English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1852-1862 DOI: 10.7536/PC180312 前一篇   后一篇

• 综述 •

有机硅自修复材料

程龙1, 于大江1, 尤加健3, 龙腾1, 陈素素1, 周传健1,2*   

  1. 1. 山东大学材料科学与工程学院 济南 250061;
    2. 特种功能聚集体材料教育部重点实验室 济南 250061;
    3. 山东美晨生态环境股份有限公司 诸城 262200
  • 收稿日期:2018-03-07 修回日期:2018-04-26 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 周传健 E-mail:zhouchuanjian@sdu.edu.cn
  • 基金资助:
    山东省优秀中青年科学家科研奖励基金(No.BS10CL026)资助

Silicone Self-Healing Materials

Long Cheng1, Dajiang Yu1, Jiajian You3, Teng Long1, Susu Chen1, Chuanjian Zhou1,2*   

  1. 1. School of Materials Science and Engineering, Shandong University, Jinan 250061, China;
    2. Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Jinan 250061, China;
    3. Shandong Meichen Ecology & Environment Co., Ltd., Zhucheng 262200, China
  • Received:2018-03-07 Revised:2018-04-26 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    The work was supported by the Excellent Middle-Aged and Youth Scientist Award Foundation of Shandong Province(No. BS10CL026).
有机硅自修复材料在可穿戴装备、智能涂层等领域有广泛应用。本文分别从外援型和本征型两大类介绍了有机硅自修复材料的特点、修复机理和最新研究进展。在外援型有机硅自修复材料中,主要介绍了利用光引发自由基反应、缩合固化、硅氢加成等有机硅特异性反应实现自修复。在本征型有机硅自修复材料中介绍了利用Diels-Alder反应、酰腙键、酯键、Schiff base结构等可逆化学反应,金属-配体配位作用以及氢键、π-π堆叠作用等超分子作用,实现自修复功能的途径及特点;除此之外还介绍了最小化表面自由能、巯基与纳米银之间的键合作用和重构反应等有机硅自修复实例。最后,本文指出了有机硅自修复材料面临的问题并对今后的发展方向进行了展望。
Silicone self-healing materials are widely used in wearable equipment, smart coatings and other fields. In this review, we detail the self-healing properties, mechanism and latest research progress for both extrinsic and intrinsic silicone self-healing materials. In the section of extrinsic silicone self-healing materials, a variety of silicone-specific reactions, including light-induced radical reaction, condensation curing and hydrosilylation, that have been exploited to achieve self-healing properties are discussed. Similarly, mechanisms to achieve intrinsic self-healing through reversible chemical reactions, metal-ligand coordination, supramolecular interaction and other methods are described in the following section, as well as their properties. To be more specific, reversible chemical reactions could be divided into Diels-Alder reaction, acylhydrazone bonds, ester bonds and Schiff-base bonds, while supramolecular interactions consist of hydrogen bonding and π-π stacking. Besides, some other self-healing systems such as minimizing surface free energy, thiol-silver nanoparticles interaction and reconstruction reaction are introduced. Based on the review, a brief appraisal of the challenges and orientation for future developments in this field is presented.
Contents
1 Introduction
2 Extrinsic silicone self-healing materials
2.1 Light-induced
2.2 Condensation-curing
2.3 Hydrosilylation
3 Intrinsic silicone self-healing materials
3.1 Reversible chemical reaction
3.2 Metal-ligand coordination
3.3 Supramolecular interaction
3.4 Others
4 Conclusion

中图分类号: 

