent ligands type——the oxalyl diamides
4.3.1 Breakthrough——the use of aryl chlorides
4.3.2 Broadening the scope of using aryl chlorides
4.3.3 The reduction of amounts of catalyst with oxalyl diamide
4.4 A difficult target for Ullmann condensation——the N-arylation of imidazole
4.5 Answer to the question of Beletskaya
4.5.1 Practical application of Ullmann condensation
4.5.2 The reduction of amounts of catalyst used
4.5.3 The use of aryl chloride
4.5.4 Tosylate or triflate as leaving group.
4.5.5 The advancement of green chemistry in Ullmann condensation
4.5.5.1 The reusable catalytic system
4.5.5.2 The use of water as solvent
4.6 Concluding remarks
5 Acknowledgements

中图分类号: 

()
[1] (a) Comprehensive Organic Name Reactions and Reagents, by Wang Z, Hoboken, Wiley, 2008.;
(b) Name Reactions in Organic Chemistry, by Surrey A R, 2nd Ed. New York, 1961.;
(c) Name Reactions and Reagents in Organic Synthesis, by Mundy B, Ellerd M G, Favaloro F G Jr. 2nd Ed, Hoboken, Wiley, 2005.
[2] Evano G, Blanchard N. Copper Mediated Cross Coupling Reactions, Wiley, Hoboken, New Jersey, 2013.
[3] Hurtley W R H. J. Chem. Soc., 1929, 1870.
[4] Jourdan F. Ber. Dtsch. Chem. Ges., 1885, 18:1444.
[5] Graebe C, Ullmann F. Liebigs Ann. Chem., 1896, 291:16.
[6] Ullmann F, Bielecki J. Ber. Dtsch. Chem. Ges., 1901, 34:2174.
[7] Heck R F. J. Am. Chem. Soc., 1968, 90:5518.
[8] Miyaura N, Yanagi T, Suzuki A. Synth. Comm., 1981, 11:513.
[9] Negishi E I, Baba S. J. Chem. Soc. Chem. Commun., 1976, 596.
[10] (a) Tamao K, Sumitani K, Kiso Y, Zembayashi M, Fujioka A, Kodama S I, Nakajima I, Minato A, Kumada M. Bull. Chem. Soc. Jpn., 1976, 49:1958.;
(b) Milstein D, Stille J K. J. Am. Chem. Soc., 1978, 100:3636.
[11] Ullmann F. Ber. Dtsch. Chem. Ges., 1903, 36:2382.
[12] Ullmann F, Sponagel P. Ber. Dtsch. Chem. Ges., 1905, 38:2211.
[13] Goldberg I. Ber. Dtsch. Chem. Ges., 1906, 39:1691.
[14] Goldberg I. Ber. Dtsch. Chem. Gesel., 1907, 40:4541.
[15] Meyer K H. Helv. Chim. Acta, 1940, 23:93.
[16] Ullmann F, Wenner P. Ber. Dtsch. Chem. Ges., 1900, 33:2476.
[17] (a) Rosenmund K W, Struck E. Ber. Dtsch. Chem. Ges., 1919, 52:1749.;
(b) Rosenmund K W, Harms H. Ber. Dtsch. Chem. Ges., 1920, 53:2226.
[18] Lindley J. Tetrahedron, 1984, 40:1433.
[19] (a) Gauthier S, Frechet J M J. Synthesis, 1987, 383.;
(b) Bryant R J, Patent U K. Chem. Abstract, 1982, 97:215738.;
(c) Weingarten H. J. Org. Chem., 1964, 29:3624.;
(d) Nicolaou K C, Boddy C N C, Natarajan S, Yue T Y, Li H, Brasa S, Ramanjulu J M. J. Am. Chem. Soc., 1997, 119:3421.;
(e) Marcoux J F, Doye S, Buchwald S L. J. Am. Chem. Soc., 1997, 119:10539.;
(f) Capdevielle P, Maumy M. Tetrahedron Lett., 1993, 34:1007.
