English
新闻公告
More
化学进展 2018, Vol. 30 Issue (11): 1692-1700 DOI: 10.7536/PC180432 前一篇   后一篇

• 综述 •

聚醚醚酮在骨移植中的应用

马静, 唐斌*   

  1. 南方科技大学生物医学工程系 深圳 518055
  • 收稿日期:2018-04-18 修回日期:2018-06-29 出版日期:2018-11-15 发布日期:2018-08-17
  • 通讯作者: 唐斌,e-mail:tangb@sustc.edu.cn E-mail:tangb@sustc.edu.cn
  • 基金资助:
    深圳市基础研究项目(No.JCYJ20160517160827379)、个人创客项目(No.GRCK20160829195523424)和深圳市基础研究布局项目(No.JCYJ20170817111312887)资助

Application of Polyetheretherketone in the Orthopedic Implants

Jing Ma, Bin Tang*   

  1. Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • Received:2018-04-18 Revised:2018-06-29 Online:2018-11-15 Published:2018-08-17
  • Supported by:
    The work was supported by the Shenzhen Basic Research Project(No.JCYJ20160517160827379), the Individual Maker Project(No.GRCK20160829195523424), and Shenzhen Basic Research Layout Project(No.JCYJ20170817111312887).
聚醚醚酮诸多的优点(优良的机械性能、耐磨性能、耐化学性、良好的生物相容性、与人体骨接近的弹性模量、射线可透性、易加工及可重复消毒等)使其在骨科种植体的应用研究中成为替代不锈钢、钛合金、超高分子量聚乙烯等候选材料之一,但是,聚醚醚酮的生物惰性限制了其临床应用。为了获得良好的骨种植界面,通过在聚醚醚酮材料中制备孔隙结构,复合生物活性陶瓷和增强纤维等方法,使聚醚醚酮及其复合材料从生物惰性转变为生物活性。本文归纳了多孔聚醚醚酮、聚醚醚酮基二元复合材料和聚醚醚酮基三元复合材料的生物力学和生物活性的变化及其潜在的临床应用,为获得生物力学与人体骨相近且生物活性、生物相容性、生物安全性均优良的以聚醚醚酮为基体的骨移植材料提供理论依据,促进聚醚醚酮及其复合材料在骨移植中的广泛应用。
Polyetheretherketone (PEEK) has been demonstrated to have superior mechanical properties, wear resistance, chemical resistance, and good biocompatibility. Moreover, its elastic modulus is comparable to human bone, and PEEK has excellent radiolucency, is easy to be processed and can be repeatedlysterilized. These outstanding features make PEEK a promising bone-implant material. PEEK now is one of potential candidates for replacing the conventional implant materials including stainless steel, titanium alloys, ultra high molecular weight polyethylene and even biodegradable materials in orthopedic implant applications. However, the bioinertness of PEEK limit its clinical application. To obtain good bone-implant interfaces, quite a number of techniques have been developed to enable PEEK and PEEK-based composites from bio-inert to bioactive. Initially, the bioactive ceramics (such as hydroxyapatite, β-tricalcium phosphate, amorphous magnesium phosphate and calcium silicate) were added into the PEEK matrix through mechanical blending methods. These fillers have been found to significantly improve the bioactivity of PEEK composites at the expense of tensile strength. At present, many efforts have been done in fabrication of ternary composite, which is simultaneously incorporating bioactive ceramics and reinforced fiber into PEEK. The PEEK-based ternary composites enhanced both biomechanical properties and bioactivity of PEEK-based composites. Moreover, introducing porosity into PEEK manufactures porous PEEK, which provides available porosity for bone ingrowth. In this paper, the changes of the biomechanical properties and bioactivity of porous-PEEK, PEEK binary composites and PEEK ternary composites are summarized. The potential clinical applications are also reviewed according to the biomechanics and bioactivity of these PEEK-based composites. It is expected that this paper should provide a theoretical basis for fabricating PEEK-based orthopedic implants with biomechanics similar to human bone, good biocompatibility and biological safety and promote the application of PEEK and PEEK-based composites in orthopedic implants.
Contents
1 Introduction
2 Porous PEEK
3 PEEK-based binary composites
3.1 PEEK/hydroxyapatite composite
3.2 PEEK/other bioactive ceramics
3.3 PEEK/carbon fiber composites
3.4 PEEK/growth factor composites
4 PEEK-based ternary composites
5 Conclusion

中图分类号: 

