English
新闻公告
More
化学进展 2018, Vol. 30 Issue (10): 1584-1591 DOI: 10.7536/PC180616 前一篇   后一篇

• 综述 •

用于肿瘤综合治疗的无机纳米材料

胡军, 姚雨竹, 敖艳肖, 杨海, 杨祥良*, 徐辉碧   

  1. 华中科技大学生命科学与技术学院 国家纳米药物工程技术研究中心 武汉 430074
  • 收稿日期:2018-06-11 修回日期:2018-07-28 出版日期:2018-10-15 发布日期:2018-09-25
  • 通讯作者: 杨祥良 E-mail:yangxl@hust.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.81771978)资助

Inorganic Nanomaterials for Tumor Comprehensive Therapy

Jun Hu, Yuzhu Yao, Yanxiao Ao, Hai Yang, Xiangliang Yang*, Huibi Xu   

  1. School of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2018-06-11 Revised:2018-07-28 Online:2018-10-15 Published:2018-09-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 81771978).
无机纳米材料以其独特的纳米特性,在以肿瘤为代表的多种疾病的诊疗一体及综合治疗中具有越来越广泛的应用。本文重点关注该领域代表性的三类材料:超顺磁性氧化铁纳米粒、上转换纳米粒以及贵金属纳米粒,它们分别具有优异的磁学性能、光学性能及热性能,归纳总结了它们在体外检测、活体成像、药物输送以及靶向治疗等方面的应用及其优势与劣势,希望为发展生物相容性更好、诊疗效果更佳的无机纳米材料提供更好参考和建议,促进无机纳米材料的临床转化。
Inorganic nanomaterials are widely applied in the diagnosis and comprehensive therapy of multiple diseases, in particular tumors, because of their unique nano-characters. Superparamagnetic iron oxide nanoparticles, upconversion nanoparticles and noble metal nanoparticles are the representative ones, possessing excellent magnetic, optical and thermal properties respectively. In this review, we focus on the applications of the three kinds of inorganic nanomaterials in bio-detection in vitro, molecular imaging in vivo, targeting anti-tumor drug delivery and tumor therapy. The advantages as well as the limitations of them in tumor theranostics are discussed. By this way, some references and suggestions are provided to develop more biocompatible inorganic nanomaterials with better theranostic effects, which will promote their clinical transformation.
Contents
1 Introduction
2 Superparamagnetic iron oxide nanoparticles
2.1 Separation and detection in vitro
2.2 Magnetic resonance imaging
2.3 Magnetic hyperthermia therapy
3 Upconversion nanoparticles
3.1 Multimodality imaging
3.2 Comprehensive therapy of tumor
4 Noble metal (Au、Pt) nanoparticles
5 Conclusion and outlook

中图分类号: 

