English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 413-421 DOI: 10.7536/PC180511 前一篇   后一篇

• •

荧光内滤效应技术在生物检测和疾病标志上的应用

田丹碧1,**(), 吴胜男1, 张浩1, 江凌2, 霍峰蔚3,**()   

  1. 1. 南京工业大学化学与分子工程学院 南京 211816
    2. 南京工业大学食品与轻工学院 南京 211816
    3. 南京工业大学先进材料研究院 南京 211816
  • 收稿日期:2018-05-14 出版日期:2019-02-15 发布日期:2018-12-20
  • 通讯作者: 田丹碧, 霍峰蔚
  • 基金资助:
    国家自然科学基金联合基金项目(U1603112); 国家自然科学基金联合基金项目(21574065); 国家杰出青年科学基金(21625401)

Application of Inner Filter Effect Technology in Biological Detection and Disease Markers

Danbi Tian1,**(), Shengnan Wu1, Hao Zhang1, Ling Jiang2, Fengwei Huo3,**()   

  1. 1. College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
    2. College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
    3. Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
  • Received:2018-05-14 Online:2019-02-15 Published:2018-12-20
  • Contact: Danbi Tian, Fengwei Huo
  • About author:
    ** E-mail: (Danbi Tian);
  • Supported by:
    Joint Funds of the National Natural Science Foundation of China(U1603112); Joint Funds of the National Natural Science Foundation of China(21574065); National Science Funds for Distinguished Young Scholars(21625401)

荧光内滤效应(inner filter effect,IFE)作为一个重要的非辐射能量转换模型,其作用机理是吸收剂的吸收光谱与荧光剂的激发光谱或发射光谱或两者同时发生谱带重叠,导致荧光剂的激发峰/发射峰的荧光被猝灭。合适的供体-受体对是成功组建IFE传感器检测目标物的重要因素。近年来,IFE技术以其操作简单、灵敏度高,无需修饰供体,无需供体与受体连接,已经引起科研工作者广泛的研究。早期诊断和早期治疗是预防疾病发生和保护健康最为有效的办法。本综述总结了近几年来IFE技术检测酶活、农药、代谢物及小分子化学物质等生物标志物在疾病标志和健康监控上的研究成果,分析了基于“turn-off”法、“turn-on”法以及“ratiometric fluorescence assay”法构建的IFE传感器的独特设计并讨论了各方法的优缺点。最后,简要指出了IFE技术在疾病标志和健康监控上的优点和实际应用时所存在的障碍,并对IFE技术和疾病监控手段未来的发展前景进行了展望。

As an important non-irradiation energy conversion model, the mechanism of inner filter effect(IFE) is that the absorption spectrum of the absorbers overlaps with the excitation spectrum or emission spectrum or both spectra of the fluorophor, resulting in the fluorescence quenching of the excitation peak/emission peak of the fluorophor. The suitable donor-acceptor pair is a significant factor for successfully constructing IFE sensors to detect targets. In recent years, IFE technology has been widely studied by researchers because of its simple operation, high sensitivity, no need to modify donor and link donor and receptor. Disease is a serious threat to people’s health. Early diagnosis and early treatment are the most effective ways to prevent disease and protect health. This review summarizes the research results of IFE technology in recent years for detecting enzyme activities, pesticides, metabolites and small molecular chemicals on disease markers and health monitoring, and explains the unique design of IFE sensors based on "turn-off", "turn-on“and “ratiometric fluorescence assay” method. The advantages and disadvantages of each method are also discussed. Finally, the advantages and practical obstacles of IFE technology in disease labeling and health monitoring are briefly pointed out, and the prospects for the future development of IFE technology and disease surveillance methods are also prospected.

