English
新闻公告
More
化学进展 2018, Vol. 30 Issue (11): 1784-1802 DOI: 10.7536/PC180110 前一篇   

• 综述 •

抗TB活性化合物的研究

代天志1,2, 孙德群1,2*   

  1. 1. 山东大学(威海)海洋学院 威海 264209;
    2. 西南科技大学生命科学与工程学院 绵阳 621000
  • 收稿日期:2018-01-16 修回日期:2018-05-28 出版日期:2018-11-15 发布日期:2018-08-17
  • 通讯作者: 孙德群,e-mail:dequn.sun@sdu.edu.cn E-mail:dequn.sun@sdu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.81773560)资助

Research of Anti-TB Active Compounds

Tianzhi Dai1,2, Dequn Sun1,2*   

  1. 1. Marine College, Shandong University at Weihai, Weihai 264209, China;
    2. College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
  • Received:2018-01-16 Revised:2018-05-28 Online:2018-11-15 Published:2018-08-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.81773560).
结核病(tuberculosis,TB)是由结核分枝杆菌(mycobacterium tuberculosis,MTB)引起的一种缓慢性致死疾病。虽然目前结核病在发达国家发病率较低,但在发展中国家仍然是高发的重大传染性疾病。基于此种状况,寻找新的活性化合物或对现有药物分子进行改进,成为当下开发抗TB新药的热点。目前,在研的化合物包括喹啉类、喹诺酮类、咪唑类、苯并噻嗪酮类、唑烷酮类以及天然产物等,其中喹啉类化合物依然是重要研究对象。这些化合物大多数具有低微摩尔的体外抗结核活性,最有可能对体内药物敏感菌株或耐药菌株有效。本文详细介绍了2014~2017年间抗结核化合物的研究现状,就其化学结构特点、抗结核活性、构效关系和安全性等方面进行综述,并展望了该领域今后的发展方向。
Tuberculosis (TB) is a slow-lethal disease caused by mycobacterium tuberculosis (MTB). Although the current incidence of tuberculosis is low in developed countries, it is still a high incidence and catastrophic infectious disease in numerous developing countries. Based on this situation, searching for new active compounds or modifying existing drug molecules has become a hot spot for the development of new anti-TB drugs. Currently, the compounds under research include quinolines, quinolones, imidazoles, benzothiazinones, oxazolidinones and natural products, among which quinoline compounds are still an important research target. The majority of these compounds have low micromolar levels in vitro anti-tuberculosis activity and are most likely effective against in vivo drug-susceptible or resistant strains. This paper elaborates the anti-tuberculosis compounds from 2014~2017, and reviews their research status with chemical structure characteristics, anti-tubercular activity, structure-activity relationship and safety. Research prospects in this filed are discussed.
Contents
1 Introduction
2 Quinoline compounds
2.1 Beidaquinoline and its derivatives
2.2 Bis-quinolines compounds
2.3 Quinoline-based fused ring derivatives
2.4 Adamantane-containing quinoline derivatives
2.5 Quinoline derivatives containing metal complexes
2.6 Quinoline-3-carboxylic acid and ester group derivatives
2.7 Isatin-quinoline derivatives
2.8 Quinoline carboxylic acid hydrazidesor amides
2.9 Containing azoles Quinoline compounds
2.10 Other quinoline derivatives
3 Quinolones
4 Imidazole derivatives
4.1 Imidazopyridine carboxamide derivatives
4.2 NHIO compounds
5 Benzothiazinones
6 Other compounds
6.1 Triazine compounds
6.2 Fluorobenzoxazinyl-oxazolidinones
6.31,2-bis(quinazolin-4-yl) naphthyridine(DQYD)
6.4 Diphenylindole and aryl sulfonamides
6.5 Imidazoline derivatives
6.6 Drug repurposing
7 Natural products
8 Conclusion and outlook

中图分类号: 

