English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1992-2002 DOI: 10.7536/PC180406 前一篇   后一篇

• 综述 •

六铝酸盐结构及其在高温反应中的应用

朱燕燕1*, 岳宗洋1, 边文1, 刘瑞林1, 马晓迅1, 王晓东2*   

  1. 1. 西北大学化工学院 国家碳氢资源清洁利用国际科技合作基地 陕北能源先进化工利用技术教育部工程研究中心 陕西省洁净煤转化工程技术研究中心 陕北能源化工产业发展协同创新中心 西安 710069;
    2. 中国科学院大连化学物理研究所 大连 116023
  • 收稿日期:2018-04-03 修回日期:2018-07-27 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 朱燕燕, 王晓东 E-mail:yanyanzhu2006@126.com;xdwang@dicp.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21303137,21536009,21676269)和唐仲英基金会资助

The Structure of Hexaaluminate and Application in High-Temperature Reaction

Yanyan Zhu1*, Zongyang Yue1, Wen Bian1, Ruilin Liu1, Xiaoxun Ma1, Xiaodong Wang2*   

  1. 1. School of Chemical Engineering, Northwest University, International Scientific and Technological Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Xi'an 710069, China;
    2. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received:2018-04-03 Revised:2018-07-27 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21303137, 21536009, 21676269) and Cyrus Tang Foundation.
六铝酸盐因其特殊的层状结构具有高温热稳定性;晶格中Al3+可被不同过渡金属和贵金属离子取代,具有活性组分可镶嵌性;镜面层排列疏松,为氧的优先扩散通道;以上结构特质为六铝酸盐在高温涉氧方面的应用奠定了坚实的基础。本综述从六铝酸盐的结构出发,详细讨论了六铝酸盐的结构类型(磁铅石型和β-Al2O3型)和金属取代对其微观结构(尤其是金属化学状态)的影响,并介绍了近年来六铝酸盐在高温涉氧反应,如CH4催化燃烧、环保领域N2O消除、航天推进级N2O分解、甲烷化学链燃烧和重整中的应用,重点关注了六铝酸盐结构与性能的关联,最后对六铝酸盐未来研究方向作出展望。
Hexaaluminate materials exhibit remarkable thermal stability due to their peculiar layered structure. The Al3+ ions in the hexaaluminate lattice can be substituted by transition or noble metals, giving rise to redox centers for a variety of reactions. Oxygen in the mirror plane of hexaaluminate is loosely packed, making it a preferential diffusion route of oxygen. All of these favor the application of hexaaluminate in high-temperature oxygen-involved reaction. In this review, the structure of hexaaluminate is firstly introduced. Furthermore, the effect of structure type(magnetoplumbite and β-Al2O3) and metal substitution on the microstructure of hexaaluminate (especially metal chemical state) are carefully described. Then we discuss recent advances of hexaaluminate in high-temperature oxygen-involved reactions, such as, catalytic combustion of CH4, process-gas N2O abatement, decomposition of N2O as a propellant, CH4 chemical looping combustion and reforming, with a special emphasis on the relationship between the microstucture and reaction performance. At last, a brief summary and an outlook are given.
Contents
1 Introduction
2 Crystal structure of hexaaluminate
2.1 Structural type and metal substitution
2.2 Anisotropic crystal growth and preferential diffusion of oxygen
3 Effect of metal substitution on microstructure of hexaaluminate
3.1 Substitution of large cations in the mirror plane
3.2 Substitution of Al3+ ions by transition metal ions
3.3 Substitution of Al3+ ions by noble metal ions
4 High temperature application of hexaaluminate
4.1 Catalytic combustion of methane
4.2 Catalytic decomposition of nitrous oxide
4.3 Chemical looping combustion and reforming of methane
5 Conclusion and outlook

中图分类号: 