()
图1 基于荧光内滤效应检测目标物的三种分析策略:(A) Turn off模式;(B) Turn on模式;(C) Ratiometric fluorescence assay模式
Fig. 1 Three analytical strategies based on IFE to detect analytes:(A) Turn off mode;(B) Turn on mode;(C) Ratiometric fluorescence assay mode
图2 基于荧光内滤效应的检测碱性磷酸酶的传感原理[49]
Fig. 2 Working principle for ALP sensing based on inner filter effect[49]
表1 基于Turn off分析策略检测不同酶活
Table 1 Turn off mode-based analytical assays for various enzymes
图3 基于荧光内滤效应的检测碱性磷酸酶的传感原理[55]
Fig. 3 Principle of ALP detection based on inner filter effect[55]
图4 氮/铜掺杂的碳量子点合成机理图,基于氮/铜掺杂的碳量子点的比率荧光探针检测生成过氧化氢的代谢物(胆固醇和黄嘌呤)[98]
Fig. 4 Schematic illustration of N/Cu-CDs synthesis and the principle of the ratiometric fluorescence universal platform based on N/Cu-CDs to detect the metabolites(cholesterol and xanthine) participating in H2O2-generation reactions[98]
表2 基于荧光内滤效应检测的常见小分子化学物质
Table 2 Detection of common small molecular chemicals based on fluorescence filter effect
[1]
曹亚(Cao Y), 朱小立(Zhu X L), 赵婧(Zhao J), 李昊(Li H),李根喜(Li G X) . 化学进展 (Progress in Chemistry), 2015,27:1. b5b58372-56a6-474e-973e-f905b475ebd4http://www.progchem.ac.cn//CN/abstract/abstract11458.shtml

doi: 10.7536/PC140737     URL    
[2]
Verheul M K, Fearon U, Trouw L A, Veale D J . Clin Immunol., 2015,161:2. https://www.ncbi.nlm.nih.gov/pubmed/25934385

doi: 10.1016/j.clim.2015.04.005     URL     pmid: 25934385
[3]
Golubnitschaja O, Flammer J . Surv. Ophthalmol., 2007,52(Suppl 2):S155.
[4]
de Bono J S, Ashworth A . Nature, 2010,467:543. https://www.ncbi.nlm.nih.gov/pubmed/20882008

doi: 10.1038/nature09339     URL     pmid: 20882008
[5]
Koenig S, Porte C, Solé M, Sturve J . Environ. Sci. Technol., 2013,47:2854. https://www.ncbi.nlm.nih.gov/pubmed/23398398

doi: 10.1021/es304345s     URL     pmid: 23398398
[6]
Li H, Li W W, Liu Z F, Wang Z, Li G X, Karamanos Y . Anal. Chem., 2016,88:3662. https://www.ncbi.nlm.nih.gov/pubmed/26938572

doi: 10.1021/acs.analchem.5b04423     URL     pmid: 26938572
[7]
Li C, Ma J H, Fan Q X, Tao Y Q, Li G X . Chem. Comm., 2016,52:7850. https://www.ncbi.nlm.nih.gov/pubmed/27247980

doi: 10.1039/c6cc02633h     URL     pmid: 27247980
[8]
Mistretta V, Charlier C . Ann. Biol. Clin. -Paris., 2013,71:257.
[9]
Jankowska A M, Millward C L, Caldwell C W . Expert Rev. Mol. Diag., 2015,15:1325. https://www.ncbi.nlm.nih.gov/pubmed/26394702

doi: 10.1586/14737159.2015.1084229     URL     pmid: 26394702
[10]
Feng C, Bo B, Mao X X, Shi H, Zhu X L, Li G X . Theranostics, 2017,7:31. https://www.ncbi.nlm.nih.gov/pubmed/28042314

doi: 10.7150/thno.16671     URL     pmid: 28042314
[11]
Kishikawa T, Otsuka M, Ohno M, Yoshikawa T, Takata A, Koike K . World J. Gastroentero., 2015,21:8527. https://www.ncbi.nlm.nih.gov/pubmed/26229396

doi: 10.3748/wjg.v21.i28.8527     URL     pmid: 26229396
[12]
Kurochkin I V, Guarnera E, Berezovsky I N . Trends Pharmacol. Sci., 2017,39:10.
[13]
Zabel M, Nackenoff A, Kirsch W M, Harrison F, Perry G, Schrag M . Free Radical. Bio. Med., 2017,115:351.
[14]
Li C, Yang Y C, Wu D, Li T Q, Yin Y M, Li G X . Chem. Sci., 2016,7:3011. https://www.ncbi.nlm.nih.gov/pubmed/29997790

doi: 10.1039/c5sc04256a     URL     pmid: 29997790
[15]
Swords R T, Erba H P, Deangelo D J, Bixby D L, Altman J K, Maris M, Hua Z W, Blakemore S J, Faessel H, Sedarati F, Dezube B J, Giles F J, Medeiros B C . Brit. J. Haematol., 2015,169:534. https://www.ncbi.nlm.nih.gov/pubmed/25733005

doi: 10.1111/bjh.13323     URL     pmid: 25733005
[16]
Dan W, Gu Q H, Ning Z, Fei X, Li Z W . J. Drug Target., 2015,23:936. https://www.ncbi.nlm.nih.gov/pubmed/26061299

