English
新闻公告
More
化学进展 2018, Vol. 30 Issue (8): 1222-1227 DOI: 10.7536/PC180207 前一篇   后一篇

所属专题: 电化学有机合成

• 综述 •

电化学联用技术研究微生物的胞外电子传递机制

田晓春1,2, 吴雪娥1, 赵峰2*, 姜艳霞1*, 孙世刚1   

  1. 1. 厦门大学化学化工学院 厦门 361005;
    2. 中国科学院城市环境研究所 中国科学院城市污染物转化重点实验室 厦门 361021
  • 收稿日期:2018-02-06 修回日期:2018-02-26 出版日期:2018-08-15 发布日期:2018-05-16
  • 通讯作者: 赵峰, 姜艳霞 E-mail:fzhao@iue.ac.cn;yxjiang@xmu.edu.cn
  • 基金资助:
    国家重点研发计划项目项目(No.2017YFA0206500)和国家自然科学基金项目(No.21777155,21773198,U1705253,21621091)资助

Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies

Xiaochun Tian1,2, Xue'e Wu1, Feng Zhao2*, Yanxia Jiang1*, Shigang Sun1   

  1. 1. College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
    2. CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
  • Received:2018-02-06 Revised:2018-02-26 Online:2018-08-15 Published:2018-05-16
  • Supported by:
    The work was supported by the National Key Research and Development Program of China(No.2017YFA0206500) and the National Natural Science Foundation of China(No.21777155, 21773198, U1705253, 21621091).
胞外电子传递(EET)是指氧化还原反应所产生的电子在微生物细胞内和细胞外的电子受体/电子供体之间互相转移的过程,这一过程伴随着能量和物质的转化。阐明EET机制是提高微生物能量和物质转化效率的基础,为元素的生物地球化学循环、金属防腐以及生物电化学系统的应用等提供理论支撑。电化学技术作为研究电极/溶液界面电子转移的简便、有效方法,在研究微生物的直接电子传递和间接电子传递机制中发挥了重要的作用,也促进了EET机制的研究从宏观层面到微观层面不断深入。本文综述了研究微生物EET机制所涉及的电化学联用技术(包括微电极、扫描电化学显微镜、电化学联用光学显微镜和光谱电化学等);详细介绍了这些电化学联用技术的功能和优势;重点阐述了这些电化学联用技术如何推动着EET机制的研究,从宏观的生物膜层面到微观的单个微生物细胞、蛋白和分子层面不断深入;展望了新的电化学联用技术在EET研究领域的应用前景。
Microbial extracellular electron transfer (EET) is the process that electrons generated from redox reactions transfer between inside of cells and extracellular electron donors/acceptors. This process accompanies with the energy transformation and substance conversion. Studies of microbial EET have attracted increasing interests in recent years because it is found to be significant to understand element biogeochemical cycle, anti-corrosion of metals, bioelectrochemical systems, etc. Electrochemical techniques have played important roles in EET mechanisms analysis, because these techniques are simple and available in studying electron transfer reactions at the interfacial region between electrode and solution. In this review, electrochemical integrated techniques used to study EET pathways including microelectrode, scanning electrochemical microscopy, three-electrode cell combined with optical microscopy and electrochemical spectroscopy are summarized. The functions and advantages of these integrated techniques are illustrated in detail. The EET pathways from macroscopic to microcosmic aspects are reviewed, which include four hierarchies:whole biofilm, redox reaction in microenvironment of biofilm, single cell, redox proteins or molecular. This review proposes that several advanced electrochemistry combined techniques can be useful for the investigation of microbial EET mechanisms in the future.
Contents
1 Introduction
2 Study of the electron transfer of microenvironment in biofilm by microelectrode and scanning electrochemical microscopy
3 Study of the electron transfer of single cell by three-electrode cell combined optical microscope
4 Study of the redox of protein or molecule by electrochemical spectroscopy
4.1 Electrochemical UV-visible spectroscopy
4.2 Electrochemical infrared spectroscopy
4.3 Electrochemical Raman spectroscopy
5 Conclusion and outlook

