English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 70-82 DOI: 10.7536/PC180507 前一篇   后一篇

• 综述 •

长链脂肪族二元酸的合成及其在缩聚反应中的应用

王茜茜, 戴璐, 介素云**(), 李伯耿   

  1. 浙江大学化学工程与生物工程学院 化学工程联合国家重点实验室 杭州 310027
  • 收稿日期:2018-05-11 修回日期:2018-07-04 出版日期:2019-01-15 发布日期:2018-12-07
  • 通讯作者: 介素云
  • 基金资助:
    浙江省自然科学基金项目(LY16B040001); 中央高校基本科研业务费专项资金资助(2018FZA4020)

Synthesis and Application in the Polycondensation of Long-Chain Aliphatic Dicarboxylic Acids

Xixi Wang, Lu Dai, Suyun Jie**(), Bogeng Li   

  1. State Key Laboratory of Chemical Engineering, College of Chemical Engineering and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2018-05-11 Revised:2018-07-04 Online:2019-01-15 Published:2018-12-07
  • Contact: Suyun Jie
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the Zhejiang Provincial Natural Science Foundation of China(LY16B040001); The Fundamental Research Funds for the Central Universities(2018FZA4020)

长链脂肪族二元酸一般是指含有10个或以上碳原子的饱和直链二元酸,其两端带有羧基官能团,可用于合成香料、特种尼龙工程塑料、热熔胶、涂料、增塑剂、高级润滑油等众多化工产品;由于其链段中含有长烷烃链段,具有优于短链二元酸的性质,使得相应的合成材料具有优越的性能,因此广泛应用于化工、轻工、国防、汽车工业、工程材料等领域;同时,还可用于开发新的聚合物产品。长链脂肪族二元酸在自然界中不单独存在,目前工业上主要通过化学合成法和生物发酵法生产。本文主要对长链脂肪族二元酸的合成方法进行综述,包括传统有机合成、生物技术转化、烯烃复分解、异构化-氢氧羰基化及聚乙烯端基功能化等,并简要概述长链脂肪族二元酸在缩聚反应(聚酯和聚酰胺)中的应用。最后,对合成方法待解决的问题进行了总结,并对未来发展方向进行了展望。

Long-chain aliphatic dicarboxylic acids generally refer to the saturated straight-chain dicarboxylic acids containing ten or more carbon atoms. Due to the existence of carboxyl functional groups in each terminal, they are usually applied to synthesize perfumes, special nylon engineering plastics, hot melt adhesives, coatings, plasticizers, senior lubricants and many other chemical products. In addition, they have better properties than short-chain dicarboxylic acids because of their long methylene sequences, which makes the corresponding composite materials have superior performance and be widely used in chemical industry, light industry, national defense, automobile industry, engineering materials and other fields. Besides, they could be also used to develop new polymer products. Long-chain aliphatic dicarboxylic acids do not exist alone in nature. At present, they have been synthesized mainly via chemical synthesis and biological fermentation in industry. In this review, the synthetic methods of long-chain aliphatic dicarboxylic acids are summarized, including traditional organic synthesis, biotechnology conversion, olefin metathesis, isomerization hydroxycarbonylation and functionalization of polyethylene. The application of long-chain aliphatic dicarboxylic acids in the polycondensation(mainly of polyesters and polyamides) is also briefly introduced. Finally, the problems remaining to be solved in the synthesis and the further advances are prospected.