()
[1] Mauldin T C, Kessler M R. International Materials Reviews, 2010, 55:317.
[2] 李思超(Li S C), 韩朋(Han P), 许华平(Xu H P). 化学进展(Progress in Chemistry), 2012, 24(7):1346.
[3] 李海燕(Li H Y), 张丽冰(Zhang L B), 王俊(Wang J). 化工进展(Chemical Industry and Engineering Progress), 2012, (07):1549.
[4] 祁恒治(Qi H Z), 赵蕴慧(Zhao Y H), 朱孔营(Zhu K Y), 袁晓燕(Yuan X Y). 化学进展(Progress in Chemistry), 2011, 23(12):2560.
[5] 吴建元(Wu J Y), 王卫(Wang W), 袁莉(Yuan L),顾嫒娟(Gu A J), 梁国正(Liang G Z). 材料导报(Materials Review), 2009, 23(1):39.
[6] 章明秋(Zhang M Q), 容敏智(Rong M Z). 高分子学报(Acta Polymerica Sinica), 2012, (11):1183.
[7] Ni Z, Lin Y. Journal of Shenzhen University, 2017, 34:441.
[8] 汪海平(Wang H P), 容敏智(Rong M Z), 章明秋(Zhang M Q). 化学进展(Progress in Chemistry), 2010, (12):2397.
[9] White S R, Sottos N R, Geubelle P H, Moore J S, Kessler M R, Sriram S R, Brown E N, Viswanathan S. Nature, 2001, 409:794.
[10] 冯圣玉(Feng S Y), 张洁(Zhang J), 李美江(Li M J), 朱庆增(Zhu Q Z). 有机硅高分子及其应用(Silicone Polymers and their Applications). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2004. 97.
[11] Lee M W, An S, Yoon S S, Yarin A L. Advances in Colloid and Interface Science, 2017, 252:21.
[12] Araújo M, Van Tittelboom K, Dubruel P, van Vlierberghe S, De Belie N. Smart Materials & Structures, 2017, 26:055031.
[13] Song Y K, Jo Y H, Lim Y J, Cho S Y, Yu H C, Ryu B C, Lee S I, Chung C M. ACS Applied Materials & Interfaces, 2013, 5:1378.
[14] Rao Q, Chen K, Wang C. RSC Advances, 2016, 6:53949.
[15] Cho S H, Andersson H M, White S R, Sottos N R, Braun P V. Advanced Materials, 2006, 18:997.
[16] Keller M. W, White S. R, Sottos N. R. Advanced Functional Materials, 2007, 17:2399.
[17] Keller M W, White S R, Sottos N R. Polymer, 2008, 49:3136.
[18] Lee M W, An S, Kim Y, Yoon S S, Yarin A L. Chemical Engineering Journal, 2018, 334:1093.
[19] Lee M W, Sett S, An S, Yoon S S, Yarin A L. ACS Applied Materials & Interfaces, 2017, 9:27223.
[20] Lee M W, An S, Jo H S, Yoon S S, Yarin A L. ACS Applied Materials & Interfaces, 2015, 7:19546.
[21] Lee M W, An S, Jo H S, Yoon S S, Yarin A L. ACS Applied Materials & Interfaces, 2015, 7:19555.
[22] Lee M W, An S, Lee C, Liou M, Yarin A L, Yoon S S. ACS Applied Materials & Interfaces, 2014, 6:10461.
[23] Pramanik N B, Mondal P, Mukherjee R, Singha N K. Polymer, 2017, 119:195.
[24] Zhao J, Xu R, Luo G, Wu J, Xia H. Polymer Chemistry, 2016, 7:7278.
[25] Nasresfahani A, Zelisko P M. Polym. Chem., 2017, 8:2942.
[26] Schäfer S, Kickelbick G. Polymer, 2015, 69:357.
[27] Fu G, Yuan L, Liang G, Gu A. Journal of Materials Chemistry A, 2016, 4:4232.
[28] Gou Z M, Zuo Y J, Feng S Y. RSC Advances, 2016, 6:73140.
[29] Jo Y Y, Lee A S, Baek K Y, Lee H, Hwang S S. Polymer, 2017, 108:58.
[30] Roy N, Buhler E, Lehn J M. Polymer International, 2014, 63:1400.
[31] Zuo Y, Gou Z, Zhang C, Feng S. Macromol Rapid Commun, 2016, 37:1052.
[32] Lai J C, Mei J F, Jia X Y, Li C H, You X Z, Bao Z N. Advanced Materials, 2016, 28:8277.