中图分类号: 

()
[1] Choi O, Sang B I. Biotechnol. Biofuel., 2016, 9:11.
[2] Rosenbaum M, Aulenta F, Villano M, Angenent L T. Bioresource Technol., 2011, 102(1):324.
[3] Lee J Y, Phung N T, Chang I S, Kim B H, Sung H C. FEMS Microbiol. Lett., 2003, 223(2):185.
[4] 肖勇(Xiao Y), 吴松(Wu S), 杨朝晖(Yang Z H), 郑越(Zheng Y), 赵峰(Zhao F). 化学进展(Progress in Chemistry), 2013, 25(10):1771.
[5] Liang F Y, Xiao Y, Zhao F. Chem. Eng. J., 2013, 218(Supplement C):147.
[6] Xiao Y, Zhang E H, Zhang J D, Dai Y F, Yang Z H, Christensen H E M, Ulstrup J, Zhao F. Sci. Adv., 2017, 3(7):e1700623.
[7] Harnisch F, Freguia S. Chemistry-An Asian Journal, 2012, 7(3):466.
[8] Babauta J T, Nguyen H D, Beyenal H. Environ. Sci. Technol., 2011, 45(15):6654.
[9] Babauta J T, Nguyen H D, Harrington T D, Renslow R, Beyenal H. Biotechnol. Bioeng., 2012, 109(10):2651.
[10] Nguyen H D, Renslow R, Babauta J, Ahmed B, Beyenal H. Sensor Actuat. B-Chem., 2012, 161(1):929.
[11] Wang Z J, Deng H, Chen L H, Xiao Y, Zhao F. Bioresource Technol., 2013, 132:387.
[12] Hu Z Q, Jin J, Abruña H D, Houston P L, Hay A G, Ghiorse W C, Shuler M L, Hidalgo G, Lion L W. Environ. Sci. Technol., 2006, 41(3):936.
[13] Liu X H, Ramsey M M, Chen X L, Koley D, Whiteley M, Bard A J. Proc. Natl. Acad. Sci., 2011, 108(7):2668.
[14] Abucayon E, Ke N, Cornut R, Patelunas A, Miller D, Nishiguchi M K, Zoski C G. Anal. Chem., 2014, 86(1):498.
[15] Kaya T, Nagamine K, Oyamatsu D, Shiku H, Nishizawa M, Matsue T. Lab Chip, 2003, 3(4):313.
[16] Koley D, Ramsey M M, Bard A J, Whiteley M. Proc. Natl. Acad. Sci., 2011, 108(50):19996.
[17] Zhang W J, Wu H K, Hsing I M. Electroanalysis, 2015, 27(3):648.
[18] 田晓春(Tian X C), 吴雪娥(Wu X E), 詹东平(Zhan D P), 赵峰(Zhao F), 姜艳霞(Jiang Y X), 孙世刚(Sun S G). 物理化学学报(Acta Physico-Chimica Sinca), 2019, 35(1):22.
[19] Hol F J H, Dekker C. Science, 2014, 346(6208), 1251821.
[20] Liu H, Newton G J, Nakamura R, Hashimoto K, Nakanishi S. Angew. Chem. Int. Ed., 2010, 49(37):6596.
[21] Gross B J, El-Naggar M Y. Rev. Sci. Instrum., 2015, 86(6):064301.
[22] Jiang X C, Hu J S, Fitzgerald L A, Biffinger J C, Xie P, Ringeisen B R, Lieber C M. Proc. Natl. Acad. Sci., 2010, 107(39):16806.
[23] Jiang X C, Hu J S, Petersen E R, Fitzgerald L A, Jackan C S, Lieber A M, Ringeisen B R, Lieber C M, Biffinger J C. Nature Commun., 2013, 4:2751.
