English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1836-1843 DOI: 10.7536/PC180338 前一篇   后一篇

• 综述 •

含呋喃环生物基聚酰胺的合成

黄卫军, 朱宁*, 方正, 郭凯*   

  1. 南京工业大学生物与制药工程学院 材料化学工程国家重点实验室 南京 211800
  • 收稿日期:2018-03-22 修回日期:2018-06-01 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 朱宁, 郭凯 E-mail:ningzhu@njtech.edu.cn;guok@njtech.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21878145,21504039,21522604,21776130)和江苏省先进生物制造创新中心项目(No.XTD1823,XTD1821,XTB1802)资助

Synthesis of Biobased Furan-Containing Polyamides

Weijun Huang, Ning Zhu*, Zheng Fang, Kai Guo*   

  1. College of Biological and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
  • Received:2018-03-22 Revised:2018-06-01 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21878145, 21504039, 21522604, 21776130) and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(No.XTD1823, XTD1821, XTB1802).
随着环境保护和化石资源问题的日益严峻,开发基于可再生生物质资源的生物基高分子材料,成为未来的发展趋势。作为最具有价值的生物基平台化合物之一,呋喃二甲酸及其衍生物可用于制造精细化学品和高分子材料。近年来,通过熔融聚合、溶液聚合、界面缩聚和固相缩聚等方法,将呋喃二甲酸及其衍生物与二元胺反应,制备出不同结构的生物基聚酰胺的均聚物和共聚物。本文从单体、聚合方法、聚合物结构和性能等方面,对含呋喃环生物基聚酰胺的合成作一总结,同时对这一领域的前景和挑战进行了探讨。
As the increasing concerns about the environmental protection and fossil resource issues, it is important to develop biobased polymer materials from renewable biomass resources. As one of the most valuable biogenic platform compounds, furandicarboxylic acid and derivatives, have attracted much attention in synthesis of fine chemicals and biobased materials. In recent years, varied biobased polyamide homo-and copolymers have been successfully prepared via polycondensations between furandicarboxylic acid and derivative and diamines, including melt polymerization, solution polymerization, interfacial polycondensation, and solid phase polycondensation. Herein, recent progress in synthesis of renewable furan-containing polyamides are detail introduced. Polyamides with different structures present favorable thermal properties and mechanical performance. In the meantime, varied measures have been taken to improve the molecular weight, yield, catalytic efficiency, structural diversity, etc. Moreover, the challenges and modifications of biobased furan-containing polyamides for further industrial applications are discussed and prospected.
Contents
1 Introduction
2 Synthesis of biobased furan-containing polyamides
2.1 Synthesis of furan-aromatic polyamide
2.2 Synthesis of furan-aliphatic polyamide
2.3 Study on thermodynamic properties of biobased furan-containing polyamide
3 Synthesis of biobased furan-containing polyamide copolymers
3.1 Synthesis of furan-aromatic copolyamide
3.2 Synthesis of furan-aliphatic copolyamide
4 Conclusion and outlook

中图分类号: 