()
[1] Hu X X, Wang Y Q, Liu H Y, Wang J, Tan Y N, Wang F B, Yuan Q, Tan W H. Chem. Sci., 2017, 8:466.
[2] Liu W, Nie L, Li F, Aguilar Z P, Xu H, Xiong Y, Fu F, Xu H. Biomater. Sci., 2016, 4:159.
[3] Fang S, Wang C, Xiang J, Cheng L, Song X, Xu L, Peng R, Liu Z. Nano Res., 2014, 7:1327.
[4] Song E Q, Hu J, Wen C Y, Tian Z Q, Yu X, Zhang Z L, Shi Y B, Pang D W. ACS Nano, 2011, 5:761.
[5] Guo P L, Tang M, Hong S L, Yu X, Pang D W, Zhang Z L. Biosens. Bioelectron., 2015, 74:628.
[6] Kim Y T, Kim K H, Kang E S, Jo G, Ahn S Y, Park S H, Kim S I, Mun S, Baek K, Kim B, Lee K, Yun W S, Kim Y H. Bioconjugate Chem., 2016, 27:59.
[7] Wen C Y, Hu J, Zhang Z L, Tian Z Q, Ou G P, Liao Y L, Li Y, Xie M, Sun Z Y, Pang D W. Anal. Chem., 2013, 85:1223.
[8] Wu Z, Zhou C H, Chen J J, Xiong C, Chen Z, Pang D W, Zhang Z L. Biosens. Bioelectron., 2015, 68:586.
[9] Ali Z, Wang J, Tang Y, Liu B, He N, Li Z. Biomater. Sci., 2017, 5:57.
[10] Li C C, Zhang Y, Tang B, Zhang C Y. Chem. Commun., 2018, 54:5839.
[11] Xu D D, Deng Y L, Li C Y, Lin Y, Tang H W. Biosens. Bioelectron., 2017, 87:881.
[12] Yue S, Zhao T, Bi S, Zhang Z. Biosens. Bioelectron., 2017, 98:234.
[13] Liu Z, Zhang L, Yang H, Zhu Y, Jin W, Song Q, Yang X. Anal. Biochem., 2010, 404:127.
[14] Yu Q, Yang H, Feng Y, Yang X, Zhu Y. Acta Trop., 2012, 124:199.
[15] Yu Q, Yang H, Feng Y, Zhu Y, Yang X. Am. J. Trop. Med. Hyg., 2012, 87:689.
[16] Yu Q, Yang H, Guan F, Feng Y, Yang X, Zhu Y. Trans. Roy. Soc. Trop. Med. Hyg., 2014, 108:37.
[17] 胡军(Hu J). 武汉大学博士论文(Doctoral Dissertation of Wuhan University), 2011.
[18] Hu J, Xie M, Wen C Y, Zhang Z L, Xie H Y, Liu A A, Chen Y Y, Zhou S M, Pang D W. Biomaterials, 2011, 32:1177.
[19] Hu J, Wen C Y, Zhang Z L, Xie M, Xie H Y, Pang D W. Biophys. J., 2014, 107:165.
[20] Xie M, Hu J, Wen C Y, Zhang Z L, Xie H Y, Pang D W. Nanotechnology, 2012, 23:035602.
[21] Hu J, Wen C Y, Zhang Z L, Xie M, Hu J, Wu M, Pang D W. Anal. Chem., 2013, 85:11929.
[22] Xie H, Zhu Y, Jiang W, Zhou Q, Yang H, Gu N, Zhang Y, Xu H, Xu H, Yang X. Biomaterials, 2011, 32:495.
[23] Jiang L, Zhou Q, Mu K, Xie H, Zhu Y, Zhu W, Zhao Y, Xu H, Yang X. Biomaterials, 2013, 34:7418.
[24] Qi H, Li Z, Du K, Mu K, Zhou Q, Liang S, Zhu W, Yang X, Zhu Y. Nanoscale Res. Lett., 2014, 9:595.
[25] Liang S, Zhou Q, Wang M, Zhu Y, Wu Q, Yang X. Int. J. Nanomed., 2015, 10:2325.
[26] Zhou Q, Mu K, Jiang L, Xie H, Liu W, Li Z, Qi H, Liang S, Xu H, Zhu Y, Zhu W, Yang X. Int. J. Nanomed., 2015, 10:1805.
[27] Chen Y, Zhou Q, Li X, Wang F, Heist K, Kuick R, Owens S R, Wang T D. Bioconjugate Chem., 2017, 28:2794.
[28] Jiao M, Jing L, Wei X, Liu C, Luo X, Gao M. Nanoscale, 2017, 9:18609.
[29] Shen Z, Chen T, Ma X, Ren W, Zhou Z, Zhu G, Zhang A, Liu Y, Song J, Li Z, Ruan H, Fan W, Lin L, Munasinghe J, Chen X, Wu A. ACS Nano, 2017, 11:10992.
[30] Yang G, Zhang R, Liang C, Zhao H, Yi X, Shen S, Yang K, Cheng L, Liu Z. Small, 2018, 14:1702664.