doi: 10.3109/1061186X.2015.1043916     URL     pmid: 26061299
[17]
Kochkina E G, Plesneva S A, Vasilev D S, Zhuravin I A, Nalivaeva N N, Turner A J . Biogerontology, 2015,16:473. https://www.ncbi.nlm.nih.gov/pubmed/25792373

doi: 10.1007/s10522-015-9569-9     URL     pmid: 25792373
[18]
Yu D J, Zhang X M, Qi Y X, Ding S S, Cao S M, Zhu A W, Shi G Y . Sensor Actuat B-Chem., 2016,235:394.
[19]
Gabor G, Walt D R . Anal. Chem., 1991,63:793.
[20]
Chen S, Yu Y L, Wang J H . Anal. Chim. Acta, 2018,999:13. https://www.ncbi.nlm.nih.gov/pubmed/29254563

doi: 10.1016/j.aca.2017.10.026     URL     pmid: 29254563
[21]
Zhang J Y, Lu X M, Lei Y, Hou X D, Wu P . Nanoscale, 2017,9:15606. https://www.ncbi.nlm.nih.gov/pubmed/28990619

doi: 10.1039/c7nr03673f     URL     pmid: 28990619
[22]
Xia N, Zhou B B, Huang N B, Jiang M S, Zhang J B, Liu L . Biosens. Bioelectron., 2016,85:625. https://www.ncbi.nlm.nih.gov/pubmed/27240009

doi: 10.1016/j.bios.2016.05.066     URL     pmid: 27240009
[23]
Na W D, Liu H, Wang M Y, Su X G . Microchim. Acta, 2017,184:1463.
[24]
Ocak I, Kara H E S . Journal of Luminescence, 2018,197:112.
[25]
Xie Z F, Kong X J, Feng L, Ma J H, Li Y Q, Wang X, Bao W R, Shi W, Hui Y H . Sensor. Actuat. B-Chem., 2018,257:154.
[26]
Duong H D, Rhee J I . J. Ind. Eng. Chem., 2014,21:166.
[27]
Han J, Zou H Y, Gao M X, Huang C Z . Talanta, 2016,148:279. https://www.ncbi.nlm.nih.gov/pubmed/26653450

doi: 10.1016/j.talanta.2015.10.038     URL     pmid: 26653450
[28]
Stanisavljevic M, Krizkova S, Vaculovicova M, Krizkova S, Adam, V. Biosens . Bioelectron., 2015,74:562. https://www.ncbi.nlm.nih.gov/pubmed/26188679

doi: 10.1016/j.bios.2015.06.076     URL     pmid: 26188679
[29]
Yang H, Yang L, Yuan Y S, Pan S, Yang J D, Yan J J, Zhang H, Sun Q Q, Hu X L . Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018,189:139. https://www.ncbi.nlm.nih.gov/pubmed/28806699

doi: 10.1016/j.saa.2017.07.065     URL     pmid: 28806699
[30]
Chen C X, Zhao D, Hu T, Sun J, Yang X R . Sensor. Actuat. B-Chem. B, 2017,241:779.
[31]
Gu W, Pei X Y, Cheng Y X, Zhang C L, Zhang J D, Yan Y H, Ding C P, Xian Y Z . ACS Sensors, 2017,2:576. https://www.ncbi.nlm.nih.gov/pubmed/28723180

doi: 10.1021/acssensors.7b00102     URL     pmid: 28723180
[32]
Siddique A, Kowdley K V . Clin. Liver Dis., 2012,16:199. https://www.ncbi.nlm.nih.gov/pubmed/22541695

doi: 10.1016/j.cld.2012.03.012     URL     pmid: 22541695
[33]
Sharma U, Pal D, Prasad R . Ind. J. Clin. Biochem., 2014,29:269. http://link.springer.com/10.1007/s12291-013-0408-y

doi: 10.1007/s12291-013-0408-y     URL    
[34]
Lorente J A, Valenzuela H, Morote J, Gelabert A . Eur. J. Nucl. Med., 1999,26:625. https://www.ncbi.nlm.nih.gov/pubmed/10369948