[20] (a) Chan D M T, Monaco K L, Wang R P, Winters M P. Tetrahedron Lett. 1998, 39:2933.;
(b) Evans D A, Katz J L, West T R. Tetrahedron Lett. 1998, 39:2937.;
(c) Lam P Y S, Clark C G, Saubern S, Adams J, Winters M P, Chan D M T, Combe A. Tetrahedron Lett., 1998, 39:2941.
[21] Wolfe J P, Wagaw S, Marcoux J F, Buchwald S L. Acc. Chem. Res., 1998, 31:805.
[22] (a) Wagaw S, Buchwald S L. J. Org. Chem. 1996, 61:7240.;
(b) Guram A S, Rennels R A, Buchwald S L. Angew. Chem. Int. Ed., 1995, 34:1348.
[23] (a) Hartwig J F. Acc. Chem. Res., 1998, 31:852.;
(b) Hartwig J F, Paul F. J. Am. Chem. Soc., 1995, 117:5373.;
(c) Louie J, Hartwig J F. Tetrahedron Lett., 1995, 36:3609.
[24] Littke A F, Fu G C. Angew. Chem. Int. Ed., 2002, 41:4176.
[25] Ma D, Yao J. Tetrahedron Assymetry, 1996, 7:3075.
[26] Davydov D V, Beletskaya I P. Russian Chem. Bull., 1995, 44:1139.
[27] Ma D, Zhang Y, Yao J, Wu S, Tao F. J. Am. Chem. Soc., 1998, 120:12459.
[28] Ma D, Xia C. Org. Lett., 2001, 3:2583.
[29] Clement J B, Hayes J F, Sheldrake H M, Sheldrake P W, Wells A S. SynLett., 2001, 1423.
[30] Andrews I P, Atkins R J, Badham N F, Bellingham R K, Breen G F, Carey J S, Etridge S K, Hayes J F, Hussain N, Morgan D O, Share A C, Smith S A C, Walsgrove T C, Wells A S. Tetrahedron Lett., 2001, 42:4915.
[31] Kurokawa M, Nakanishi W, Ishikawa T. Heterocycles, 2007, 71:847.
[32] (a) Ma D, Cai Q. Org. Lett., 2003, 5:3799.;
(b) Cai Q, Zhu W, Zhang H, Zhang Y, Ma D. Synthesis, 2005, 496.
[33] Ma D, Cai Q. Org. Lett., 2003, 5:2453.
[34] Zhang H, Cai Q, Ma D. J. Org. Chem., 2005, 70:5164.
[35] (a) Zhang H, Ma D, Cao W. Synlett, 2007, 243.;
(b) Cai Q, Zou B, Ma D. Angew. Chem. Int. Ed., 2006, 45:1276.
[36] Goodbrand H B, Hu N X. J. Org. Chem., 1999, 64:670.
[37] Berrisford D J, Bolm C, Sharpless K B. Angew. Chem. Int. Ed., 1995, 34:1059.
[38] Corey E J, Noe M C. J. Am. Chem. Soc., 1996, 118:11038.
[39] Kelkar A A, Patil N M, Chaudhari R V. Tetrahedron Lett., 2002, 43:7143.
[40] Kiyomori A, Marcoux J F, Buchwald S L. Tetrahedron Lett., 1999, 40:2657.
[41] Wolter M, Nordmann G, Job G E, Buchwald S L. Org. Lett., 2002, 4:973.
[42] Hosseinzadeh R, Tajbakhsh M, Mohadjerani M, Alikarami M. Synlett, 2005, 1101.
[43] Altman R A, Shafir A, Choi A, Lichtor P A, Buchwald S L. J. Org. Chem., 2008, 73:284.
[44] Kuil M, Bekedam E K, Visser G M, van den Hoogenband A, Terpstra J W, Kamer P C J, van Leeuwen P W N M, van Strijdonck G P F. Tetrahedron Lett., 2005, 46:2405.
[45] Altman R A, Buchwald S L. Org. Lett., 2006, 8:2779.
[46] Altman R A, Koval E D, Buchwald S L. J. Org. Chem., 2007, 72:6190.
[47] (a) Klapars A, Antilla J C, Huang X, Buchwald S L. J. Am. Chem. Soc., 2001, 123:7727.;
(b) Klapers A, Huang X, Buchwald S L. J. Am. Chem. Soc., 2002, 124:7421.