[31] Kim B H, Lee N, Kim H, An K, Park Y I, Choi Y, Shin K, Lee Y, Kwon S G, Na H B, Park J G, Ahn T Y, Kim Y W, Moon W K, Choi S H, Hyeon T. J. Am. Chem. Soc., 2011, 133:12624.
[32] Bao Y, Sherwood J A, Sun Z. J. Mater. Chem. C, 2018, 6:1280.
[33] Ghosh R, Pradhan L, Devi Y P, Meena S S, Tewari R, Kumar A, Sharma S, Gajbhiye N S, Vatsa R K, Pandey B N, Ningthoujam R S. J. Mater. Chem., 2011, 21:13388.
[34] Kumar C S S R, Mohammad F. Adv. Drug Deliv. Rev., 2011, 63:789.
[35] Gilchrist R K, Medal R, Shorey W D, Hanselman R C, Parrott J C, Taylor C B. Ann. Surg., 1957, 146:596.
[36] Ding Q, Liu D F, Guo D W, Yang F, Pang X Y, Che B R E, Zhou N Z, Xie J, Sun J F, Huang Z H, Gu N. Biomaterials, 2017, 124:35.
[37] Nemati Z, Alonso J, Martinez L M, Khurshid H, Garaio E, Garcia J A, Phan M H, Srikanth H. J. Phys. Chem. C, 2016, 120:8370.
[38] Coral D F, Mendoza Zelis P, Marciello M, del Puerto Morales M, Craievich A, Sanchez F H, Fernandez van Raap M B. Langmuir, 2016, 32:1201.
[39] Niculaes D, Lak A, Anyfantis G C, Marras S, Laslett O, Avugadda S K, Cassani M, Serantes D, Hovorka O, Chantrell R, Pellegrino T. ACS Nano, 2017, 11:12121.
[40] Filippousi M, Angelakeris M, Katsikini M, Paloura E, Efthimiopoulos I, Wang Y, Zambouis D, Van Tendeloo G. J. Phys. Chem. C, 2014, 118:16209.
[41] Jadhav S V, Lee S H, Nikam D S, Bohara R A, Pawar S H, Yu Y S. New J. Chem., 2017, 41:1598.
[42] Das R, Alonso J, Porshokouh Z N, Kalappattil V, Torres D, Phan M H, Garaio E, Garcia J A, Llamazares J L S, Srikanth H. J. Phys. Chem. C, 2016, 120:10086.
[43] Yan H, Shang W T, Sun X D, Zhao L Y, Wang J Y, Xiong Z Y, Yuan J, Zhang R R, Huang Q L, Wang K, Li B H, Tian J, Kang F Y, Feng S S. Adv. Funct. Mater., 2018, 28:1705710.
[44] Tay Z W, Chandrasekharan P, Chiu Lam A, Hensley D W, Dhavalikar R, Zhou X Y, Yu E Y, Goodwill P W, Zheng B, Rinaldi C, Conolly S M. ACS Nano, 2018, 12:3699.
[45] Monzel C, Vicario C, Piehler J, Coppey M, Dahan M. Chem. Sci., 2017, 8:7330.
[46] Chiang C S, Tseng Y H, Liao B J, Chen S Y. Adv. Healthc. Mater., 2015, 4:1066.
[47] Liu B, Li C, Ma P a, Chen Y, Zhang Y, Hou Z, Huang S, Lin J. Nanoscale, 2015, 7:1839.
[48] Yu J, Yin W, Zheng X, Tian G, Zhang X, Bao T, Dong X, Wang Z, Gu Z, Ma X, Zhao Y. Theranostics, 2015, 5:931.
[49] Bai J, Wang J T W, Rubio N, Protti A, Heidari H, Elgogary R, Southern P, Al Jamal W T, Sosabowski J, Shah A M, Bals S, Pankhurst Q A, Al Jamal K T. Theranostics, 2016, 6:342.
[50] Chen X Z, Hoop M, Shamsudhin N, Huang T, Ozkale B, Li Q, Siringil E, Mushtaq F, Di Tizio L, Nelson B J, Pane S. Adv. Mater., 2017, 29:1605458.
[51] Sun X, Dong B, Xu H, Xu S, Zhang X, Lin Y, Xu L, Bai X, Zhang S, Song H. ACS Appl. Mater. Interfaces, 2017, 9:11451.
[52] Wang F J, Yang Y, Ling Y, Liu J X, Cai X J, Zhou X H, Tang X Z, Liang B, Chen Y N, Chen H R, Chen D M, Li C H, Wang Z G, Hu B, Zheng Y Y. Biomaterials, 2017, 128:84.
