English
新闻公告
More
化学进展 2018, Vol. 30 Issue (10): 1534-1547 DOI: 10.7536/PC180537 前一篇   后一篇

• 综述 •

T1-T2双模式磁共振造影剂的设计及应用

邓广, 杨红, 周治国*, 杨仕平*   

  1. 上海师范大学生命与环境科学学院 资源化学教育部重点实验室 上海 200234
  • 收稿日期:2018-05-28 修回日期:2018-09-11 出版日期:2018-10-15 发布日期:2018-09-25
  • 通讯作者: 周治国, 杨仕平 E-mail:shipingy@shnu.edu.cn;zgzhou@shnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21571130,21671135)资助

Design and Application of T1-T2 Dual-Modal MRI Contrast Agents

Guang Deng, Hong Yang, Zhiguo Zhou*, Shiping Yang*   

  1. College of Life and Environmental Sciences, Key laboratory of Resource Chemistry of MOE, Shanghai Normal University, Shanghai 200234, China
  • Received:2018-05-28 Revised:2018-09-11 Online:2018-10-15 Published:2018-09-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21571130, 21671135).
核磁共振成像作为一种无侵入的早期诊断方式早已在临床上得到了非常广泛的应用,其成像方式分为弛豫加权和扩散加权,其中弛豫加权又分为T1加权成像和T2加权成像。为了增强MR图像对比度,可通过引入造影剂,根据其增强类型可以分为阳性的T1造影剂和阴性的T2造影剂。虽然两种造影剂各有其优点,但是也存在着一些不足,因此一种全新的T1-T2双模态造影剂应运而生。T1-T2双模态造影剂的优势就在于可以利用同一台仪器,实现MRI成像在时间和空间上的精确匹配。本文系统地总结了T1-T2双模态造影剂的设计思路和其化学合成方法,并对其生物医学应用作了介绍。
Magnetic resonance imaging(MRI) has been used in the clinic widely as an early noninvasive diagnosis technique. According to the theory of MRI, three imaging modes exist, namely, T1-weighted imaging, T2-weighted imaging and diffusion weighted imaging. Accordingly, there are two types of exogenous MRI contrast agents, namely T1 contrast agent and T2 contrast agent, for improvement in contrast in MR images. Either T1 or T2 contrast agents has its own advantages and disadvantages, respectively. Recently, a kind of new contrast agents, T1-T2 dual-modal contrast agent, has been designed, which can be used on one machine with an accurate match of spatial and temporal imaging parameters. This article reviews the progress of design and chemical synthesis methods of T1-T2 dual-mode contrast agents, and also introduces their biomedical applications.
Contents
1 Introduction
2 The research about dual T1-T2 MRI contrast agents
2.1 Nanoparticles with a single metal
2.2 Nanoparticles with two types of MRI contrast agents
2.3 A type of metal doping
3 Conclusion

中图分类号: 