[48] (a) Mallesham B, Rajesh B M, Reddy P R, Srinivas D, Trehan S. Org. Lett., 2003, 5:963.;
(b) Wang C, Liu L, Wang W, Ma D S, Zhang H. Molecules, 2010, 15:1154.
[49] Antilla J C, Klapars A, Buchwald S L. J. Am. Chem. Soc., 2002, 124:11684.
[50] Antilla J C, Baskin J M, Barder T E, Buchwald S L. J. Org. Chem., 2004, 69:5578.
[51] Evindar G, Batey R A. Org. Lett., 2003, 5:133.
[52] Kang S K, Kim D H. Park, J-N. 2002, 427.
[53] Alcalde E, Dinares I, Rodríguez S, de Miguel C G. Eur. J. Org. Chem., 2005, 1637.
[54] Lang F, Zewge D, Houpis I N, Volante R P. Tetrahedron Lett., 2001, 42:3251.
[55] Kwong F Y, Klapars A, Buchwald S L. Org. Lett., 2002, 4:581.
[56] Zhu D, Wang R, Mao J, Xu L, Wu F, Wan B. J. Mol. Cat. A Chemical, 2006, 256:256.
[57] Jiang D, Fu H, Jiang Y, Zhao Y. J. Org. Chem., 2007, 72:672.
[58] Buck E, Song Z J, Tschaen D, Dormer P G, Volante R P, Reider P J. Org. Lett., 2002, 4:1623.
[59] (a)Shafir A, Buchwald S L. J. Am. Chem. Soc., 2006, 128:8742.;
(b) Lv x, Bao W. J. Org. Chem., 2007, 72:3863.
[60] Xia N, Taillefer M. Chem. Eur. J., 2008, 14:6037.
[61] Huang Y Z, Gao J, Ma H, Miao H, Xu J. Tetrahedron Lett., 2008, 49:948.
[62] Xi Z, Liu F, Zhou Y, Chen W. Tetrahedron, 2008, 64:4254.
[63] Cristau H J, Cellier P P, Spindler J F, Taillefer M. Eur. J. Org. Chem., 2004, 695.
[64] Cristau H J, Cellier P P, Spindler J F, Taillefer M. Chem. Eur. J., 2004, 10:5607.
[65] Antilla J C, Baskin J M, Barder T E, Buchwald S L. J. Org. Chem., 2004, 69:5578.
[66] Ouali A, Spindler J F, Cristau H J, Taillefer M. Adv. Synth. Catal., 2006, 348:499.
[67] Jiang Q, Jiang D, Jiang Y, Fu H, Zhao Y. Synlett., 2007, 12:1836.
[68] (a) Lu Z, Twieg R J, Huang S D. Tetrahedron Lett., 2003, 44:6289.;
(b) Lu Z, Twieg R J. Tetrahedron, 2005, 61:903.
[69] Shafir A, Lichtor P A, Buchwald S L. J. Am. Chem. Soc., 2007, 129:3490.
[70] (a) Liu L, Frohn M, Xi N, Dominguez C, Hungate R, Reider J. J. Org. Chem., 2005, 70:10135.;
(b) Xu L, Zhu D, Wu F, Wang R, Wan B. Tetrahedron, 2005, 61:6553.
[71] Rao H, Jin Y, Fu H, Jiang Y, Zhao Y. Chem. Eur. J., 2006, 12:3636.
[72] (a) Patil N M, Kelkar A A, Nabi Z, Chaudhari R V. Chem. Commun., 2003, 2460.;
(b) Patil N M, Kelkar A A, Nabi Z, Chaudhari R V. Chem. Commun., 2004, September, 27th.
[73] (a) Zhang Z, Mao J, Zhu D, Wu F, Chen H, Wan B. Catal. Commun., 2005, 6:784.;
(b) Zhang Z, Mao J, Zhu D, Wu F, Chen H, Wan B. Tetrahedron, 2006, 62:4435.