[53] Kim H C, Kim E, Jeong S W, Ha T L, Park S I, Lee S G, Lee S J, Lee S W. Nanoscale, 2015, 7:16470.
[54] Kakwere H, Leal M P, Materia M E, Curcio A, Guardia P, Niculaes D, Marotta R, Falqui A, Pellegrino T. ACS Appl. Mater. Interfaces, 2015, 7:10132.
[55] Yin P T, Shah S, Pasquale N J, Garbuzenko O B, Minko T, Lee K B. Biomaterials, 2016, 81:46.
[56] Kim K S, Kim J, Lee J Y, Matsuda S, Hideshima S, Mori Y, Osaka T, Na K. Nanoscale, 2016, 8:11625.
[57] Gulzar A, Xu J T, Yang P P, He F, Xu L G. Nanoscale, 2017, 9:12248.
[58] Zhan Q Q, Qian J, Liang H J, Somesfalean G, Wang D, He S L, Zhang Z G, Andersson Engels S. ACS Nano, 2011, 5:3744.
[59] Kostiv U, Kotelnikov I, Proks V, Slouf M, Kucka J, Engstova H, Jezek P, Horak D. ACS Appl. Mater. Interfaces, 2016, 8:20422.
[60] Xue Z L, Yi Z G, Li X L, Li Y B, Jiang M Y, Liu H R, Zeng S J. Biomaterials, 2017, 115:90.
[61] Cheng L, Wang C, Ma X X, Wang Q L, Cheng Y, Wang H, Li Y G, Liu Z. Adv. Funct. Mater., 2013, 23:272.
[62] Gai S L, Li C X, Yang P P, Lin J. Chem. Rev., 2014, 114:2343.
[63] Zhang Y, Yu Z Z, Li J Q, Ao Y X, Xue J W, Zeng Z P, Yang X L, Tan T T Y. ACS Nano, 2017, 11:2846.
[64] Tian G, Yin W Y, Jin J J, Zhang X, Xing G M, Li S J, Gu Z J, Zhao Y L. J. Mater. Chem. B, 2014, 2:1379.
[65] Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, Jin S, Ren W, Xing G, Li S, Zhao Y. Adv. Mater., 2012, 24:1226.
[66] Wang C, Cheng L, Liu Y M, Wang X J, Ma X X, Deng Z Y, Li Y G, Liu Z. Adv. Funct. Mater., 2013, 23:3077.
[67] Idris N M, Gnanasammandhan M K, Zhang J, Ho P C, Mahendran R, Zhang Y. Nat. Med., 2012, 18:1580.
[68] Ethirajan M, Chen Y H, Joshi P, Pandey R K. Chem. Soc. Rev., 2011, 40:340.
[69] Elmenoufy A H, Tang Y a, Hu J, Xu H, Yang X. Chem. Commun., 2015, 51:12247.
[70] Hu J, Tang Y A, Elmenoufy A H, Xu H, Cheng Z, Yang X. Small, 2015, 11:5860.
[71] Tang Y A, Hu J, Elmenoufy A H, Yang X. ACS Appl. Mater. Interfaces, 2015, 7:12261.
[72] Ma Y, Wan J, Qian K, Geng S, He N, Zhou G, Zhao Y, Yang X. J. Mater. Chem. B, 2014, 2:6044.
[73] Liu Y, Peng X, Qian K, Ma Y, Wan J, Li H, Zhang H, Zhou G, Xiong B, Zhao Y, Zheng C, Yang X. J. Mater. Chem. B, 2017, 5:907.
[74] Cai H, Li K, Li J, Wen S, Chen Q, Shen M, Zheng L, Zhang G, Shi X. Small, 2015, 11:4584.
[75] Liu S, Li H, Xia L, Xu P, Ding Y, Huo D, Hu Y. Biomaterials, 2017, 141:1.
[76] Chen J, Chen Q, Liang C, Yang Z, Zhang L, Yi X, Dong Z, Chao Y, Chen Y, Liu Z. Nanoscale, 2017, 9:14826.
[77] Lee K S, El Sayed M A. J. Phys. Chem. B, 2005, 109:20331.
[78] Liu X, Gao C, Gu J, Jiang Y, Yang X, Li S, Gao W, An T, Duan H, Fu J, Wang Y, Yang X. ACS Appl. Mater. Interfaces, 2016, 8:27622.
[79] Hu F, Zhang Y, Chen G, Li C, Wang Q. Small, 2015, 11:985.
[80] Dong L, Li Y, Li Z, Xu N, Liu P, Du H, Zhang Y, Huang Y, Zhu J, Ren G, Xie J, Wang K, Zhou Y, Shen C, Zhu J, Tao J. ACS Appl. Mater. Interfaces, 2018, 10:9247.