()
图式1 1,10-二溴癸烷的扩链反应[6]
Scheme S1 Chain extension of 1,10-dibromodecane via Grignard coupling with short-chain α,ω-ester acid chlorides[6]
图式2 由1,10-癸二酸生成1,22-二十二烷二酸的扩链反应[7]
Scheme 2 Chain extension of decane-1,10-dioic acid to docosane-1,22-dioic acid[7]
图式3 1,50-五十碳二酸(n=2)和1,194-一百九十四碳二酸的多步合成(第一个反应以 x=10开始,而n是所用的环的数量)[12]
Scheme 3 Multistep synthesis of pentacontane-1,50-dioic acid (n=2) and tetranonacontahectane-1,194-dioic acid (n=4) (The first reaction sequence starts with x=10, whereas n is the number of cycles applied)[12]
图式4 油酸和芥酸通过臭氧氧化分解分别生成壬二酸和十三烷二酸[15]
Scheme 4 Synthesis of azelaic and brassylic acid by ozonolysis of oleic acid and erucic acid, respectively[15]
图式5 脂肪酸的酶促ω-氧化[16,17,18]
Scheme 5 Enzymatic ω-oxidation of fatty acids[16,17,18]
图式6 脂肪酸经生物催化转化为相应的ω-功能化脂肪酸[25,26,27,28,29,30]
Scheme 6 Biocatalytic conversion of fatty acids to the corresponding ω-functionalized acids[25,26,27,28,29,30]
图式7 油酸经多步酶催化反应转化为壬酸和ω-羟基壬酸或正辛醇和1,10-癸二酸[31]
Scheme 7 Oleic acid is converted into either nonanoic acid and ω-hydroxynonanoic acid or n-octanol and 1,10-decanedioic acid by multistep enzyme-catalyzed reactions[31]
图式8 芥酸的自复分解反应[43]
Scheme 8 Self-metathesis of erucic acid[43]
图式9 1,20-二十碳二酸的合成[55]
Scheme 9 Synthesis of 1,20-eicosanedioic acid[55]
图式10 不饱和脂肪酸制备长链α,ω-官能化化合物(x=1,起始原料是油酸;x=5,起始原料是芥酸)[4]
Scheme 10 Preparation of long-chain α,ω-difunctional compounds from unsaturated fatty acids (x=1, oleic acid as starting material; x=5, erucic acid)[4]
图式11 油酸通过异构化-氢氧羰基化反应生成线性长链α,ω-二元酸[58]
Scheme 11 Isomerizing hydroxycarbonylation of oleic acid to generate linear,long-chain α,ω-dicarboxylic acids[58]
图式12 通过CCG聚合和巯基-烯点击反应制备双末端羧基聚乙烯[63,64]
Scheme 12 Sythesis of dicarboxyl functionalized telechelic polyethylene by CCG polymerization and the thiol-ene click reaction[63,64]
图式13 通过CT-ROMP/加氢方法合成末端为羧基的遥爪聚环辛烯和聚乙烯[69]
Scheme 13 Synthesis of carboxy-telechelic poly-(cyclooctene) and polyethylene by a CT-ROMP/hydrogenation approach[69]
图式14 1,26-二十六烷二酸分别与1,26-二十六烷二醇(a)、1,12-十二烷二醇(b)、丁二醇(c)之间的缩聚反应[43]
Scheme 14 Polycondensation of (a) 1,26-hexacosanedioic acid with its corresponding diol, (b) 1,26-hexacosanedioic acid with 1,12-dodecanediol, (c) 1,26-hexacosanedioic acid with butane-1,4-diol[43]
图式15 不饱和脂肪酸制备长链α,ω-官能化化合物(x=1,起始原料是油酸;x=5,起始原料是芥酸)[4]
Scheme 15 Preparation of long-chain α,ω-difunctional compounds from unsaturated fatty acids(x=1, oleic acid as starting material; x=5, erucic acid)[4]
图式16 PA-6.24和PA-6.34的合成[95]
Scheme 16 Synthesis of PA-6.24 and PA-6.34[95]
[1]
Stempfle F, Ortmann P, Mecking S . Chem.Rev, 2016,116:4597.
[2]
Kroha K . Inform, 2004,15:568.
[3]
Mecking S . Angew. Chem. Int. Ed., 2004,43:1078.
[4]
Stempfle F, Quinzler D, Heckler I, Mecking S . Macromolecules, 2011,44:4159.
[5]
Chuit P, Hausser J . Helv.Chim Acta, 1929,12:850.
[6]
Kreuchunas A . J. Am. Chem. Soc., 1953,75:3339.