()
[1] Spees W M, Yablonskiy D A, Oswood M C, Ackerman J J H. Magn. Reson. Med., 2010, 45:533.
[2] Wang L V, Hu S. Science, 2012, 335:1458.
[3] Fernández-Suárez M, Ting A Y. Nat. Rev. Mol. Cell Bio., 2008, 9:929.
[4] Brenner D J, Hall E J. N. Engl. J. Med., 2007, 357:2277.
[5] Soret M, Bacharach S L, Buvat I. J. Nucl. Med., 2007, 48:932.
[6] Logothetis N K. Nature, 2008, 453:869.
[7] Garcia J, Liu S Z, Louie A Y. Philos. Trans. R. Soc. A, 2017, 375:20170180.
[8] Walderveen M A A, Barkhof F, Hommes O R, Polman C H, Tobi H, Frequin S T F M, Valk J. Neurology, 1995, 45:1684.
[9] Adams G R, Duvoisin M R, Dudley G A. J. Appl. Physiol., 1992, 73:1578.
[10] González R G, Schaefer P W, Buonanno F S, Schwamm L H, Budzik R F, Rordorf G, Wang B, Sorensen A G, Koroshetz W J. Radiology, 1999, 210:155.
[11] Peet A C, Arvanitis T N, Leach M O, Waldman A D. Nat. Rev. Clin. Oncol., 2012, 9:700.
[12] Knickmeyer R C, Gouttard S, Kang C, Evans D, Wilber K, Smith J K, Hamer R M, Lin W, Gerig G, Gilmore J H. J Neurosci., 2008, 28:12176.
[13] 朱晓玲(Zhu X L), 范晓黎(Fan X L), 吴晓莉(Wu X L), 方正(Fang Z). 安徽医药(Anhui Medical and Pharmaceutical Journal), 2017, 21(10):1833.
[14] 张婷玉(Zhang T Y), 宋振强(Song Z Q), 胡亚萍(Hu Y P), 王斌杰(Wang B J). 实用医学影像杂志(Journal of Practical Medical Imaging), 2016, 17(3):251.
[15] 肖利华(Xiao L H), 郑晓林(Zheng X L), 范宪淼(Fan X M), 高云(Gao Y), 袁焕初(Yuan H C). 实用放射学杂志(Journal of Practical Radiology), 2011, 27(10):1520.
[16] Stanisz G J, Odrobina E E, Pun J, Escaravage M, Graham S J, Bronskill M J, Henkelman R M. Mag. Reson. Med., 2010, 54:507.
[17] Debroye E, Parac-Vogt T N. Chem. Soc. Rev., 2014, 43:8178.
[18] Werner E J, Datta A, Jocher C J, Raymond K N. Angew. Chem. Int. Ed., 2008, 47:8568.
[19] Martin P, Bender B, Focke N K. Quant. Imaging. Med. Surgery., 2015, 5:188.
[20] Solomon I. Phys. Rev., 1955, 99:559.
[21] Ni K Y, Zhao Z H, Zhang Z J, Zhou Z J, Yang L, Wang L R, Ai H, Gao J H. Nanoscale, 2016, 8:3768.
[22] Hu F Q, Jia Q J, Li Y L, Gao M Y. Nanotechnology, 2011, 22:245604.
[23] Pernia Leal M, Rivera-Fernandez S, Franco J M, Pozo D, de la Fuente J M, Garcia-Martin M L. Nanoscale, 2015, 7:2050.
[24] Zhou Z, Lu Z R. Wiley Interdiscip Rev Nanomed Nanobiotechnol., 2013, 5:1.
[25] Benner T, Reimer P, Erb G, Schuierer G, Heiland S, Fischer C, Geens V, Sartor K, Forsting M. J. Magn. Reson. Imaging, 2000, 12:371.
[26] White G W, Gibby W A, Tweedle M F. Invest. Radiol., 2006, 41:272.
[27] Pintaske J, Martirosian P, Graf H, Erb G, Lodemann K P, Claussen C D, Schick F. Invest. Radiol., 2006, 41:213.
[28] Liu Q M, Song L W, Chen S, Gao J Y, Zhao P Y, Du J Z. Biomaterials, 2017, 114:23.
[29] Chao Y, Makale M, Karmali P P, Sharikov Y, Tsigelny I, Merkulov S, Kesari S, Wrasidlo W, Ruoslahti E, Simberg D. Bioconjugate Chem., 2012, 23:1003.
[30] Ziemian S, Lowa N, Kosch O, Bajj D, Wiekhorst F, Schutz G. Nanomaterials, 2018, 8:108.
[31] Yan C Y, Chen C Q, Hou L, Zhang H J, Che Y Y, Qi Y D, Zhang X J, Cheng J L, Zhang Z Z. J. Drug Targeting, 2017, 25:163.
[32] Liu K, Dong L, Xu Y J, Yan X, Li F, Lu Y, Tao W, Peng H Y, Wu Y D, Su Y, Ling D S, He T, Qian H S, Yu S H. Biomaterials, 2018, 158:74.