doi: 10.1007/s002590050430     URL     pmid: 10369948
[35]
Lassenius M I, Fogarty C L, Blaut M, Haimila K, Riittinen L, Paju A, Kirveskari J, Jarvela J, Ahola A J, Gordin D, Harma M A, Kumar A, Hamarneh S R, Hodin R A, Sorsa T, Tervahartiala T, Horkko S, Pussinen P J, Forsblom C, Jauhiainen M, Taskinen M R, Groop P H, Lehto M . J. Intern. Med., 2017,281:586. https://www.ncbi.nlm.nih.gov/pubmed/28393441

doi: 10.1111/joim.12607     URL     pmid: 28393441
[36]
Grundy S M, Hansen B, Smith S C, Cleeman J I, Kahn R A . Arterioscler Thromb Vasc Biol., 2004,109:551.
[37]
Barzilay J I, Spiekerman C F, Wahl P W, Kuller L H, Cushman M, Furberg C D, Dobs A, Polak J F, Savage P J . Lancet, 1999,354:622. https://www.ncbi.nlm.nih.gov/pubmed/10466662

doi: 10.1016/s0140-6736(98)12030-5     URL     pmid: 10466662
[38]
Sperker B, Backman J T, Kraemer H K . Clin. Pharmacokine., 1997,33:18.
[39]
Goldin B R, Gorbach S L . J. Natl. Cancer Inst., 1976,57:371. https://www.ncbi.nlm.nih.gov/pubmed/1003518

doi: 10.1093/jnci/57.2.371     URL     pmid: 1003518
[40]
Cheng T C, Roffler S R, Tzou S C, Chuang K H, Su Y H, Chuang C H, Kao C H, Chen C S, Harn I H, Liu K Y, Cheng T L, Leu Y L . J. Am. Chem. Soc., 2012,134:3103. https://www.ncbi.nlm.nih.gov/pubmed/22239495

doi: 10.1021/ja209335z     URL     pmid: 22239495
[41]
Bohnenstengel F, Kroemer H K, Sperker B . J. Chromatogr. B, 1999,721:295. https://www.ncbi.nlm.nih.gov/pubmed/10052702

doi: 10.1016/s0378-4347(98)00464-2     URL     pmid: 10052702
[42]
Moghadam T T, Ranjbar B J . Talanta, 2015,144:778. https://www.ncbi.nlm.nih.gov/pubmed/26452890

doi: 10.1016/j.talanta.2015.06.025     URL     pmid: 26452890
[43]
Levinson S S, Elin R J, Yam L . Clin. Chem., 2002,48:1131. https://www.ncbi.nlm.nih.gov/pubmed/12089194

URL     pmid: 12089194
[44]
Manifold I H, Bishop F M, Cloke P, Triger D R, Underwood J C E . J. Clin. Pathol., 1982,35:815. https://www.ncbi.nlm.nih.gov/pubmed/7050185

doi: 10.1136/jcp.35.8.815     URL     pmid: 7050185
[45]
Yi Y H, Zhu G B, Liu C, Huang Y, Zhang Y Y, Li H T, Zhao J N, Yao S Z . Anal. Chem., 2013,85:11464. https://www.ncbi.nlm.nih.gov/pubmed/24160846

doi: 10.1021/ac403257p     URL     pmid: 24160846
[46]
Miao Y Q, He N Y, Zhu J J . Chem. Rev., 2010,110:5216. https://www.ncbi.nlm.nih.gov/pubmed/20593857

doi: 10.1021/cr900214c     URL     pmid: 20593857
[47]
Cayuela A, Soriano M L, Valcárcel M . Anal. Chim. Acta, 2015,872:70. https://www.ncbi.nlm.nih.gov/pubmed/25892071

doi: 10.1016/j.aca.2015.02.052     URL     pmid: 25892071
[48]
Barati A, Shamsipur M, Abdollahi H . Biosens. Bioelectron., 2015,71:470. https://www.ncbi.nlm.nih.gov/pubmed/25988918

doi: 10.1016/j.bios.2015.04.073     URL     pmid: 25988918
[49]
Li G L, Fu H L, Chen X J, Gong P W, Chen G, Xia L, Wang H, You J M, Wu Y N . Anal. Chem., 2016,88:2720. https://www.ncbi.nlm.nih.gov/pubmed/26820049

doi: 10.1021/acs.analchem.5b04193     URL     pmid: 26820049
[50]
Mao M, Tian T, He Y, Ge Y L, Zhou J G, Song G W . Microchim. Acta, 2018,185:17. https://www.ncbi.nlm.nih.gov/pubmed/29594532