[33] Zhang B L, Zhang P, Zhang H Z, Yan C, Zheng Z J, Wu B, Yu Y. Macromolecular Rapid Communications, 2017, 38:1700110.
[34] Rao Y, Chortos A, Pfattner R, Lissel F, Chiu Y, Feig V, Xu J, Kurosawa T, Gu X, Wang C, He M, Chung J, Bao Z N. Journal of the American Chemical Society, 2016, 138:6020.
[35] Yan X, Liu Z, Zhang Q, Lopez J, Wang H, Wu H C, Niu S, Yan H, Wang S, Lei T, Li J, Qi D, Huang P, Huang J, Zhang Y, Wang Y, Li G, Tok J B, Chen X, Bao Z N. Journal of the American Chemical Society, 2018, 140:5280.
[36] Li C H, Wang C, Keplinger C, Zuo J L, Jin L, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You X Z, Bao Z N. Nature Chemistry, 2016, 8:618.
[37] Yu D J, Zhao X X, Zhou C J, Zhang C, Zhao S G. Macromolecular Chemistry and Physics, 2017, 218:1600519.
[38] Jia X Y, Mei J F, Lai J C, Li C H, You X Z. Chemical Communications, 2015, 51:8928.
[39] Tazawa S, Shimojima A, Maeda T, Hotta A. Journal of Applied Polymer Science, 2017:45419.
[40] Folmer B J B, Sijbesma R P, Versteegen R M, van Der Rijt J A J, Meijer E W. Advanced Materials, 2000, 12:874.
[41] Zhang A, Yang L, Lin Y, Yan L, Lu H, Wang L. Journal of Applied Polymer Science, 2013, 129:2435.
[42] Baek P, Aydemir N, Chaudhary O J, Chan E W C, Malmstrom J, Giffney T, Khadka R, Barker D, Travas-Sejdic J. RSC Advances, 2016, 6:98466.
[43] Roy N, Buhler E, Lehn J M. Chemistry, 2013, 19:8814.
[44] Kang J, Son D, Wang G N, Liu Y X, Lopez J,Kim Y, Oh J Y, Katsumata T, Mun J, Lee Y, Jin L H, Tok J B, Bao Z N. Advanced Materials, 2018, 30:1706846.
[45] Burattini S, Colquhoun H M, Greenland B W, Hayes W. Faraday Discussions, 2009, 143:251.
[46] Mei J, Jia X, Lai J, Sun Y, Li C, Wu J, Cao Y, You X, Bao Z N. Macromolecular Rapid Communications, 2016, 37:1667.
[47] Itoh S, Kodama S, Kobayashi M, Hara S, Wada H, Kuroda K, Shimojima A. ACS Nano, 2017, 11:10289.
[48] Zhang H, Hou C, Song L, Ma Y, Ali Z, Gu J, Zhang B, Zhang H, Zhang Q. Chemical Engineering Journal, 2017, 334:598.
[49] Zhang H, Ma Y, Tan J, Fan X, Liu Y, Gu J, Zhang B, Zhang H, Zhang Q. Composites Science & Technology, 2016, 137:78.
[50] Martín R, Rekondo A, Echeberria J, Cabañero G, Grande H J, Odriozola I. Chemical Communications, 2012, 48:8255.
[51] Zheng P, Mccarthy T J. Journal of the American Chemical Society, 2012, 134:2024.
[1] 叶娟, 林子谦, 李伟健, 向洪平, 容敏智, 章明秋. 自修复有机硅材料的制备策略[J]. 化学进展, 2023, 35(1): 135-156.
[2] 侯瑞, 李桂群, 张岩, 李明俊, 周桂明, 柴晓明. 基于超分子聚合物的自修复材料[J]. 化学进展, 2019, 31(5): 690-698.
[3] 韦存茜, 严杰, 唐浩, 张庆华, 詹晓力, 陈丰秋. 灌注液体型光滑多孔表面制备及应用[J]. 化学进展, 2016, 28(1): 9-17.
[4] 夏勇, 姚洪涛, 缪智辉, 王芳, 祁争健, 孙宇. 利用点击化学制备有机硅材料及应用[J]. 化学进展, 2015, 27(5): 532-538.
[5] 安光明, 凌世全, 王智伟, 栾琳, 吴天准. 基于微纳结构液体灌注的超滑表面的制备与应用[J]. 化学进展, 2015, 27(12): 1705-1713.
[6] 李思超, 韩朋, 许华平*. 自修复高分子材料[J]. 化学进展, 2012, 24(07): 1346-1352.
[7] 祁恒治, 赵蕴慧, 朱孔营, 袁晓燕. 自修复聚合物材料的研究进展[J]. 化学进展, 2011, 23(12): 2560-2567.
[8] 汪海平, 容敏智, 章明秋. 微胶囊填充型自修复聚合物及其复合材料[J]. 化学进展, 2010, 22(12): 2397-2407.
阅读次数
全文


摘要

有机硅自修复材料