[81] Wang X, Wang H, Zhang Q, Cheng Y. Nanomed.-Nanotechnol. Biol. Med., 2016, 12:505.
[82] Song W, Wang D, Ren M, Li Y, Huang Z, Wei C, Yin W, Yang Q, Yang W. J. Biomed. Nanotechnol., 2017, 13:1158.
[83] Vijayaraghavan P, Liu C H, Vankayala R, Chiang C S, Hwang K C. Adv. Mater., 2014, 26:6689.
[84] Qin Z P, Bischof J C. Chem. Soc. Rev., 2012, 41:1191.
[85] Tang Y A, Yang T, Wang Q, Lv X, Song X, Ke H, Guo Z, Huang X, Hu J, Li Z, Yang P, Yang X, Chen H. Biomaterials, 2018, 154:248.
[86] Link S, Burda C, Mohamed M B, Nikoobakht B, El Sayed M A. J. Phys. Chem. A, 1999, 103:1165.
[87] Wang Z, Chang Z, Lu M, Shao D, Yue J, Yang D, Li M, Dong W f. ACS Appl. Mater. Interfaces, 2017, 9:30306.
[88] Rubio Ruiz B, Perez Lopez A M, Bray T L, Lee M, Serrels A, Prieto M, Arruebo M, Carragher N O, Sebastian V, Unciti Broceta A. ACS Appl. Mater. Interfaces, 2018, 10:3341.
[89] Song M, Liu N, He L, Liu G, Ling D, Su X, Sun X. Nano Res., 2018, 11:2796.
[90] Luo L, Bian Y, Liu Y, Zhang X, Wang M, Xing S, Li L, Gao D. Small, 2016, 12:4103.
[91] Wang F, Sun Q, Feng B, Xu Z, Zhang J, Xu J, Lu L, Yu H, Wang M, Li Y, Zhang W. Adv. Healthc. Mater., 2016, 5:2227.
[92] Volsi A L, Scialabba C, Vetri V, Cavallaro G, Licciardi M, Giammona G. ACS Appl. Mater. Interfaces, 2017, 9:14453.
[93] Wang X, Gao S, Qin Z, Tian R, Wang G, Zhang X, Zhu L, Chen X. ACS Appl. Mater. Interfaces, 2018, 10:15140.
[94] Zeng J Y, Zhang M K, Peng M Y, Gong D, Zhang X Z. Adv. Funct. Mater., 2018, 28:1705451.
[95] Zhao Y, Liu W, Tian Y, Yang Z, Wang X, Zhang Y, Tang Y, Zhao S, Wang C, Liu Y, Sun J, Teng Z, Wang S, Lu G. ACS Appl. Mater. Interfaces, 2018, 10:16992.
[96] Xu C, Chen F, Valdovinos H F, Jiang D, Goel S, Yu B, Sun H, Barnhart T E, Moon J J, Cai W. Biomaterials, 2018, 165:56.
[97] You Q, Sun Q, Yu M, Wang J, Wang S, Liu L, Cheng Y, Wang Y, Song Y, Tan F, Li N. ACS Appl. Mater. Interfaces, 2017, 9:40017.
[1] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[2] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[3] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[4] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[5] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[6] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[7] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[8] 王佳佳, 吴惠英, 董任峰, 蔡跃鹏. 基于微/纳马达的智能癌症诊断、递送及治疗[J]. 化学进展, 2021, 33(5): 883-894.
[9] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[10] 刘文杰, 刘凯会, 张彦伟, 王良, 张梦裔, 李静. 糖基化在新型冠状病毒侵染中的机制及药物研发中的应用[J]. 化学进展, 2021, 33(4): 524-532.
[11] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.
[12] 王欣瑜, 赵富平, 张儒, 孙子茹, 刘胜男, 高清志. 抗肿瘤缺氧诱导因子-1的小分子抑制剂[J]. 化学进展, 2021, 33(12): 2259-2269.
[13] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[14] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[15] 郭珊, 周翔. 循环肿瘤细胞体内检测技术及其应用研究[J]. 化学进展, 2021, 33(1): 1-12.