()
[1] Basso A, Previgliano I, Servadei F. East Mediterr Health J, 2009, 15:776.
[2] Ventola C L. Pharmacy and Therapeutics, 2015, 40:277.
[3] Bezos J, Casal C, Díez-Delgadoc I, Romero B, Liandris E, Álvarez J, Sevilla I A, de Juan L, Domínguez L, Gortázar C. Veterinary Immunology and Immunopathology, 2015, 167:185.
[4] Costa P, Amaro A, Botelho A, Inácio J, Baptista P V. Clinical Microbiology and Infection, 2010, 16:1464.
[5] Brooks J T, Kaplan J E, Holmes K K, Benson C, Pau A, Masur H. Clin. Infect. Dis., 2009, 48:609.
[6] Abdool Karim S S, Churchyard G J, Karim Q A, Lawn S D. Lancet, 2009, 374:921.
[7] Padayatchi N, Abdool Karim S S, Naidoo K, Grobler A, Friedland G. International Journal of Tuberculosis & Lung Disease the Official Journal of the International Union Against Tuberculosis & Lung Disease, 2014, 18:147.
[8] Bekker L G, Wood R. Clin. Infect. Dis., 2010, 50:208.
[9] Dholakia Y, Mistry N F, Tolani M P. Drug Future, 2015, 40:39.
[10] Parida S K, Axelssonrobertson R, Rao M V, Singh N, Master I, Lutckii A, Keshavjee S, Andersson J, Zumla A, Maeurer M. J. Intern. Med., 2015, 277:388.
[11] Yeimer O M. Indian J Tuberc, 2017, 64:235
[12] Choby B, Hunter P. FP Essentials, 2015, 429:22.
[13] Zumla A, Chakaya J, Centis R, D'ambrosio L, Mwaba P, Bates M, Kapata N, Nyirenda T, Chanda D, Mfinanga S. Lancet Respiratory Medicine, 2015, 3:220.
[14] Parida S, Axelsson-Robertson R, Rao M, Singh N, Master I, Lutckii A, Keshavjee S, Andersson J, Zumla A, Maeurer M. J. Intern. Med., 2015, 277:388.
[15] Palomino J C, Martin A. Future Microbiol., 2013, 8:1071.
[16] Singla R, Gupta S, Gupta R, Arora V K. International Journal of Tuberculosis & Lung Disease the Official Journal of the International Union Against Tuberculosis & Lung Disease, 2001, 5:559.
[17] Veziris N, Truffotpernot C, Aubry A, Jarlier V, Lounis N. Antimicrob. Agents Chemother., 2003, 47:3117.
[18] Pletz M W R, Roux A D, Roth A, Neumann K H, Mauch H, Lode H. Antimicrobial Agents and Chemotherapy. 2004, 48:780.
[19] Koh J J, Zou H, Mukherjee D, Lin S, Lim F, Tan J K, Tan D Z, Stocker B L, Timmer M S M, Corkran H M, Lakshminarayanan R, Tan D T H, Cao D, Beuerman R W, Dick T, Liu S. Eur. J. Med. Chem., 2016, 123:684.
[20] Avorn J. JAMA-Journal of the American Medical Association, 2013, 309:1349.
[21] Andries K, Verhasselt P, Guillemont J, Gohlmann H W H, Neefs J M, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, De Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V. Science, 2005, 307:223.
[22] Kundu S, Biukovic G, Gruber G, Dick T. Antimicrob Agents Chemother, 2016, 60:6977.
[23] Haagsma A C, Abdillahi-Ibrahim R, Wagner M J, Krab K, Vergauwen K, Guillemont J, Andries K, Lill H, Koul A, Bald D. Antimicrob. Agents Chemother., 2009, 53:1290.