()
[1] Wang H C, Grolman J M, Rizvi A, Hisao G S, Rienstra C M, Zimmerman S C. ACS Macro Lett., 2017, 6:321.
[2] Moran C S, Barthelon A, Pearsall A, Mittal V, Dorgan J R. J. Appl. Polym. Sci., 2016, 133:43626.
[3] Winnacker M, Sag J. Chem. Commun., 2018, 54:841.
[4] Winnacker M, Sag J, Tischner A, Rieger, B. Macromol. Rapid Comm., 2017, 38:9.
[5] Zhu Y Q, Romain C, Williams C K. Nature, 2016, 540:354.
[6] 孙绍晖(Sun S H), 孙培勤(Sun P Q), 马国杰(Ma G J), 衡明星(Heng M X), 陈俊武(Chen J W). 化学进展(Progress in Chemistry), 2010, 22:1844.
[7] 杨越(Yang Y), 刘琪英(Liu Q Y), 蔡炽柳(Cai Z L), 谈金(Tan J), 王铁军(Wang T J), 马隆龙(Ma L L). 化学进展(Progress in Chemistry), 2016, 28:363.
[8] Davis S E, Zope B N, Davis R J. Green Chem., 2012, 14:143.
[9] 刘浪(Liu L), 杨顺利(Yang S L), 李鸿波(Li H B), 陈凯(Chen K), 吴毅(Wu Y), 马昌鹏(Ma C P), 张永岗(Zhang Y G), 杨俊卿(Yang J Q). 精细化工(Fine Chemicals), 2011, 28:410.
[10] 余作龙(Yu Z L). Doctoral Dissertation of Nanjing Tech University(南京工业大学博士学位论文), 2013.
[11] 李伟杰(Li W J), 陆豫(Lu Y). 化学试剂(Chemical Reagents), 2006, 28:309.
[12] Koopman F, Wierckx N, de Winde J H, Ruijssenaars H. Biores. Technol., 2010, 101:6291.
[13] van Deurzen M P J, van Rantwijk F, Sheldon R A. J. Carbohyd Chem., 1997, 16:299.
[14] Sousa A F, Vilela C, Fonseca A C, Matos M, Freire C S R, Gruter G J M, Coelho J F J, Silvestre A J D. Polym. Chem., 2015, 6:5961.
[15] Wu L B, Mincheva R, Xu Y T, Raquez J M, Dubois P. Biomacromolecules, 2012, 13:2973.
[16] Gubbels E, Jasinska-Walc L, Koning C E. J. Polym. Sci, Part A:Polym. Chem., 2013, 51:890.
[17] Jiang M, Liu Q, Zhang Q, Ye C, Zhou G Y. J. Polym. Sci, Part A:Polym. Chem., 2012, 50:1026.
[18] Ma J P, Pang Y, Wang M, Xu J, Ma H, Nie X. J. Mater. Chem., 2012, 22:3457.
[19] 周佳栋(Zhou J D), 曹飞(Cao F), 余作龙(Yu Z L), 文斌斌(Wen B B), 崔莉燕(Cui L Y), 汤智群(Tang Z Q), 黄婷(Huang T), 韦萍(Wei P). 高分子学报(Acta Polymerica Sinica), 2016, 1:13.
[20] Zhou W D, Zhang Y J, Xu Y, Wang P L, Gao L, Zhang W, Ji J H. Polym. Degred. STab., 2014, 109:21.
[21] Werpy T A. Top Value Added Chemicals From Biomass:I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Denton:Synthetic Fuels, 2004. 26.
[22] Hopff V H, Krieger A. Die Makromol. Chem., 1961, 47:93.
[23] Hopff H, Krieger A. Helv. Chim. Acta, 1961, 44:1058.
[24] Heertjes P M, Kok G J. Delft Prog. Rep.,Ser. A, 1974, 1:59
[25] Salamone. Concise Polymeric Materials Encyclopedia,CRC Press, Boca Raton, 1999, 1:6325.
[26] Ogata N, Shimamura K. Polym. J., 1975, 7:72.
[27] Russo M. Kunststoffe, 1975, 65:346.
[28] Moore J A, Bunting W W. Adv. Polym. Syn., 1985, 31:51.
[29] Mitiakoudis A, Gandini A. Macromolecules, 1991, 24:830.
[30] Mitiakoudis A, Gandini A, Cheradame H. Polym. Commun., 1985, 26:246.
[31] Benecke H P, Kawczak A W, Garbark D B. US 20080207847, 2008.
[32] Benecke H P, Kawczak A W, Garbark D B. US20100280186, 2010.
[33] Fehrenbacher U, Grosshardt O, Kowollik K, TVbke B, Dingenouts N and Wilhelm M. Chem. Ing. Tech., 2009, 81:1829.
[34] Smith D D, Flores J, Aberson R, Dam M A, Duursma A, Gruter G J M. EP3060598 A1, 2016.
[35] Duursma A, Aberson R, Smith D D, Flores J, DAM M A, Gruter G J M. WO2015060718, 2015.
[36] Yeh I C, Rinderspacher B C, Andzelm J W, Cureton L S T, Scala J L. Polymer, 2014, 55:166.
[37] Jiang Y, Maniar D, Woortman A J, Alberda G O, Loos K. Biomacromolecules, 2015, 16:3674.
[38] Jiang Y, Maniar D, Woortman A, Loos K. RSC Adv., 2016, 6:67941.
[39] 郭凯(Guo K), 弓桦(Gong H), 朱宁(Zhu N), 胡欣(Hu X), 方正(Fang Z), 王海鑫(Wang H X). CN 106191145, 2016.
[40] 郭凯(Guo K), 弓桦(Gong H), 朱宁(Zhu N), 胡欣(Hu X), 方正(Fang Z), 王海鑫(Wang H X). CN 106011192, 2016.
[41] Luo K, Wang Y, Yu J, Hu Z. RSC Adv., 2016, 6:87013.
[42] Cureton L S T, Napadensky E, Annunziato C, Scala J J L. J. Appl. Polym. Sci., 2017, 134:45514.
[43] Cooper S J, Atkins E D T, Hill M J. Macromolecules, 1998, 31:8947.
[44] 孙学科(Sun X K), 高红军(Gao H J), 麦堪成(Mai K C), 张传辉(Zhang C H), 曹民(Cao M). 工程塑料应用(Engineering Plastics Application), 2017, 45:1.
[45] Endah Y K, Han S H, Kim J H, Kim N, Kim W N, Lee H S, Lee H. J. Appl. Polym. Sci., 2016, 133:43391.
[1] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[2] 陈峥, 姜振华. 浅析高分子树脂无溶剂生产技术中的高分子凝聚态相关化学问题[J]. 化学进展, 2022, 34(7): 1576-1589.
[3] 刘雪晨, 邢娟娟, 王海鹏, 周沅逸, 张玲, 王文中. HMF催化合成生物基聚酯单体FDCA[J]. 化学进展, 2020, 32(9): 1294-1306.
[4] 王茜茜, 戴璐, 介素云, 李伯耿. 长链脂肪族二元酸的合成及其在缩聚反应中的应用[J]. 化学进展, 2019, 31(1): 70-82.
[5] 王国强, 姜敏*, 张强, 王瑞, 曲小玲, 周光远*. 基于可再生资源含呋喃环聚酯[J]. 化学进展, 2018, 30(6): 719-736.
阅读次数
全文


摘要

含呋喃环生物基聚酰胺的合成