()
[1] Machida M, Eguchi K, Arai H. J. Catal., 1987, 103:385.
[2] Janzen C M, Neurgaonkar R R. Mater. Res. Bull., 1981, 16:519.
[3] Smets B, Rutten, Hoeks G. J. Electr. Ochem. Soc., 1989, 136:2219.
[4] Kahn A, Lejus A M, Madsac M, Théry J, Vivien D. J. Appl. Phys.,1981, 52:6864.
[5] 张俊英(Zhang J Y), 张中太(Zhang Z T), 唐子龙(Tang Z L). 材料科学与工艺(Materials Science and Technology), 2002, 10:213.
[6] 戴德昌(Dai D C), 李沅英(Li Y Y), 蔡少华(Cai S H), 谢驭洲(Xie Y Z), 何汉波(He H B). 中国稀土学报(Journal of the Chinese Rare Earth Society), 1998, 16:284.
[7] 段华超(Duan H C), 刘源(Liu Y), 李增喜(Li Z X), 闻学兵(Wen X B).化工进展(Chemical Industry and Engineering Progress), 2004, 5:486.
[8] 武鹏(Wu P), 胡瑞生(Hu R S), 沈岳年(Shen Y N), 白雅琴(Bai Y Q).稀土(Chinese Rare Earths), 2003, 24:74.
[9] Li T, Zhang K, Liu S, Dou L X, Li Y D. Chin. J. Catal., 2007, 28:783.
[10] Gardnera T H, Spivey J J, Kugler E L, Pakhare D. Applied Catal. A:Gen., 2013, 455:129.
[11] 翟彦青(Zhai Y Q), 李永丹(Li Y D), 孟明(Meng M). 稀土(Chinese Rare Earths), 2004, 25:58.
[12] Li T, Li Y D. Ind. Eng. Chem. Res., 2008, 47:1404.
[13] Xu Z L, Ming Z, Bi Y L, Zhen K J. Catal. Lett., 2000, 64:157.
[14] Saber D, Lejus A M. Mater. Res. Bull., 1981, 16:1325.
[15] Zhu Y Y, Wang X D, Wang A Q, Wu G T, Wang J H, Zhang T. J. Catal., 2011, 283:149.
[16] Iyi N, Takekawa S, Kimura S. J. Solid State Chem., 1989, 83:8.
[17] Machida M, Sato A, Kijima T, Inoue H, Eguchi K, Arai H. Catal. Today, 1995, 26:239.
[18] 徐占林(Xu Z L), 林险峰(Lin X F), 李青仁(Li Q R), 洪军(Hong J), 刘延(Liu Y), 周广栋(Zhou G D), 毕颖丽(Bi Y L), 甄开吉(Zhen K J). 石油与天然气化工(Chemical Engineering of Oil and Gas), 2001, 30:218.
[19] Machida M, Eguchi K, Arai H. J.Catal., 1990, 123:477.
[20] 郑建东(Zheng J D), 任晓光(Ren X G). 材料导报(Materials Review), 2011, 25:77.
[21] Machida M, Eguchi K, Arai H. J. Catal., 1989, 120:377.
[22] Bellotto M, Artioli G, Cristiani C, Forzatti P, Groppi G. J. Catal., 1998, 179:597.
[23] Artizzu-Duart P, Brullé Y, Gaillard F, Garbowski E, Guilhaume N, Primet M. Catal. Today., 1999, 54:181.
[24] Groppi G, Cristiani C, Forzatti P. Appl. Catal. B, 2002, 35:137.
[25] Groppi G, Cristiani C, Forzatti P, Bellotto M. J. Mater. Sci., 1994, 29:3441.
[26] Yalfani M S, Santiago M, Pérez-Ramírez J. J. Mater. Chem., 2007, 17:1222.
[27] Zhu Y Y, Wang X D, Zhang Y, Wang J H, Huang Y Q, Kappenstein C, Zhang T. Appl. Catal. A, 2011, 409/410:194.
[28] Zhu S M, Wang X D, Wang A Q, Cong Y, Zhang T. Chem. Commun., 2007, 17:1695.