[24] Kalia D, K. S A K, Meena G, Sethi K P, Sharma R, Trivedi P, Khan S R, Verma A S, Singh S, Sharma S, Roy K K, Kant R, Krishnan M Y, Singh B N, Sinha S, Chaturvedi V, Saxena A K, Dikshit D K. MedChemComm, 2015, 6:1554.
[25] Gupta S, Tyagi S, Bishai W R. Antimicrob Agents Chemother, 2015, 59:673.
[26] Tong A S T, Choi P J, Blaser A, Sutherland H S, Tsang S K Y, Guillemont J, Motte M, Cooper C B, Andries K, Van Den Broeck W, Franzblau S G, Upton A M, Denny W A, Palmer B D, Conole D. ACS Med. Chem. Lett., 2017, 8:1019.
[27] Subhedar D D, Shaikh M H, Nawale L, Sarkar D, Khedkar V M, Shingate B B. Bioorg. Med. Chem. Lett., 2017, 27:922.
[28] Hartkoorn R C, Chandler B, Owen A, Ward S A, Squire S B, Back D J, Khoo S H. Tuberculosis, 2007, 87:248.
[29] Wang S S, Eisenberg D. Protein Sci., 2003, 12:1097.
[30] White E L, Southworth K, Ross L, Cooley S, Gill R B, Sosa M I, Manouvakhova A, Rasmussen L, Goulding C, Eisenberg D, Fletcher T M. J. Biomol. Screen., 2007, 12:100.
[31] Tseng C H, Tung C W, Wu C H, Tzeng C C, Chen Y H, Hwang T L, Chen Y L. Molecules, 2017, 22:1001
[32] Muscia G C, Buldain G Y, Asís S E. Eur. J. Med. Chem., 2014, 73:243.
[33] Patel S R, Gangwal R, Sangamwar A T, Jain R. Eur. J. Med. Chem., 2014, 85:255.
[34] Patel S R, Gangwal R, Sangamwar A T, Jain R. Eur. J. Med. Chem., 2015, 93:511.
[35] Mylliemngap B J, Borthakur A, Ingale K, Karanam S, Velmurugan D, Bhattacharjee A. International Journal of Pharmaceutical Sciences & Research, 2014, 5:1345.
[36] Mandewale M C, Thorat B R, Yamgar R S. Der Pharma Chemica, 2015, 7:207.
[37] Mandewale M C, Thorat B, Shelke D, Yamgar R. Bioinorganic Chemistry and Applications, 2015, 2015:1
[38] Tanwar B, Kumar A, Yogeeswari P, Sriram D, Chakraborti A K. Bioorg. Med. Chem. Lett., 2016, 26:5960.
[39] Veerasamy R, Chigurupati S, Sivadasan S, Arumugam D S, Rajak H, Krishnan S K. Med. Chem. Res., 2015, 24:744.
[40] 杨旭云(Yang X Y)天津理工大学硕士论文(Master Dissertation of Tianjin University of Science and Technology), 2016.
[41] Makula A, Maddela S. Anti-Infective Agents, 2016, 14:53.
[42] Chander S, Ashok P, Cappoen D, Cos P, Murugesan S. Chem. Biol. Drug Des., 2016, 88:585.
[43] Pitta E, Rogacki M K, Balabon O, Huss S, Cunningham F, Lopez-Roman E M, Joossens J, Augustyns K, Ballell L, Bates R H, Van Der Veken P. J. Med. Chem., 2016, 59:6709.
[44] Jain P P, Degani M S, Raju A, Anantram A, Seervi M, Sathaye S, Ray M, Rajan M G R. Bioorg. Med. Chem. Lett., 2016, 26:645.
[45] Gohil J D, Patel H B, Patel M P. Indian Journal of Advances in Chemical Science, 2016, 4:102.
[46] Upadhayaya R S, Kulkarni G M, Vasireddy N R, Vandavasi J K, Dixit S S, Sharma V, Chattopadhyaya J. Bioorg. Med. Chem., 2009, 17:4681.
[47] Kos J, Zadrazilova I, Nevin E, Soral M, Gonec T, Kollar P, Oravec M, Coffey A, O'mahony J, Liptaj T, Kralova K, Jampilek J. Bioorg. Med. Chem., 2015, 23:4188.
[48] Medapi B, Renuka J, Saxena S, Sridevi J P, Medishetti R, Kulkarni P, Yogeeswari P, Sriram D. Bioorg. Med. Chem., 2015, 23:2062.