[7]
Hünig S, Lücke E, Brenninger W . Docosanedioic Acid. Org. Synth., 1973,5:533.
[8]
Hunig S, Lucke E . Chem. Ber. Recl., 1959,92:652.
[9]
Hunig S, Lendle W . Chem. Ber. Recl., 1960,93:913.
[10]
Hunig S, Buysch H J . Chem. Ber. Recl., 1967,100:4010.
[11]
Hunig S, Buysch H J . Chem. Ber. Recl., 1967,100:4017.
[12]
Brooke G M, Burnett S, Mohammed S, Proctor D, Whiting M C . J. Chem. Soc. Perkin Trans., 1996,1:1635.
[13]
Genas M . Angew. Chem. Int. Ed., 1962,74:535.
[14]
Naughton F C . J. Am. Oil Chem. Soc., 1974,51:65.
[15]
Brown A C, Goebel C G, Oehlschlaeger H F, Rolfes R P . US 2813113A, 1957.
[16]
Zibek S, Huf S, Wagner W, Hirth T, Rupp S . Chem. Ing. Tech., 2009,81:1797.
[17]
Schorken U, Kempers P . Eur.J Lipid Sci. Technol., 2009,111:627.
[18]
Abghari A, Madzak C, Chen S . Ferment., 2017,3:40.
[19]
Sathesh-Prabu C, Lee S K . J. Agric. Food Chem., 2015,37:8199.
[20]
Lee H, Sugiharto Y E C, Lee S, Park G, Han C, Jang H, Jeon W, Park H, Ahn J, Kang K, Lee H . Appl. Microbiol. Biotechnol., 2017,16:6333.
[21]
Huf S, Krugener S, Hirth T, Rupp S, Zibek S . Eur.J Lipid Sci. Technol., 2011,113:548.
[22]
Picataggio S, Deanda K, Mielenz J . Mol. Cell. Biol., 1991,11:4333.
[23]
Eschenfeldt W H, Zhang Y Y, Samaha H, Stols L, Eirich L D, Wilson C R, Donnelly M I . Appl. Environ. Microbiol., 2003,69:5992.
[24]
Cao Z, Gao H, Liu M, Jiao P . Biotechnol.J, 2006,1:68.
[25]
Schrewe M, Magnusson A O, Willrodt C, Buhler B, Schmid A . Adv. Synth. Catal., 2011,353:3485.
[26]
Julsing M K, Schrewe M, Cornelissen S, Hermann I, Schmid A, Buhler B . Appl. Environ. Microbiol., 2012,78:5724.
[27]
Lu W H, Ness J E, Xie W C, Zhang X Y, Liu F, Cai J L, Minshull J, Gross R A . J. Am. Chem. Soc., 2010,132:15451.
[28]
Malca S H, Scheps D, Kuhnel L, Venegas-Venegas E, Seifert A, Nestl B M, Hauer B . Chem.Commun, 2012,48:5115.
[29]
Scheps D, Malca S H, Richter S M, Marisch K, Nestl B M, Hauer B . Microb.Biotechnol, 2013,6:694.
[30]
Schrewe M, Ladkau N, Buhler B, Schmid A . Adv. Synth. Catal., 2013,355:1693.
[31]
Song J W, Jeon E Y, Song D H, Jang H Y, Bornscheuer U T, Oh D K, Park J B . Angew. Chem. Int. Ed., 2013,52:2534.
[32]
Werner N, Dreyer M, Wagner W, Papon N, Rupp S, Zibek S . Biotechnol. Lett, 2017,3:429.
[33]
陈远童 ( Chen Y T). 微生物学通报( Microbiology China), 2000,27:309.
[34]
van Dam P B, Boelhouwer C, Mittelmeijer M C . J. Chem. Soc. Chem. Commun., 1972,1221.
[35]
Vandam P B, Mittelmeijer M C, Boelhouwer C . J. Am. Oil Chem. Soc., 1974,51:389.
[36]
Verkuijlen E, Kapteijn F, Mol J C, Boelhouwer C . J. Chem. Soc. Chem. Commun., 1977,198.
[37]
Schwab P, France M B, Ziller J W, Grubbs R H . Angew. Chem. Int. Ed., 1995,34:2039.
[38]
Schwab P, Grubbs R H, Ziller J W . J. Am. Chem. Soc., 1996,118:100.
[39]
Vougioukalakis G C, Grubbs R H . Chem. Rev., 2010,110:1746.
[40]