[24] Shi L, Chen B W, Wang Z M, Elias D A, Mayer M U, Gorby Y A, Ni S S, Lower B H, Kennedy D W, Wunschel D S, Mottaz H M, Marshall M J, Hill E A, Beliaev A S, Zachara J M, Fredrickson J K, Squier T C. J. Bacteriol., 2006, 188(13):4705.
[25] Nakamura R, Ishii K, Hashimoto K. Angew. Chem. Int. Edit., 2009, 48(9):1606.
[26] Liu Y, Kim H, Franklin R R, Bond D R. ChemPhysChem, 2011, 12(12):2235.
[27] Jain A, Gazzola G, Panzera A, Zanoni M, Marsili E. Electrochim. Acta, 2011, 56(28):10776.
[28] Busalmen J P, Berná A, Feliu J M. Langmuir, 2007, 23(11):6459.
[29] Busalmen J P, Esteve-Núñez A, Berná A, Feliu J M. Angew. Chem. Int. Edit., 2008, 47(26):4874.
[30] Busalmen J P, Esteve-Nuñez A, Berná A, Feliu J M. Bioelectrochemistry, 2010, 78(1):25.
[31] Liu Y, Berná A, Climent V, Feliu J M. Sensor Actuat. B Chem., 2015, 209:781.
[32] You L X, Rao L, Tian X C, Wu R R, Wu X E, Zhao F, Jiang Y X, Sun S G. Electrochim. Acta, 2015, 170:131.
[33] Kuzume A, Zhumaev U, Li J F, Fu Y C, Fueg M, Estevez M, Borjas Z, Wandlowski T, Esteve-Nunez A. Phys. Chem. Chem. Phys., 2014, 16(40):22229.
[34] Kuzume A, Zhumaev U, Li J F, Fu Y C, Füeg M, Esteve-Nuñez A, Wandlowski T. Electrochim. Acta, 2013, 112:933.
[35] Millo D, Harnisch F, Patil S A, Ly H K, Schröder U, Hildebrandt P. Angew. Chem. Int. Ed., 2011, 50(11):2625.
[36] Virdis B, Millo D, Donose B C, Batstone D J. PLoS ONE, 2014, 9(2):e89918.
[37] Reuillard B, Ly K H, Hildebrandt P, Jeuken L J C, Butt J N, Reisner E. J. Am. Chem. Soc., 2017, 139(9):3324.
[38] Tian X C, Zhao F, You L X, Wu X E, Zheng Z Y, Wu R R, Jiang Y X, Sun S G. Phys. Chem. Chem. Phys., 2017, 19(3):1746.
[1] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[2] 陈立香, 李祎頔, 田晓春, 赵峰. 革兰氏阳性电活性菌的电子传递及其应用[J]. 化学进展, 2020, 32(10): 1557-1563.
[3] 何辉超, Sean P. Berglund, Buddie Mullins, 周勇, 柯改利, 董发勤. 扫描电化学显微镜在光电能源研究领域的应用[J]. 化学进展, 2016, 28(6): 908-916.
[4] 马金莲, 马晨, 汤佳, 周顺桂, 庄莉. 电子穿梭体介导的微生物胞外电子传递:机制及应用[J]. 化学进展, 2015, 27(12): 1833-1840.
[5] 刘利丹, 肖勇, 吴义诚, 陈必链, 赵峰. 微生物电化学系统电子中介体[J]. 化学进展, 2014, 26(11): 1859-1866.
[6] 肖勇, 吴松, 杨朝晖, 郑越, 赵峰. 电化学活性微生物的分离与鉴定[J]. 化学进展, 2013, 25(10): 1771-1780.
[7] 卢琳, 李晓刚, 高瑾. 有机涂层/金属界面腐蚀的微区电化学[J]. 化学进展, 2011, 23(8): 1618-1626.