[74] (a) Gujadhur R, Venkataraman D. Synth. Commun., 2001, 31(18):2865.;
(b) Gujadhur R K, Bates C G, Venkataraman D. Org. Lett., 2001, 3(26):4315.
[75] Cohen T, Cristea I. J. Am. Chem. Soc., 1976, 98:748.
[76] Weingarten H. J. Org. Chem., 1964, 29:3624.
[77] Paine A J. J. Am. Chem. Soc., 1987, 109:1496.
[78] Kormos C M, Leadbeater N E. Tetrahedron, 2006, 62:4728.
[79] (a) Zhao D, Wu N, Zhang S, Xi P, Su X, Lan J, You J. Angew. Chem. Int. Ed., 2009, 48:8729.;
(b) Wang Y, Zhou C, Wang R. Green Chem., 2015, 17:3910.
[80] Tlili A, Xia N, Monnier F, Taillefer M. Angew. Chem. Int. Ed., 2009, 48:8725.
[81] Maurer S, Liu W, Zhang X, Jiang Y, Ma D. Synlett, 2010, 6:976.
[82] Paul R, Ali M A, Punniyamurthy T. Synthesis, 2010, (24):4268.
[83] (a) Yang K, Li Z, Wang Z, Yao Z, Jiang S. Org. Lett., 2011, 13:4340.;
(b) Yang K, Qiu Y, Li Z, Wang Z, Jiang S. J. Org. Chem., 2011, 76:3151.;
(c) Naidu A B, Sekar G. Tetrahedron Lett., 2008, 49:3147.
[84] (a) Thakur K G, Sekar G. Chem. Commun., 2011, 47:6692.;
(b) Song G L, Zhang Z, Da Y X, Wang X C. Tetrahedron, 2015, 71:8823.
[85] Xiao Y, Xu Y, Cheon H S, Chae J. J. Org. Chem., 2013, 78:5804.
[86] Jing L, Wei J, Zhou L, Huang Z, Li Z, Zhou X. Chem. Commun., 2010, 46:4767.
[87] Yang D, Fu H. Chem. Eur. J., 2010, 16:2366.
[88] (a) Correa A, Bolm C. Adv. Synth. Catal., 2007, 349:2673.;
(b) Tao C Z, Li J, Cui X, Fu Y, Guo Q X. Chinese Chem. Lett., 2007, 18:1199.;
(c) Sperotto E, de Vries J G, van Klink G P M, van Koten G. Tetrahedron Lett., 2007, 48:7366.;
(d) Chang J W W, Chee S, Mak S, Buranaprasertsuk P, Chavasiri W, Chan P W H. Tetrahedron Lett., 2008, 49:2018.;
(e) Yamada K, Kubo T, Tokuyama H, Fukuyama T. Synlett., 2002, 231.
[89] Zhu R, Xing L, Wang X, Cheng C, Su D, Hu Y. Adv. Synth. Catal., 2008, 350:1253.
[90] (a) Miao T, Wang L. Tetrahedron Lett., 2007, 48:95.;
(b) Chan C C, Chen Y W, Su C S, Lin H P, Lee C F. Eur. J. Org. Chem., 2011, 7288.
[91] Xu H J, Liang Y F, Cai Z Y, Qi H X, Yang C Y, Feng Y S. J. Org. Chem., 2011, 76:2296.
[92] Li X L, Zhu X Y, Duan T L, Qian Y T. Solid State Commun., 2006, 138:526.
[93] Astruc D, Lu F, Aranzaes J R. Angew. Chem. Int. Ed., 2005, 44:7852.
[94] Chen W, Zhang Y, Zhu L, Lan J, Xie R, You J. J. Am. Chem. Soc., 2007, 129:13879.
[95] Priyadarshini S, Joseph P J A, Kantam M L, Sreedhar B. Tetrahedron, 2013, 69:6409.
[96] Ding G, Han H, Jiang T, Wu T, Han B. Chem. Commun., 2014, 50:9072.
[97] (a) Joseph P J A, Priyadarshin S, Kantam M L, Maheswaran H. Catal. Sci. Technol., 2011, 1:582.;
(b) Yao Z, Wei X. Chin. J. Chem., 2010, 28:2260.;
(c) Yao Z, Wei X. Chin. J. Chem., 2010, 28:2260.