[29] Kikuchi R, Iwasa Y, Takeguchi T, Eguchi K. Appl. Catal. A, 2005, 281:61.
[30] Pérez-Ramírez J, Santiago M. Chem.Commun., 2007, 38:619.
[31] Tian M, Wang A Q, Wang X D, Zhu Y Y, Zhang T. Appl. Catal. B, 2009, 92:437.
[32] Artizzu-Duart P, Millet J M, Guilhaume N, Garbowski E, Primet M. Catal. Today, 2000, 59:163.
[33] Groppi G, Cristiani C, Forzatti P. J. Catal., 1997, 168:95.
[34] Zhu Y Y, Wang X D, Wu G T, Huang Y Q, Zhang Y, Wang J H, Zhang T. J. Phys. Chem. C, 2012, 116:671.
[35] Lietti L, Cristiani C, Groppi G, Forzatti P. Catal. Today, 2000, 59:191.
[36] Laville F, Perrin M, Lejus A M, Gasperin M, Moncorge R, Vivien D. J. Solid State Chem., 1986, 65:301.
[37] Gasperin M, Saine M C, Kahn A, Laville F, Lejus A M. J. Solid State Chem., 1984, 54:61.
[38] McCarty J G, Gusman M, Lowe D M, Hildenbrand D L, Lau K N. Catal. Today, 1999, 47:5.
[39] Zhang Y, Wang X D, Zhu Y Y, Liu X, Zhang T. Appl. Catal. B, 2013, 129:382.
[40] Zhu S M, Wang X D, Wang A Q, Zhang T. Catal. Today, 2008, 131:339.
[41] Machida M, Eguchi K, Arai H. J. Am. Ceram. Soc., 2010, 71:1142.
[42] Machida M, Eguchi K, Arai H. J. Catal., 1987, 18:385.
[43] Eguchi K, Arai H. Catal. Today, 1996, 29:379.
[44] 郑建东(Zheng J D), 侯豹(Hou B), 葛秀涛(Ge X T), 章守权(Zhang S Q). 材料导报(Materials Review), 2012, 26:102.
[45] 蒋政(Jiang Z), 李进军(Li J J), 郝郑平(Hao Z P), 侯红霞(Hou H X), 许秀艳(Xu X Y), 胡春(Hu C). 催化学报(Chinese Journal of Catalysis), 2004, 25:485.
[46] Ren X G, Zheng J D, Song Y J. J. Fuel. Chem. Technol., 2011, 39:717.
[47] Sekizawa K, Widjaja H, Maeda S, Ozawa Y, Eguchi K. Catal. Today, 2000, 59:69.
[48] Sohn J M, Kang S K, Woo S I. J. Mol. Catal. A:Chem., 2002, 186:135.
[49] 翟彦青(Di Y Q), 李鑫刚(Li X G), 陈久岭(Chen J L), 李永丹(Li Y D). 化学通报(Chemistry Bulletin), 2005, 68:145.
[50] Kikuchi R, Takeda K, Sekizawa K, Sasaki K, Eguchi K. Appl. Catal. A, 2001, 218:101.
[51] Sadamori H, Tanioka T, Matsuhisa T. Catal. Today, 1995, 26:337.
[52] 李孟丽(Li M L), 杨晓龙(Yang X L), 唐立平(Tang L P), 熊绪茂(Xiong X M), 任嗣利(Ren S L), 胡斌(Hu B). 化学进展(Progress in Chemistry), 2012, 24:1801.
[53] 薛莉(Xue L), 贺泓(He H). 物理化学学报(Acta Physico-Chimica Sinica), 2007, 23:664.
[54] Santiago M, Pérez-Ramírez J. Environ. Sci. Technol., 2007, 41:1704.
[55] 宋永吉(Song Y J), 李翠清(Li C Q), 王虹(Wang H), 董留涛(Dong L T).工业催化(Industrial Catalysis). 2008, 16:172.
[56] Najera M, Solunke R, Gardner T, Veser G. Chen. Eng. Res. Des., 2011, 89:1533.