Scholl M, Ding S, Lee C W, Grubbs R H . Org. Lett., 1999,1:953.
[41]
Garber S B, Kingsbury J S, Gray B L, Hoveyda A H . J. Am. Chem. Soc., 2000,122:8168.
[42]
Grubbs R H, Nguyen S T . US 5728917A, 1998.
[43]
Vilela C, Silvestre A J D, Meier M A R . Macromol. Chem. Phys., 2012,213:2220.
[44]
Ngo H L, Jones K, Foglia T A . J. Am. Oil Chem. Soc., 2006,83:629.
[45]
Ngo H L, Foglia T A . J. Am. Oil Chem. Soc., 2007,84:777.
[46]
Schmidt B . Eur. J. Org. Chem., 2004,1865.
[47]
Schmidt B . J. Mol. Catal. A: Chem., 2006,254:53.
[48]
Dinger M B, Mol J C . Organometallics, 2003,22:1089.
[49]
Dinger M B, Mol J C . Eur. J. Inorg. Chem., 2003,2827.
[50]
Hong S H, Day M W, Grubbs R H . J. Am. Chem. Soc., 2004,126:7414.
[51]
Djigoue G B, Meier M A R . Appl. Catal. A: Gen., 2009,368:158.
[52]
Hong S H, Sanders D P, Lee C W, Grubbs R H . J. Am. Chem. Soc., 2005,127:17160.
[53]
Meyer W H, McConnell A E, Forman G S, Dwyer C L, Kirk M M, Ngidi E L Blignaut A, Saku D, Slawin A M Z . Inorg. Chim.Acta, 2006,359:2910.
[54]
Gimeno N, Formentin P, Steinke J H G, Vilar R . Eur.J. Org. Chem., 2007,918.
[55]
Trzaskowski J, Quinzler D, Bahrle C, Mecking S . Macromol. Rapid Commun., 2011,32:1352.
[56]
Fang H, Zhao C, Kong Q, Zou Z, Chen N . Energy, 2016,116, 177.
[57]
Zhao C, Fang H, Chen S . Biotechnol.Biofuels, 2017,10:202.
[58]
Goldbach V, Falivene L, Caporaso L, Cavallo L, Mecking S . ACS Catal, 2016,6:8229.
[59]
Reed S F . J. Polym. Sci. Part A: Polym. Chem., 1971,9:2147.
[60]
Kanakavel M . Makromol. Chem. Macromol. Chem. Phys., 1987,188:845.
[61]
Schnecko H, Degler G, Dongowski H, Caspary R, Angerer G, Ng T S . Angew. Makromol. Chem., 1978,70:9.
[62]
Xu J T, Dimonie V L, Sudol E D, Elaasser M S . J. Polym. Sci. Part A: Polym. Chem., 1995,33:1353.
[63]
German I, Kelhifi W, Norsic S, Boisson C, D’Agosto F . Angew. Chem. Int. Ed., 2013,52:3438.
[64]
Norsic S, Thomas C D’Agosto F, Boisson C . Angew. Chem. Int. Ed., 2015,54:4631.
[65]
Pitet L M, Zhang J, Hillmyer M A . Dalton Trans., 2013,42:9079.
[66]
Bielawski C W, Grubbs R H . Prog. Polym. Sci., 2007,32:1.
[67]
Tasdelen M A, Kahveci M U, Yagci Y . Prog. Polym. Sci., 2011,36:455.
[68]
冯雨晨 ( Feng Y C), 介素云(Jie S Y), 李伯耿(Li B G) . 化学进展( Progress in Chemistry), 2015,27:1074.
[69]
Pitet L M, Hillmyer M A . Macromolecules, 2011,44:2378.
[70]
Carothers W H . Trans. Faraday Soc., 1936,32:0039.
[71]
Stempfle F, Ortmann P, Mecking S . Macromol. Rapid Commun., 2013,34:47.
[72]
Mutlu H, Hofsass R, Montenegro R E, Meier M A R . RSC Adv., 2013,3:4927.
[73]
Quinzler D, Mecking S . Angew. Chem. Int.Ed., 2010,49:4306.
[74]
Roesle P, Stempfle F, Hess S K, Zimmerer J, Bartulos C R, Lepetit B, Eckert A, Kroth P G, Mecking S . Angew. Chem. Int. Ed., 2014,53:6800.
[75]
Korshak W V, Vinogradova S V . Bull. Acad. Sci. USSR Div. Chem. Sci., 1953,2:995.
[76]
Fuller C S, Frosch C J . J. Am. Chem. Soc., 1939,61:2575.