[33] Pietsch H, Raschke M, Ellinger-Ziegelbauer H, Jost G, Walter J, Frenzel T, Lenhard D, Hütter J, Sieber M A. Invest. Radiol., 2011, 46:48.
[34] Kanda T, Matsuda M, Oba H, Toyoda K, Furui S. Radiology., 2015, 277:924.
[35] 申宝忠(Shen B Z). 分子影像学(Molecular Imaging). 北京:人民卫生出版社(People's Medical Publishing House), 2017.9.
[36] Shin T H, Choi Y, Kim S, Cheon J. Chem. Soc. Rev., 2015, 44:4501.
[37] Schrag M, McAuley G, Pomakian J, Jiffry A, Tung S, Mueller C, Vinters H V, Haacke E M, Holshouser B, Kido D, Kirsch W M. Acta Neuropathol., 2010, 119:291.
[38] Shin T H, Choi J S, Yun S, Kim I S, Song H T, Kim Y, Park K I, Cheon J. ACS Nano, 2014, 8:3393.
[39] 熊国欣(Xiong G X), 李立本(Li L B), 核磁共振成像原理(Principle of MRI). 北京:科学出版社(Science Press), 2007.8.
[40] De M, Chou S S, Joshi H M, Dravid V P. Adv. Drug Delivery Rev., 2011, 63:1282.
[41] Lahooti A, Sarkar S, Saligheh Rad H, Gholami A, Nosrati S, Muller R N, Laurent S, Grüttner C, Geramifar P, Yousefnia H, Mazidi M, Shanehsazzadeh S. J. Radioanal. Nucl. Chem., 2017, 311:769.
[42] Gao D Y, Zhang P F, Liu C B, Chen C, Gao G H, Wu Y Y, Sheng Z H, Song L, Cai L T. Nanoscale, 2015, 7:17631.
[43] Yang W T, Guo W S, Le W J, Lv G X, Zhang F H, Shi L, Wang X L, Wang J, Wang S, Chang J, Zhang B B. ACS Nano, 2016, 10:10245.
[44] Ma M, Yan F, Yao M H, Wei Z J, Zhou D L, Yao H L, Zheng H R, Chen H R, Shi J L. ACS Appl. Mater. Interfaces, 2016, 8:29986.
[45] Zhou Z J, Huang D T, Bao J F, Chen Q L, Liu G, Chen Z, Chen X Y, Gao J H. Adv. Mater., 2012, 24:6223.
[46] Kim B H, Lee N, Kim H, An K, Park Y I, Choi Y, Shin K, Lee Y, Kwon S G, Na H B, Park J G, Ahn T Y, Kim Y W, Moon W K, Choi S H, Hyeon T. J. Am. Chem. Soc., 2011, 133:12624.
[47] Yang H, Zhuang Y M, Sun Y, Dai A T, Shi X Y, Wu D M, Li F Y, Hu H, Yang S P. Biomaterials, 2011, 32:4584.
[48] Zhou Z J, Wang L R, Chi X Q, Bao J F, Yang L J, Zhao W X, Chen Z, Wang X M, Chen X Y, Gao J H. ACS Nano, 2013, 7:3287.
[49] Wang Y X J, Hussain S M, Krestin G P. Eur. J. Radiol.,2001, 11:2319.
[50] Alipour A, Soran-Erdem Z, Utkur M, Sharma V K, Algin O, Saritas E U, Demir H V. Magn. Reson. Imaging, 2017, 49:16.
[51] Li Z, Yi P W, Sun Q, Lei H, Li Zhao H, Zhu Z H, Smith S C, Lan M B, Lu G Q. Adv. Funct. Mater., 2012, 22:2387.
[52] Wang G N, Zhang X J, Skallberg A, Liu Y, Hu Z J, Mei X F, Uvdal K. Nanoscale, 2014, 6:2953.
[53] Chen Y, Ai K L, Liu J H, Ren X Y, Jiang C H, Lu L H. Biomaterials, 2016, 77:198.
[54] Shin J, Anisur R M, Ko M K, Im G H, Lee J H, Lee I S. Angew. Chem. Int. Ed., 2009, 48:321.
[55] Caro C, García-Martín M L, Pernia Leal M. Biomacromolecules, 2017, 18:1617.
[56] Jain R K. J. Clin. Oncol., 2013, 31:2205.
[57] 段二月(Duan E Y), 马建功(Ma J G), 程鹏(Cheng P). 大学化学(University Chemistry), 2016, 31(7):1.
[58] Courant T, Roullin Valérie G, Cadiou C, Callewaert M, Andry Marie C, Portefaix C, Hoeffel C, Goltstein M C, Port M, Laurent S, Elst Luce V, Muller R, Molinari M, Chuburu F. Angew. Chem. Int. Ed., 2012, 51:9119.
[59] Xu L Y, Hong S H, Sun Y, Sun Z Y, Shou K Q, Cheng K, Chen H, Huang D J, Xu H B, Cheng Z. Nanomedicine, 2018, 14:1743.