doi: 10.1007/s00604-017-2541-4     URL     pmid: 29594532
[51]
Sharma A K, Pandey S, Khan M S, Wu H F . Sensor. Actuat. B-Chem., 2018,259:83.
[52]
Lu S M, Li G L, Lv Z X, Qiu N N, Kong W W, Gong P W, Chen G, Xia L, Guo X X, You J M, Wu Y N . Biosens. Bioelectron., 2016,85:358. https://www.ncbi.nlm.nih.gov/pubmed/27196253

doi: 10.1016/j.bios.2016.05.021     URL     pmid: 27196253
[53]
Kong W H, Wu D, Xia L, Chen X F, Li G L, Qiu N N, Chen G, Sun Z W, You J M, Wu Y N . Anal. Chim. Acta, 2017,973:91. https://www.ncbi.nlm.nih.gov/pubmed/28502432

doi: 10.1016/j.aca.2017.03.050     URL     pmid: 28502432
[54]
Chen C X, Zhao D, Hu T, Sun J, Yang X R . Sensor. Actuat. B-Chem., 2017,241:779. https://linkinghub.elsevier.com/retrieve/pii/S0925400516317956

doi: 10.1016/j.snb.2016.11.010     URL    
[55]
Liu H J, Li M, Xia Y N, Ren X Q . Appl. Mater. Inter., 2017,9:120. https://www.ncbi.nlm.nih.gov/pubmed/27966342

doi: 10.1021/acsami.6b11920     URL     pmid: 27966342
[56]
Chen Y, Li W Y, Wang Y, Yang X D, Chen J, Jiang Y N, Yu C, Lin Q . J. Mater. Chem. C, 2014,2:4080. https://www.ncbi.nlm.nih.gov/pubmed/32261739

doi: 10.1039/c4tb00456f     URL     pmid: 32261739
[57]
Chen L Y, Wang C W, Yuan Z, Chang H T . Anal. Chem., 2015,87:216. https://www.ncbi.nlm.nih.gov/pubmed/25275676

doi: 10.1021/ac503636j     URL     pmid: 25275676
[58]
Wang T Y, Chen C Y, Wang C M, Tan Y Z, Liao W S . ACS Sens., 2017,2:354. https://www.ncbi.nlm.nih.gov/pubmed/28723203

doi: 10.1021/acssensors.6b00607     URL     pmid: 28723203
[59]
Song J, Wu F Y, Wan Y Q, Ma L H . Food Control., 2015,50:356.
[60]
Yun W, Jiang J L, Cai D Z, Zhao P X, Liao J S, Sang G . Biosens. Bioelectron., 2016,77:421. https://www.ncbi.nlm.nih.gov/pubmed/26448518

doi: 10.1016/j.bios.2015.09.065     URL     pmid: 26448518
[61]
Chen L P, Xia N, Li T T, Bai Y H, Chen X L . Microchim. Acta, 2016,183:1. http://link.springer.com/10.1007/s00604-015-1623-4

doi: 10.1007/s00604-015-1623-4     URL    
[62]
Zhao D, Chen C X, Sun J, Yang X R . Analyst., 2016,141:3280. https://www.ncbi.nlm.nih.gov/pubmed/27099097

doi: 10.1039/c6an00514d     URL     pmid: 27099097
[63]
Zhang R, Li N, Sun J Y, Gao F . J. Agric. Food Chem., 2015,63:8947. https://www.ncbi.nlm.nih.gov/pubmed/26411607

doi: 10.1021/acs.jafc.5b03096     URL     pmid: 26411607
[64]
Chanmee W, Chaicharoenpong C, Petsom A . Food & Nutrition Sciences, 2013,4:554.
[65]
Aggarwal A, Srivastava S, Velmurugan M . World J. Cardiol., 2016,8:728. https://www.ncbi.nlm.nih.gov/pubmed/28070240

doi: 10.4330/wjc.v8.i12.728     URL     pmid: 28070240
[66]
Hernández Y S, Miranda E A, Xin W W, Goss K, Loaiza A V, de la Mora M T G, Aguilar R E P . World J. Gastroenterol., 2015,21:1001. https://www.ncbi.nlm.nih.gov/pubmed/25624737

doi: 10.3748/wjg.v21.i3.1001     URL     pmid: 25624737
[67]
Gupta R, Rathi P, Gupta N, Bradoo S . Biotechnol. Appl. Biochem., 2003,37:63. https://www.ncbi.nlm.nih.gov/pubmed/12578553