[49] Singh S, Roy K K, Khan S R, Kashyap V K, Sharma A, Jaiswal S, Sharma S K, Krishnan M Y, Chaturvedi V, Lal J, Sinha S, Dasgupta A, Srivastava R, Saxena A K. Bioorg. Med. Chem., 2015, 23:742.
[50] Lalloo U G, Ambaram A. Curr. HIV/AIDS Rep., 2010, 7:143.
[51] Migliori G B, Langendam M W, D'ambrosio L, Centis R, Blasi F, Huitric E, Manissero D, Van Der Werf M J. Eur. Respir. J., 2012, 40:814.
[52] Asthana C, Asif M. Biointerface Research in Applied Chemistry, 2014, 4:694.
[53] Suresh N, Nagesh H N, Renuka J, Rajput V, Sharma R, Khan I A, Kondapalli Venkata Gowri C S. Eur. J. Med. Chem., 2014, 71:324.
[54] Hong W D, Gibbons P D, Leung S C, Amewu R, Stocks P A, Stachulski A, Horta P, Cristiano M L S, Shone A E, Moss D, Ardrey A, Sharma R, Warman A J, Bedingfield P T P, Fisher N E, Aljayyoussi G, Mead S, Caws M, Berry N G, Ward S A, Biagini G A, O'neill P M, Nixon G L. J. Med. Chem., 2017, 60:3703.
[55] Abdelrahman M A, Salama I, Gomaa M S, Elaasser M M, Abdelaziz M M, Soliman D H. Eur. J. Med. Chem., 2017, 138:698.
[56] Jose G, Suresha Kumara T H, Nagendrappa G, Sowmya H B, Sriram D, Yogeeswari P, Sridevi J P, Guru Row T N, Hosamani A A, Sujan Ganapathy P S, Chandrika N, Narendra L V. Eur. J. Med. Chem., 2015, 89:616.
[57] Jadhav B, Kenny R, Nivid Y, Mandewale M, Yamgar R. Open Journal of Medicinal Chemistry, 2016, 06:59.
[58] Kour G, Singh P P, Bhagat A, Ahmed Z. Eur. J. Pharm. Sci., 2017, 106:71.
[59] Munagala G, Yempalla K R, Singh S, Sharma S, Kalia N P, Rajput V S, Kumar S, Sawant S D, Khan I A, Vishwakarma R A, Singh P P. Org. Biomol. Chem., 2015, 13:3610.
[60] Peng C T, Gao C, Wang N Y, You X Y, Zhang L D, Zhu Y X, Xv Y, Zuo W Q, Ran K, Deng H X, Lei Q, Xiao K J, Yu L T. Bioorg. Med. Chem. Lett., 2015, 25:1373.
[61] Zhang R, Lv K, Wang B, Li L, Wang B, Liu M, Guo H, Wang A, Lu Y. RSC Advances, 2017, 7:1480.
[62] Makarov V, Neres J, Hartkoorn R C, Ryabova O B, Kazakova E, Sarkan M, Huszar S, Piton J, Kolly G S, Vocat A, Conroy T M, Mikusova K, Cole S T. Antimicrob Agents Chemother, 2015, 59:4446.
[63] Tiwari R, Miller P A, Chiarelli L R, Mori G, Sarkan M, Centarova I, Cho S, Mikusova K, Franzblau S G, Oliver A G, Miller M J. ACS Med. Chem. Lett., 2016, 7:266.
[64] Chandran M, Renuka J, Sridevi J P, Pedgaonkar G S, Asmitha V, Yogeeswari P, Sriram D. Int J Mycobacteriol, 2015, 4:104.
[65] Lv K, You X, Wang B, Wei Z, Chai Y, Wang B, Wang A, Huang G, Liu M, Lu Y. ACS Med. Chem. Lett., 2017, 8:636.
[66] Patel P K, Patel R V, Mahajan D H, Parikh P A, Mehta G N, Pannecouque C, De Clercq E, Chikhalia K H. J. Heterocycl. Chem., 2014, 51:1641.
[67] Zhao H, Lu Y, Sheng L, Yuan Z, Wang B, Wang W, Li Y, Ma C, Wang X, Zhang D, Huang H. ACS Med. Chem. Lett., 2017, 8:533.
[68] Tang B, Wei M, Niu Q, Huang Y, Ru S, Liu X, Shen L, Fang Q. Biomed. Res. Int., 2017, 2017:5791781.