[98] Yang C T, Fu Y, Huang Y B, Yi J, Guo Q X, Liu L. Angew. Chem. Int. Ed., 2009, 48:7398.
[99] Han C, Shen R, Su S, Porco J A. Org. Lett., 2004, 6:27.
[100] Freeman H S, Butler J R, Freedman L D. J. Org. Chem., 1978, 43:4975.
[101] Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J. Tetrahedron Lett., 1986, 27:279.
[102] He H, Wu Y J. Tetrahedron Lett., 2003, 44:3445.
[103] Li F, Wang Q, Ding Z, Tao F. Org. Lett., 2003, 5:2169.
[104] Lange J H M, Hofmeyer L J F, Hout F A S, Osnabrug S J M, Verveer P C, Kruse C G, Feenstra R W. Tetrahedron Lett., 2002, 43:1101.
[105] Pellón Comdom R F, Docampo Palacios M L. Synth. Commun., 2003, 33:921.
[106] He H, Wu Y J. Tetrahedron Lett., 2003, 44:3385.
[107] (a) Carrasco R, Pellón R F, Elgurero J, Goya P, Páez J A. Synthetic Commun., 1989, 19:2077.;
(b)Hanoun J P, Galy J P, Tenaglia A. Synth. Commun., 1995, 25:2443.;
(c) Docampo Palacios M L, Pellón Comdom R F. Synth. Commun., 2003, 33:1771.
[108] Zhao Y, Wang Y, Sun H, Li L, Zhang H. Chem. Commun., 2007, 3186.
[109] Luo Y, Wu J X, Ren R X. Synlett., 2003, 1734.
[110] Chauhan S M S, Jain N, Kumar A, Srinivas K A. Synth. Commun., 2003, 33:3607.
[111] Beletskaya I P, Cheprakov A V. Coord. Chem. Rev., 2004, 248:2337.
[112] Littke A F, Fu G C. Angew. Chem. Int. Ed., 2002, 41:4176.
[113] Huang Y B, Yang C T, Yi J, Deng X J, Fu Y, Liu L. J. Org. Chem., 2011, 76:800.
[114] Wang D, Ding K. Chem. Commun., 2009, 1891.
[115] Tao C Z, Liu W W, Sun J Y, Cao Z L, Zhang Y F. Synthesis, 2010, 8:1280.
[116] Ding X, Huang M, Yi Z, Du D, Zhu X, Wan Y. J. Org. Chem., 2017, 82:5416.
[117] Wang M, Yu H, You X, Wu J,Shang Z. Chin. J. Chem., 2012, 30:2356.
[118] Buchwald S L, Bolm C. Angew. Chem. Int. Ed., 2009, 48:5586.
[119] Larsson P F, Correa A, Carril M, Norrby P O, Bolm C. Angew. Chem. Int. Ed., 2009, 48:5691.
[120] Xie R, Fu H, Ling Y. Chem. Commun., 2011, 47:8976.
[121] Zhu X, Ma Y, Su L, Song H, Chen G, Liang D, Wan Y. Synthesis, 2006, 3955.
[122] Zhu X, Su L, Huang L, Chen G, Wang J, Song H, Wan Y. Eur. J. Org. Chem., 2009, 635.
[123] Huang M, Lin X, Zhu X, Peng W, Xie J, Wan Y. Eur. J. Org. Chem., 2011, 4523.
[124] Kurandina D V, Eliseenkov E V, Khaibulova T S, Petrov A A, Boyarskiy V P. Tetrahedron, 2015, 71:7931.
[125] Xie J, Zhu X, Huang M, Meng F, Chen W, Wan Y. Eur. J. Org. Chem., 2010, 3219.
[126] Halder M, Islam M. M, Ansari Z, Ahammed S, Sen K, Islam S M. ACS Sustainable Chem. Eng., 2017, 5:648.
[127] Durán N, Marcato P D, Durán M, Yadav A, Gade A, Rai M. Appl. Microbiol. Biothch., 2011, 90:1609.
[128] Zhou W, Fan M, Yin J, Jiang Y, Ma D. J. Am. Chem. Soc., 2015, 137:11942.