()
[1] Kurtz S M, Devine J N. Biomaterials, 2007, 28(32):4845.
[2] Liu X, Han F, Zhao P, Lin C, Wen X, Ye X. Nanomedicine, 2017, 13(4):1423.
[3] Du Y W, Zhang L N, Hou Z T, Ye X, Cu H S, Yan G P, Shang P. Front. Mater. Sci., 2014, 8(4):313.
[4] Najeeb S, Zafar M S, Khurshid Z, Siddiqui F. J. Prosthodontic Res., 2015, 60(1):12.
[5] Abdullah M R, Goharian A, Abdul Kadir M R, Wahit M U. Journal of Biomedical Materials Research Part A, 2015, 103(11):3689.
[6] 刘昌胜(Liu C S). 硬组织修复材料与技术(Materials and techniques of hard tissue repair).北京:科学出版社(Bei Jing:Science Press), 2015. 190.
[7] Evans N T, Torstrick F B, Lee C S D, Dupont K M, Safranski D L, Chang W A, Macedo A E, Lin A S P, Boothby J M, Whittingslow D C, Carson R A, Guldberg R E, Gall K. Acta Biomaterialia, 2015, 13:159.
[8] Evans N T, Torstrick F B, Safranski D L, Guldberg R E, Gall K. J. Mechanical Behavior of Biomedical Mater., 2016, 65:522.
[9] Vaezi M, Black C, Gibbs D M, Oreffo R O, Brady M, Moshrefi-Torbati M, Yang S. Molecules, 2016, 21(6):687.
[10] Li Q, Zhang Y, Wang D, Wang H, He G. Materials & Design, 2017, 116:171.
[11] Abu Bakar M S, Cheng M H, Tang S M, Yu S C, Liao K, Tan C T, Khor K A, Cheang P. Biomaterials, 2003, 24(13):2245.
[12] Abu Bakar M S, Cheang P, Khor K A. Composites Science & Technology, 2003, 63(3/4):421.
[13] Bakar M S A, Cheang P, Khor K A. Materials Science & Engineering A, 2003, 345(1):55.
[14] Converse G L, Yue W, Roeder R K. Biomaterials, 2007, 28(6):927.
[15] Pan Y S, Shen Q Q, Chen Y, Yu K, Pan C L, Zhang L. Materials & Processing Report, 2014, 30(5):257.
[16] Wang L, Weng L, Song S, Sun Q. Materials Letters, 2010, 64(20):2201.
[17] Wang L, Weng L, Song S, Zhang Z, Tian S, Ma R. Materials Science & Engineering A, 2011, 528(10/11):3689.
[18] Ma R, Weng L, Fang L, Luo Z, Song S. Journal of Sol-Gel Science and Technology, 2012, 62(1):52.
[19] Ma R, Weng L, Bao X, Ni Z, Song S, Cai W. Materials Letters, 2012, 71:117.
[20] Chan K W, Liao C Z, Wong H M, Yeung K W K, Tjong S C. RSC Advances, 2016, 6(23):19417.
[21] Pors N S. Bone, 2004, 35(3):583.
[22] Wong K L, Wong C T, Liu W C, Pan H B, Fong M K, Lam W M, Cheung W L, Tang W M, Chiu K Y, Luk K D, Lu W W. Biomaterials, 2009, 30(23/24):3810.
[23] Wang L, He S, Wu X, Liang S, Mu Z, Wei J, Deng F, Deng Y, Wei S. Biomaterials, 2014, 35(25):6758.
[24] Petrovic L, Pohle D, Münstedt H, Rechtenwald T, Schlegel K A, Rupprecht S. Journal of Biomedical Science, 2006, 13(1):41.
[25] Nabiyouni M, Ren Y, Bhaduri S B. Materials Science and Engineering:C, 2015, 52:11.
[26] Ren Y, Sikder P, Lin B, Bhaduri S B. Materials Science and Engineering:C, 2018, 85:107.
[27] Ding J, Shie M Y, Wei C K. ACS Appl. Mater. Interfaces, 2011, 3(10):4142.
[28] Wang C, Lin K, Chang J, Sun J. Journal of Biomedical Materials Research Part A, 2014, 102(7):2096.
[29] Fei L, Chen W, Yang X, Lin K, Jiang C, Jiao S. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2012, 100B(5):1237.
[30] Kim I Y, Sugino A, Kikuta K, Ohtsuki C, Cho S B. Journal of Biomaterials Applications, 2009, 24(2):105.
[31] Ma R, Tang S, Tan H, Qian J, Lin W, Wang Y, Liu C, Wei J, Tang T. ACS Appl. Mater. Interfaces, 2014, 6(15):12214.
[32] Kuo M C, Tsai C M, Huang J C, Chen M. Materials Chemistry & Physics, 2005, 90(1):185.
[33] Luo H, Xiong G, Yang Z, Raman S R, Li Q, Ma C, Li D, Wang Z, Wan Y. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29(1):103.
[34] Qiu X, He F, Li J, Chen L, Huang Y. Polymer Composites, 2016, 36(12):2174.
[35] Brockett C L, John G, Williams S Jin Z, Isaac G H, Fisher J. J Biomed. Mater. Res. B Appl. Biomater., 2012, 100B(6):1459.
[36] Toth J M, Wang M, Estes B T, Scifert J L, Rd S H, Turner A S. Biomaterials, 2006, 27(3):324.
[37] Du Y W, Zhang L N, Ye X, Nie H M, Hou Z T, Zeng T H, Yan G P, Shang P. Frontiers of Materials Science, 2015, 9(1):38.
[38] Feng X, Sui G, Yang R. Chinese Journal of Materials Research, 2008, 22(1):18.
[39] Liu X Y, Liu J Q, Deng C B, Dong-Chao W U, Sui G X. Biomedical Engineering & Clinical Medicine, 2010, 11(6):481.
[40] Deng Y, Zhou P, Liu X, Wang L, Xiong X, Tang Z, Wei J, Wei S. Colloids & Surfaces B Biointerfaces, 2015, 136:64.
[41] Han C T, Chi M, Zheng Y Y, Jiang L X, Xiong C D, Zhang L F. J. Polym. Res., 2013, 20:203.
[42] von Wilmowsky C, Vairaktaris E, Pohle D, Rechtenwald T, Lutz R, Munstedt H, Koller G, Schmidt M, Neukam F W, Schiegel K A, Nkenke E. Journal of Biomedical Materials Research Part A, 2008, 87(4):896.
[43] Molazemhosseini A, Tourani H, Khavandi A, Yekta B E. Wear, 2013, 303(1/2):397.
[44] Tourani H, Molazemhosseini A, Khavandi A, Mirdamadi S, Shokrgozar M A, Mehrjoo M. Polymer Composites, 2013, 34(11):1961.
[1] 刘吕花, 郑延延*, 张丽芳, 熊成东. 硬组织植入生物活性聚醚醚酮复合材料[J]. 化学进展, 2017, 29(4): 450-458.
阅读次数
全文


摘要

聚醚醚酮在骨移植中的应用