doi: 10.1042/ba20020059     URL     pmid: 12578553
[68]
田丹碧(Tian D B), 张卫(Zhang W), 汤燕(Tang Y), 江凌(Jiang L), 刘佳(Liu J), 胡燚(Hu Y) . 化学进展 (Progress in Chemistry), 2015,27:267. 76f7ec09-c8b3-49d2-a099-841b9fc0f462http://www.progchem.ac.cn//CN/abstract/abstract11495.shtml

doi: 10.7536/PC140938     URL    
[69]
Zhang W, Tang Y, Liu J, Jiang L, Huang W, Huo F W, Tian D B . J. Agric. Food Chem., 2015,63:39. https://www.ncbi.nlm.nih.gov/pubmed/25516269

doi: 10.1021/jf505339q     URL     pmid: 25516269
[70]
Tang Y, Zhang W, Liu J, Zhang L, Huang W, Huo F W, Tian D B ., Nanoscale, 2015,7:6039. https://www.ncbi.nlm.nih.gov/pubmed/25766647

doi: 10.1039/c4nr07579j     URL     pmid: 25766647
[71]
Seiber J N . Journal of Integrative Agriculture, 2012,11:9. a29c070a-8b1e-4430-9c2a-b9322714385cWOS:000300655800003
[72]
Qian S H, Lin H W . Anal. Chem., 2015,87:5395. https://pubs.acs.org/doi/10.1021/acs.analchem.5b00738

doi: 10.1021/acs.analchem.5b00738     URL    
[73]
Su Y S, Jen J F . J. Chromatogr. A, 2010,1217:5043. https://www.ncbi.nlm.nih.gov/pubmed/20580004

doi: 10.1016/j.chroma.2010.06.006     URL     pmid: 20580004
[74]
Pundir C S, Chauhan N . Anal. Biochem., 2012,429:19. https://www.ncbi.nlm.nih.gov/pubmed/22759777

doi: 10.1016/j.ab.2012.06.025     URL     pmid: 22759777
[75]
Liang M M, Fan K L, Pan Y, Jiang H, Wang F, Yang D L, Lu D, Feng J, Zhao J J, Yang L, Yan X Y . Anal. Chem., 2013,85:308. https://www.ncbi.nlm.nih.gov/pubmed/23153113

doi: 10.1021/ac302781r     URL     pmid: 23153113
[76]
Dong L, Hou C J, Yang M, Fa H B, Wu H X, Shen C H, Huo D Q . J. Nanopart. Res., 2016,18:164.
[77]
Si F F, Zou R B, Jiao S S, Qiao X S, Guo Y R, Zhu G N . Ecotoxicology and Environmental Safety, 2018,148:862.
[78]
Wang L, Bi Y D, Hou J, Li H Y, Xu Y, Wang B, Ding H, Ding L . Talanta, 2016,160:268. https://www.ncbi.nlm.nih.gov/pubmed/27591613

doi: 10.1016/j.talanta.2016.07.020     URL     pmid: 27591613
[79]
Choi J Y, Kim G H, Guo Z Q, Lee H Y, Swamy K, Pai J, Shin S, Shin I, Yoon J . Biosens. Bioelectron., 2013,49:438. https://www.ncbi.nlm.nih.gov/pubmed/23810913

doi: 10.1016/j.bios.2013.05.033     URL     pmid: 23810913
[80]
Wang K, Qian J, Jiang D, Yang Z T, Du X J, Wang K . Biosens. Bioelectron., 2015,65:83. https://www.ncbi.nlm.nih.gov/pubmed/25461142

doi: 10.1016/j.bios.2014.09.093     URL     pmid: 25461142
[81]
Wu C F, Chiu D T . Angew. Chem. Int. Ed. Engl., 2013,52:3086. https://www.ncbi.nlm.nih.gov/pubmed/23307291

doi: 10.1002/anie.201205133     URL     pmid: 23307291
[82]
Zhao P, He K Y, Han Y T, Zhang Z, Yu M Z, Wang H H, Huang Y, Nie Z, Yao S Z . Anal. Chem., 2015,87:9998. https://www.ncbi.nlm.nih.gov/pubmed/26358143

doi: 10.1021/acs.analchem.5b02614     URL     pmid: 26358143
[83]
Yan X, Li H X, Li Y, Su X G . Anal. Chim. Acta, 2014,852:189. https://www.ncbi.nlm.nih.gov/pubmed/25441897