[129] Zhang Y, Yang X, Yao Q, Ma D. Org. Lett., 2012, 14:3056.
[130] Fan M, Zhou W, Jiang Y, Ma D. Org. Lett., 2015, 17:5934.
[131] Fan M, Zhou W, Jiang Y, Ma D. Angew. Chem. Int. Ed., 2016, 55:6211.
[132] (a) Xia S, Gan L, Wang K, Li Z, Ma D. J. Am. Chem. Soc., 2016, 138:13493.;
(b) Li G, Zhao X, Fang K, Li J, She Y. J. Org. Chem., 2017, 82:8634.;
(c) Chen C W, Chen Y L, Reddy D M, Du K, Li C E, Shih B H, Xue Y J, Lee C F. Chem. Eur. J., 2017, 23:10087.
[133] De S, Yin J, Ma D. Org. Lett., 2017, 19:4864.
[134] Pawar G G, Wu H, De S, Ma D. Adv. Synth. Catal., 2017, 359:1631.
[135] (a) Gao J, Bhunia S, Wang K, Gan L, Xia S, Ma D. Org. Lett., 2017, 19:2809.;(b) Zhai Y, Chen X, Zhou W, Fan M, Lai Y, Ma D. J. Org. Chem., 2017, 82:4964.;
(c) Chem. Eng. News, 2018, 96:35.
[136] Yang M, Liu F. J. Org. Chem., 2007, 72:8969.
[137] Ma H C, Jiang X Z. J. Org. Chem., 2007, 72:8943.
[138] Xue F, Cai C, Sun H, Shen Q, Rui J. Tetrahedron Lett., 2008, 49:4386.
[139] Wan J P, Chai Y F, Wu J M, Pan Y J. Synlett, 2008, 3068.
[140] Wang H, Li Y, Sun F, Feng Y, Jin K, Wang X. J. Org. Chem., 2008, 73:8639.
[141] (a) Cheng C, Sun G, Wan J, Sun C. Synlett, 2009, 2663.;
(b) Liang L, Li Z, Zhou X. Org. Lett., 2009, 11:3294.;
(c) Wang D, Zhang F, Kuang D, Yu J, Li J. Green Chem., 2012, 14:1268.
[142] Chen H, Wang D, Wang X, Huang W, Cai Q, Ding K. Synthesis, 2010, 1505.
[143] Swapna K, Murthy S N. Nageswar Y V D. Eur. J. Org. Chem., 2010, 6678.
[144] Li L, Zhu L, Chen D, Hu X, Wang R. Eur. J. Org. Chem., 2011, 2692.
[145] Yang Q, Wang Y, Yang L, Zhang M. Tetrahedron, 2013, 69:6230.
[146] Wang Y, Zhang Y, Yang B, Zhang A, Yao C. Org. Biomol. Chem., 2015, 13:4101.
[147] Wen M, Shen C, Wang L, Zhang P, Jin J. RSC Adv., 2015, 5:1522.
[148] Bhunia S, Pawar G G, Kunar S V, Jiang Y, Ma D. Angew. Chem. Int. Ed., 2017, 56:16136.
[149] Surry D S, Buchwald S L. Chem. Sci., 2011, 2:27.
[150] Beletskaya I P, Cheprakov A V. Organometallics, 2012, 31:7753.
[1] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[2] 杨连成, 齐向阳, 徐龙鹤. Pd催化交叉偶联P-C键形成反应[J]. 化学进展, 2011, 23(5): 893-902.
[3] 郭兴伟 李志平 李朝军. 交叉脱氢偶联反应*[J]. 化学进展, 2010, 22(07): 1434-1441.
[4] 李湖 施章杰. 基于钯催化的C—H选择性官能团化构建C—C键*[J]. 化学进展, 2010, 22(07): 1414-1433.
[5] 王琦芳,宋肖锴,颜朝国. 丙二腈在多组分反应中的应用* [J]. 化学进展, 2009, 21(05): 997-1007.
[6] 徐峻. 化学多样性空间探索与组合药物设计[J]. 化学进展, 1999, 11(03): 286-.