[57] Bhavsar S, Najera M, Veser G. Chem. Eng. Tchhonl., 2012, 35:1281.
[58] Huang Z, Jiang H Q, He F, Chen D Z, Wei G Q, Zhao K, Zheng A Q, Feng Y P, Zhao Z L, Li H B. J. Energy Chem., 2016, 25:62.
[59] 刘黎明(Liu L M), 赵海波(Zhao H B), 郑楚光(Zheng C G). 煤炭转化(Coal Conversion), 2006, 29:83.
[60] 李孔斋(Li K Z), 王华(Wang H), 魏永刚(Wei Y G), 敖先权(Ao X Q), 刘明春(Liu M C). 化学进展(Progress in Chemistry), 2008, 20:1306.
[61] Zheng Y E, Li K Z, Wang H, Tian D, Wang Y H, Zhu X, Wei Y G, Zheng M, Luo Y M. Appl. Catal. B, 2017, 202:51.
[62] 宋涛(Song T), 沈来宏(Shen L H), 肖军(Xiao J), 高正平(Gao Z P), 顾海明(Gu H M), 张思文(Zhang S W). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2011, 39:567.
[63] 曾亮(Zeng L), 罗四维(Luo S W), 李繁星(Li F X), 范良士(Fan L S). 中国科学:化学(Scientia Sinica Chimica), 2012, 42:260.
[64] 黄振(Huang Z), 何方(He F), 赵坤(Zhao K), 郑安庆(Zheng A Q), 李海滨(Li H B), 赵增立(Zhao Z L). 化学进展(Progress in Chemistry), 2012, 24:1599.
[65] Tian M, Wang X D, Liu X, Wang A Q, Zhang T. AIChE J., 2016, 62:792.
[66] Tian M, Wang C J, Li L, Wang X D. AIChE J., 2017, 63:2827.
[67] Zhu Y Y, Liu W W, Sun X Y, Ma X X, Kang Y, Wang X D, Wang J. AIChE J., 2018, 64:550.
[68] Zhu Y Y, Sun X Y, Liu W W, Xue P, Tian M, Ma X X, Zhang T. Int. J. Hydrogen Energy, 2017, 42:30509.
[1] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[2] 刘昕, 王永强, 刘芳, 赵朝成, 刘华欣, 时林. 锰基催化剂催化燃烧VOCs[J]. 化学进展, 2019, 31(8): 1159-1165.
[3] 陈茂重, 王斓懿, 于学华, 赵震. 锰基催化剂在催化柴油炭烟燃烧中的应用[J]. 化学进展, 2019, 31(5): 723-737.
[4] 闫新, 李意羡, 贾月梅, 俞初一. 糖苷化的亚氨基糖:分离、合成与生物活性[J]. 化学进展, 2019, 31(11): 1472-1508.
[5] 李意羡, 贾月梅, 俞初一. 氟代亚氨基糖的合成与糖苷酶抑制活性[J]. 化学进展, 2018, 30(5): 586-600.
[6] 代天志, 孙德群. 抗TB活性化合物的研究[J]. 化学进展, 2018, 30(11): 1784-1802.
[7] 刘如沁, 索志荣, 何乃珍, 陈爽, 黄明. 偶氮桥联二呋咱:合成及其分子结构-熔点的构效关系[J]. 化学进展, 2017, 29(5): 476-490.
[8] 胡代花, 陈旺, 王永吉. 活性维生素D3类似物的合成及构效关系研究[J]. 化学进展, 2016, 28(6): 839-859.
[9] 宋钊宁, 冯翔, 刘熠斌, 杨朝合, 周兴贵. 丙烯直接气相临氢环氧化催化剂结构调控和催化剂构-效关系研究进展[J]. 化学进展, 2016, 28(12): 1762-1773.
[10] 郭键, 贺耘, 叶新山. 唾液酸转移酶抑制剂的设计与发现[J]. 化学进展, 2016, 28(11): 1712-1720.
[11] 赵丽君, 雷鸣. 甲状腺结合前清蛋白的理论研究[J]. 化学进展, 2014, 26(01): 193-202.
[12] 童敏曼, 赵旭东, 解丽婷, 刘大欢*, 阳庆元, 仲崇立*. 金属-有机骨架材料用于废水处理[J]. 化学进展, 2012, (9): 1646-1655.
[13] 黄振, 何方*, 赵坤, 郑安庆, 李海滨, 赵增立. 基于晶格氧的甲烷化学链重整制合成气[J]. 化学进展, 2012, 24(08): 1599-1609.
[14] 殷晓春, 王荣民, 何玉凤, 朱永峰, 裴菲. 人工氧载体研究进展[J]. 化学进展, 2011, 23(5): 963-973.
[15] 张鹭 侯玉霞 袁会珠 覃兆海. 复合物Ⅲ抑制剂型杀菌剂——结构类型和作用机理*[J]. 化学进展, 2010, 22(09): 1852-1868.