doi: 10.1016/j.aca.2014.09.008     URL     pmid: 25441897
[84]
Yan X, Li H X, Han X S, Su X G . Biosens. Bioelectron., 2015,74:277. https://www.ncbi.nlm.nih.gov/pubmed/26143468

doi: 10.1016/j.bios.2015.06.020     URL     pmid: 26143468
[85]
Zhang H F, Zhang J, Zheng J B . Measurement, 2015,59:177.
[86]
Li N, Than A, Wang X W, Xu S H, Sun L, Duan H W, Xu C J, Chen P . ACS Nano, 2016,10:3622. https://www.ncbi.nlm.nih.gov/pubmed/26928434

doi: 10.1021/acsnano.5b08103     URL     pmid: 26928434
[87]
Chen S, Hai X, Chen X W, Wang J H . Anal. Chem., 2014,86:6689. https://www.ncbi.nlm.nih.gov/pubmed/24862345

doi: 10.1021/ac501497d     URL     pmid: 24862345
[88]
Nakaminami T, Ito S, Kuwabata S, Yoneyama H . Anal. Chem., 1999,71:1928. https://www.ncbi.nlm.nih.gov/pubmed/10361492

doi: 10.1021/ac981168u     URL     pmid: 10361492
[89]
Zhou N D, Wang J, Chen T, Yu Z G, Li G X . Anal. Chem., 2006,78:5227. https://www.ncbi.nlm.nih.gov/pubmed/16841954

doi: 10.1021/ac0605492     URL     pmid: 16841954
[90]
Mazzio E A, Soliman K F . J. Appl. Toxicol., 2004,24:99. https://www.ncbi.nlm.nih.gov/pubmed/15052604

doi: 10.1002/jat.954     URL     pmid: 15052604
[91]
Chen H Q, Guan Y Y, Wang S Z, Ji Y, Gong M Q, Wang L . Langmuir, 2014,30:13085. https://www.ncbi.nlm.nih.gov/pubmed/25296290

doi: 10.1021/la502753e     URL     pmid: 25296290
[92]
Yang Y M, Liu F, Liu X G, Xing B G . Nanoscale, 2013,5:231. https://www.ncbi.nlm.nih.gov/pubmed/23154830

doi: 10.1039/c2nr32835f     URL     pmid: 23154830
[93]
Long Q, Fang A J, Wen Y Q, Li H T, Zhang Y Y, Yao S Z . Biosens. Bioelectron., 2016,86:109. https://www.ncbi.nlm.nih.gov/pubmed/27341137

doi: 10.1016/j.bios.2016.06.017     URL     pmid: 27341137
[94]
Chen H Y, Fang A J, He L, Zhang Y Y, Yao S Z . Talanta, 2017,164:580. https://www.ncbi.nlm.nih.gov/pubmed/28107976

doi: 10.1016/j.talanta.2016.10.008     URL     pmid: 28107976
[95]
Ding L H, Gong Z J, Yan M, Yu J H, Song X R . Microchim. Acta, 2017,184:4531. http://link.springer.com/10.1007/s00604-017-2445-3

doi: 10.1007/s00604-017-2445-3     URL    
[96]
Liu Y Y, Li H C, Guo B, Wei L J, Chen B, Zhang Y Y . Biosens. Bioelectron., 2017,91:734. https://www.ncbi.nlm.nih.gov/pubmed/28130993

doi: 10.1016/j.bios.2017.01.020     URL     pmid: 28130993
[97]
Chang H C, Ho J A . Anal. Chem., 2015,87:10362. https://www.ncbi.nlm.nih.gov/pubmed/26379119

doi: 10.1021/acs.analchem.5b02452     URL     pmid: 26379119
[98]
Ma Y S, Cen Y, Sohail M, Xu G H, Wei F D, Shi M L, Xu X M, Song Y Y, Ma Y J, Hu Q . Appl. Mater. Interfaces, 2017,9:33011. https://www.ncbi.nlm.nih.gov/pubmed/28876887

doi: 10.1021/acsami.7b10548     URL     pmid: 28876887
[99]
Chen J, Ma Q, Hu X Y, Gao Y J, Yan X Y, Qin D D, Lu X Q . Sensor. Actuat. B-Chem., 2018,254:475. https://linkinghub.elsevier.com/retrieve/pii/S0925400517313333