[60] Wang L, Zhang H W, Zhou Z G, Kong B, An L, Wei J, Yang H, Zhao J M, Yang S P. J. Mater. Chem. B, 2015, 3:1433.
[61] Peng Y K, Lui C N P, Chen Y W, Chou S W, Raine E, Chou P T, Yung K K L, Tsang S C E. Chem. Mate., 2017, 29:4411.
[62] Meenambal R, Kannan S. ACS Biomate. Sci. Eng., 2018, 4:47.
[63] Hao D P, Ai T, Goerner F, Hu X M, Runge V M, Tweedle M. J. Magn. Reson. Imaging, 2012, 36:1060.
[64] Nordhøy W, Anthonsen Henrik W, Bruvold M, Brurok H, Skarra S, Krane J, Jynge P. Magn. Reson. Med., 2004, 52:506.
[65] Gao L P, Yu J, Liu Y, Zhou J E, Sun L, Wang J, Zhu J Z, Peng H, Lu W Y, Yu L, Yan Z Q, Wang Y T. Theranostics, 2018, 8:92.
[66] Bae K H, Kim Y B, Lee Y, Hwang J, Park H, Park T G. Bioconjugate Chem., 2010, 21:505.
[67] Zhao W, Huang H L, Sun Y, Zhang X N, Li Y P, Wang J Y. RSC Advances, 2015, 5:97675.
[68] 杨昕仪(Yang X Y). 上海师范大学硕士论文(Master Dissertation of Shanghai Normal University), 2014.
[69] Yang M C, Gao L P, Liu K, Luo C H, Wang Y T, Yu L, Peng H, Zhang W. Talanta, 2015, 131:661.
[70] Choi J S, Lee J H, Shin T H, Song H T, Kim E Y, Cheon J. J. Am. Chem. Soc., 2010, 132:11015.
[71] Li F F, Zhi D B, Luo Y F, Zhang J Q, Nan X, Zhang Y J, Zhou W, Qiu B S, Wen L P, Liang G L. Nanoscale, 2016, 8:12826.
[72] Cheng K, Yang M, Zhang R P, Qin C X, Su X H, Cheng Z. ACS Nano, 2014, 8:9884.
[73] Im G H, Kim S M, Lee D G, Lee W J, Lee J H, Lee I S. Biomaterials, 2013, 34:2069.
[74] Townsend D M, Tew K D, Tapiero H. Biomed. Pharmacother., 2003, 57:145.
[75] Townsend D M, Tew K D. Oncogene, 2002, 22:7369.
[76] Meister A. Pharmacol. Ther., 1991, 51:155.
[77] Kim M H, Son H Y, Kim G Y, Park K, Huh Y M, Haam S. Biomaterials, 2016, 101:121.
[78] Jin L H, Liu J H, Tang Y, Cao L Q, Zhang T Q, Yuan Q H, Wang Y H, Zhang H J. ACS Appl. Mater. Interfaces, 2017, 9:41648.
[79] Wang X Y, Zhou Z J, Wang Z Y, Xue Y X, Zeng Y, Gao J H, Zhu L, Zhang X Z, Liu G, Chen X Y. Nanoscale, 2013, 5:8098.
[80] Zhou Z J, Liu H Y, Chi X Q, Chen J H, Wang L R, Sun C J, Chen Z, Gao J H. ACS Appl. Mater. Interfaces, 2015, 7:28286.
[81] Xiao N, Gu W, Wang H, Deng Y L, Shi X, Ye L. J. Colloid and Interface Sci., 2014, 417:159.
[82] Yang H, Qin C Y, Yu C, Lu Y, Zhang H W, Xue F F, Wu D M, Zhou Z G, Yang S P. Adv. Funct. Mater., 2014, 24:1738.
[83] Huang G M, Li H, Chen J H, Zhao Z H, Yang L J, Chi X Q, Chen Z, Wang X M, Gao J H. Nanoscale, 2014, 6:10404.
[84] Zhang M X, Cao Y H, Wang L N, Ma Y F, Tu X L, Zhang Z J. ACS Appl. Mater. Interfaces, 2015, 7:4650.
[1] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[6] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[7] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[8] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[9] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[10] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[11] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[12] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[13] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[14] 刘晓璐, 耿钰晓, 郝然, 刘玉萍, 袁忠勇, 李伟. 环境条件下电催化氮还原的现状、挑战与展望[J]. 化学进展, 2021, 33(7): 1074-1091.
[15] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.