[69] Naik M, Ghorpade S, Jena L K, Gorai G, Narayan A, Guptha S, Sharma S, Dinesh N, Kaur P, Nandishaiah R, Bhat J, Balakrishnan G, Humnabadkar V, Ramachandran V, Naviri L K, Khadtare P, Panda M, Iyer P S, Chatterji M. ACS Med. Chem. Lett., 2014, 5:1005.
[70] Harris K K, Fay A, Yan H G, Kunwar P, Socci N D, Pottabathini N, Juventhala R R, Djaballah H, Glickman M S. ACS Chem. Biol., 2014, 9:2572.
[71] Yu M, Nagalingam G, Ellis S, Martinez E, Sintchenko V, Spain M, Rutledge P J, Todd M H, Triccas J A. J. Med. Chem., 2016, 59:5917.
[72] Gold B, Smith R, Nguyen Q, Roberts J, Ling Y, Lopez Quezada L, Somersan S, Warrier T, Little D, Pingle M, Zhang D, Ballinger E, Zimmerman M, Dartois V, Hanson P, Mitscher L A, Porubsky P, Rogers S, Schoenen F J, Nathan C, Aube J. J. Med. Chem., 2016, 59:6027.
[73] Salunke S B, Azad A K, Kapuriya N P, Balada-Llasat J M, Pancholi P, Schlesinger L S, Chen C S. Bioorg. Med. Chem., 2015, 23:1935.
[74] Pule C M, Sampson S L, Warren R M, Black P A, Van Helden P D, Victor T C, Louw G E. J. Antimicrob. Chemother., 2016, 71:17.
[75] De Keijzer J, Mulder A, De Haas P E, De Ru A H, Heerkens E M, Amaral L, Van Soolingen D, Van Veelen P A. J. Proteome Res., 2016, 15:1776.
[76] Pieroni M, Machado D, Azzali E, Santos Costa S, Couto I, Costantino G, Viveiros M. J. Med. Chem., 2015, 58:5842.
[77] Patel K, Tyagi C, Goyal S, Jamal S, Wahi D, Jain R, Bharadvaja N, Grover A. Comput. Biol. Chem., 2015, 59 Pt A:37.
[78] Severino V G P, Monteiro A F, Silva M F D G F D, Lucarini R, Martins C H G. Quim. Nova, 2014, 38:42.
[79] Li D G, Ren Z X. Braz J Med Biol Res, 2017, 50:e6188.
[80] Shukla R, Shukla H, Sonkar A, Pandey T, Tripathi T. J. Biomol. Struct. Dyn., 2017, 9:2045.
[1] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[2] 闫新, 李意羡, 贾月梅, 俞初一. 糖苷化的亚氨基糖:分离、合成与生物活性[J]. 化学进展, 2019, 31(11): 1472-1508.
[3] 李意羡, 贾月梅, 俞初一. 氟代亚氨基糖的合成与糖苷酶抑制活性[J]. 化学进展, 2018, 30(5): 586-600.
[4] 朱燕燕, 岳宗洋, 边文, 刘瑞林, 马晓迅, 王晓东. 六铝酸盐结构及其在高温反应中的应用[J]. 化学进展, 2018, 30(12): 1992-2002.
[5] 刘如沁, 索志荣, 何乃珍, 陈爽, 黄明. 偶氮桥联二呋咱:合成及其分子结构-熔点的构效关系[J]. 化学进展, 2017, 29(5): 476-490.
[6] 胡代花, 陈旺, 王永吉. 活性维生素D3类似物的合成及构效关系研究[J]. 化学进展, 2016, 28(6): 839-859.
[7] 宋钊宁, 冯翔, 刘熠斌, 杨朝合, 周兴贵. 丙烯直接气相临氢环氧化催化剂结构调控和催化剂构-效关系研究进展[J]. 化学进展, 2016, 28(12): 1762-1773.
[8] 郭键, 贺耘, 叶新山. 唾液酸转移酶抑制剂的设计与发现[J]. 化学进展, 2016, 28(11): 1712-1720.
[9] 赵丽君, 雷鸣. 甲状腺结合前清蛋白的理论研究[J]. 化学进展, 2014, 26(01): 193-202.
[10] 童敏曼, 赵旭东, 解丽婷, 刘大欢*, 阳庆元, 仲崇立*. 金属-有机骨架材料用于废水处理[J]. 化学进展, 2012, (9): 1646-1655.
[11] 张鹭 侯玉霞 袁会珠 覃兆海. 复合物Ⅲ抑制剂型杀菌剂——结构类型和作用机理*[J]. 化学进展, 2010, 22(09): 1852-1868.
[12] 李征 李援朝. 结构多样性与构效关系——雷公藤新药研究与开发[J]. 化学进展, 2009, 21(12): 2483-2491.
[13] 张锁江 姚晓倩 刘晓敏. 离子液体构效关系及应用*[J]. 化学进展, 2009, 21(11): 2465-2473.
[14] 刘晓博,李玉艳,尤启冬. β-酮脂酰-ACP合成酶(FabH)抑制剂研究进展[J]. 化学进展, 2009, 21(09): 1930-1938.
[15] 刘华臣,董爱君,高春梅,蒋宇扬. 白藜芦醇结构修饰及药理活性[J]. 化学进展, 2009, 21(0708): 1500-1506.
阅读次数
全文


摘要

抗TB活性化合物的研究