doi: 10.1016/j.snb.2017.07.125     URL    
[100]
Zhang P Y, Wang Y, Huang W X, Zhao Z Q, Li H H, Wang H T, He C X, Liu J H, Zhang Q L . Sensor. Actuat .B-Chem., 2018,255:283.
[101]
Arrigoni O, De Tullio M C . Biochim. Biophys. Acta, 2002,1569:1. https://www.ncbi.nlm.nih.gov/pubmed/11853951

doi: 10.1016/s0304-4165(01)00235-5     URL     pmid: 11853951
[102]
Nikolaus S, Antke CMuller H W . Behavioural Brain Research, 2009,204:32. https://www.ncbi.nlm.nih.gov/pubmed/19523495

doi: 10.1016/j.bbr.2009.06.009     URL     pmid: 19523495
[103]
O’Leary F, Samman S . Nutrients., 2010,2:299. https://www.ncbi.nlm.nih.gov/pubmed/22254022

doi: 10.3390/nu2030299     URL     pmid: 22254022
[104]
Yang C L, Wang X, Liu H Y, Ge S G, Yan M, Yu J H, Song X R . Sensor. Actuat. B-Chem., 2017,248:639.
[105]
Jiang X Y, Geng F H, Wang Y X, Liu J H, Qu P, Xu M T . Biosens. Bioelectron., 2016,81:268. https://www.ncbi.nlm.nih.gov/pubmed/26971272

doi: 10.1016/j.bios.2016.02.068     URL     pmid: 26971272
[106]
Wu D, Li G L, Chen X F, Qiu N N, Shi X X, Chen G, Sun Z W, You J M, Wu Y N . Microchim. Acta, 2017,184:1.
[107]
Rezaei B, Shahshahanipour M, Ensafi A A . Materials Science & Engineering C Materials for Biological Applications, 2017,71:663. https://www.ncbi.nlm.nih.gov/pubmed/27987757

doi: 10.1016/j.msec.2016.10.046     URL     pmid: 27987757
[108]
Zhu X H, Zhao T B, Nie Z, Liu Y, Yao S Z . Anal. Chem., 2015,87:8524. https://www.ncbi.nlm.nih.gov/pubmed/26202861

doi: 10.1021/acs.analchem.5b02167     URL     pmid: 26202861
[109]
Lin F E, Gui C, Wen W, Bao T, Zhang X H, Wang S F . Talanta, 2016,158:292. https://www.ncbi.nlm.nih.gov/pubmed/27343608

doi: 10.1016/j.talanta.2016.05.062     URL     pmid: 27343608
[110]
Ding L H, Yang H M, Ge S G, Yu J H . Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018,193:305. https://www.ncbi.nlm.nih.gov/pubmed/29258025

doi: 10.1016/j.saa.2017.12.015     URL     pmid: 29258025
[1] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[2] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[3] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[4] 王子璇, 厉欣, 再帕尔·阿不力孜. 化学衍生用于代谢物异构体质谱分析[J]. 化学进展, 2021, 33(3): 406-416.
[5] 田丹碧, 张卫, 汤燕, 江凌, 刘佳, 胡燚. 纳米金生物共轭探针在酶活检测中的应用[J]. 化学进展, 2015, 27(2/3): 267-274.
[6] 李正名. 杨石先对农药化学学科的重要贡献及其学术思想[J]. 化学进展, 2011, 23(01): 13-18.
[7] 王智文 马向辉 陈洵 赵学明 陈涛. 微生物代谢物组学的研究方法与进展*[J]. 化学进展, 2010, 22(01): 163-172.
[8] 戈惠明,谭仁祥. 共生菌——新活性天然产物的重要来源*[J]. 化学进展, 2009, 21(01): 30-46.
[9] 李竹赟,王敏. 农药残留的安培检测法*[J]. 化学进展, 2007, 19(10): 1585-1592.
[10] 杨小超,钱俊臻,万巧玲,莫志宏. 金纳米团簇功能化及其在生物医学中的应用[J]. 化学进展, 2007, 19(05): 689-694.
[11] 王丽红,张林,陈欢林. 有机磷农药酶生物传感器研究进展[J]. 化学进展, 2006, 18(04): 440-452.
[12] 杨缜. 有机介质中酶催化的基本原理[J]. 化学进展, 2005, 17(05): 924-930.
[13] 易军,李云春,弓振斌. 食品中农药残留分析的样品前处理技术进展*[J]. 化学进展, 2002, 14(06): 415-.
[14] 闫芳,马金石,成昊,张驿. 新型绿色农药--光活化农药[J]. 化学进展, 1999, 11(04): 341-.