[77]
Bunn C W . J. Polym. Sci., 1955,16:323.
[78]
Rickert S E, Baer E, Wittmann J C, Kovacs A J . J. Polym. Sci.,Polym. Phys. Ed., 1978,16:895.
[79]
Jimenez-Rodriguez C, Eastham G R, Cole-Hamilton D . J. Inorg. Chem. Commun., 2005,8:878.
[80]
Okumura S, Iwai M, Tominaga Y . Agric. Biol. Chem., 1984,48:2805.
[81]
Mahapatro A, Kumar A, Kalra B, Gross R A . Macromolecules, 2004,37:35.
[82]
Uyama H, Inada K, Kobayashi S . Chem.Lett, 1998,1285.
[83]
Kobayashi S, Uyama H, Suda S, Namekawa S . Chem.Lett, 1997,105.
[84]
Kobayashi S, Uyama H, Namekawa S . Polym. Degrad. Stabil., 1998,59:195.
[85]
Biggs B S, Frosch C J, Erickson R H . Ind. Eng. Chem., 1946,38:1016.
[86]
Aharoni S M . n-Nylons: Their Synthesis, Structure and Properties. Wiley-VCH:Weinheim, 1997.
[87]
Bennett C, Mathias L J . J. Polym. Sci. Part A: Polym. Chem., 2005,43:936.
[88]
Bennett C, Zeng J, Kumar S, Mathias L J . J. Appl. Polym. Sci., 2006,99:2062.
[89]
Nataniel T, Heinrich D . US 7163996B2, 2007.
[90]
Nataniel T, Heinrich D . US 8119251B2, 2012.
[91]
Gavenois J, Mathew A K . US 0052384, 2013.
[92]
Coffman D D, Berchet G J, Peterson W R, Spanagel E W . J. Polym. Sci., 1947,2:306.
[93]
Cui X W, Li W H, Yan D Y, Yuan C M, di Silvestro G . J. Appl. Polym. Sci., 2005,98:1565.
[94]
Huang Y, Li W H, Yan D Y . Polym. Bull., 2002,49:111.
[95]
Ehrenstein M, Dellsperger S, Kocher C, Stutzmann N, Weder C, Smith P . Polymer, 2000,41:3531.
[96]
Ehrenstein M, Smith P, Weder C . Macromol. Chem. Phys., 2003,204:1599.
[97]
Saotome K, Komoto H . J. Polym. Sci. Part A: Polym. Chem., 1966,4:1463.
[98]
Bennett C, Kaya E, Sikes A M, Jarrett W L, Mathias L J . J. Polym. Sci. Part A: Polym. Chem., 2009,47:4409.
[1] 陈峥, 姜振华. 浅析高分子树脂无溶剂生产技术中的高分子凝聚态相关化学问题[J]. 化学进展, 2022, 34(7): 1576-1589.
[2] 邓璐遥, 李少路, 秦一文, 胡云霞. 抗污染薄层复合聚酰胺膜的结构设计及改性策略[J]. 化学进展, 2020, 32(12): 1895-1907.
[3] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[4] 王国强, 姜敏*, 张强, 王瑞, 曲小玲, 周光远*. 基于可再生资源含呋喃环聚酯[J]. 化学进展, 2018, 30(6): 719-736.
[5] 黄卫军, 朱宁*, 方正, 郭凯*. 含呋喃环生物基聚酰胺的合成[J]. 化学进展, 2018, 30(12): 1836-1843.
[6] 高晗, 徐军, 胡欣, 朱宁, 郭凯. 聚酯酰胺的合成[J]. 化学进展, 2018, 30(11): 1634-1645.
[7] 郑柳春, 李春成*, 肖耀南, 张博, 王召栋. 可生物降解抗污材料[J]. 化学进展, 2017, 29(8): 824-832.
[8] 程海东, 陈双俊*. 功能化离子液体在聚酯PET降解与合成中的应用[J]. 化学进展, 2017, 29(4): 443-449.
[9] 王志鹏, 田长麟, 郑基深. 聚酰胺类多肽二级结构模拟物的结构设计与性质分析[J]. 化学进展, 2016, 28(9): 1328-1340.
[10] 董博, 闫熙博, 牛玉洁, 王欣, 王连永, 王燕铭* . 聚酰胺-胺型树枝状大分子及其衍生物在基因传递中的应用[J]. 化学进展, 2012, 24(12): 2352-2358.
[11] 李启蒸, 张国艺, 袁聪, 魏柳荷, 马志. 聚烯烃/聚酯(聚醚)共聚物的合成及其应用[J]. 化学进展, 2011, 23(6): 1174-1180.
[12] 江世坤, 王普, 吴艳玲, 张文. 脂肪链在吡咯-咪唑聚酰胺及其结合物与B-DNA键合中的作用[J]. 化学进展, 2011, 23(11): 2339-2352.
[13] 刘继延,张黎明. 用于环酯单体开环聚合的无金属引发/催化体系*[J]. 化学进展, 2007, 19(0203): 350-355.
[14] 于翠萍,李 ,希,沈之荃. 丙交酯开环均聚合*[J]. 化学进展, 2007, 19(01): 136-144.
[15] 卢丽萍,朱苗力,杨频. 特异性识别DNA的吡咯-咪唑多聚酰胺的研究进展*[J]. 化学进展, 2004, 16(03): 422-.