English
新闻公告
More
化学进展 2018, Vol. 30 Issue (6): 703-709 DOI: 10.7536/PC171229 前一篇   后一篇

• 综述 •

Bi2SiO5半导体光催化剂

刘迪1, 刘骞1, 王永刚1*, 朱永法2*   

  1. 1. 中国矿业大学(北京)化学与环境工程学院 北京 100083;
    2. 清华大学化学系 北京 100084
  • 收稿日期:2017-12-19 修回日期:2018-04-01 出版日期:2018-06-15 发布日期:2018-05-16
  • 通讯作者: 王永刚,e-mail:wangyg@cumtb.edu.cn;朱永法,e-mail:zhuyf@mail.tsinghua.edu.cn E-mail:wangyg@cumtb.edu.cn;zhuyf@mail.tsinghua.edu.cn
  • 基金资助:
    中国博士后科学基金面上项目(No.2017M620073)资助

Bi2SiO5 Semiconductor Photocatalyst

Di Liu1, Qian Liu1, Yonggang Wang1*, Yongfa Zhu2*   

  1. 1. School of Chemical & Environmental Engineering, China University of Mining & Technology, Beijing 100083, China;
    2. Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2017-12-19 Revised:2018-04-01 Online:2018-06-15 Published:2018-05-16
  • Supported by:
    The work was supported by the National Science Foundation for Post-Doctoral Scientists of China(No. 2017M620073).
Bi基半导体光催化剂具备独特的电子能带结构、可调节与可拓展的光谱响应范围、低毒及组成元素供给丰富等优点,使其成为高效、可实用型光催化剂的重要候选者。而Bi基非金属氧酸盐作为新型半导体光催化剂,其非金属氧酸根的表面修饰作用及高结晶性使其呈现出更加独特的光催化活性。本文简要介绍了Bi基半导体光催化剂的结构特性及近几年的研究进展,重点综述了Bi基非金属氧酸盐的一员——Bi2SiO5及其制备、异质结的构建和电子能带结构的研究进展,并对其今后的研究与应用方向作了进一步的展望。
Bi-based semiconductors possess many merits such as unique electronic energy band structures, adjustable and extensible spectral response ranges, low toxicity and a wealth of element resources supply, thus becoming one type of the most promising candidates for photocatalysis with high-efficiency and practicability. Especially noteworthy is that the Bi-based nonmetal oxysalts exhibit specifically characteristic photocatalytic activities due to their high crystallinity and surface modification effect of the nonmetal oxyacid ions. In this paper, the research progress of Bi-based semiconductors in recent years is briefly introduced. Particularly, the research progress in synthesis, construction of heterojunction and the electronic energy band structure of Bi2SiO5 is reviewed, and its future researches and applications are also prospected.
Contents
1 Introduction
2 Research status and development trend
2.1 Bi-based photocatalysts
2.2 Bi-based nonmetal oxysalt photocatalysts
2.3 Bi2SiO5 photocatalyst
3 Conclusion and outlook

中图分类号: 

()
[1] 常宁(Chang N). 山东大学硕士学位论文(Master Dissertation of Shandong University), 2008.
[2] Stoltzfus M W, Woodward P M, Seshadri R, Klepeis J H, Bursten B. Inorg. Chem., 2007, 46(10):3839.
[3] Zhou L, Wang W Z, Xu H L, Sun S M, Shang M. Chem. Eur. J., 2009, 15:1776.
[4] Tang J W, Zou Z G, Ye J H. Angew. Chem. Int. Ed., 2004, 43:4463.
[5] Zhang C, Zhu Y F. Chem. Mater., 2005, 17:3537.
[6] Amano F, Yamakata A, Nogami K, Osawa M, Ohtani B. J. Am. Chem. Soc., 2008, 130:17650.
[7] Zhang L W, Wang Y J, Cheng H Y, Yao W Q, Zhu Y F. Adv. Mater., 2009, 21:1286.
[8] Kudo A, Omori K, Kato H. J. Am. Chem. Soc., 1999, 121:11459.
[9] Li R G, Zhang F X, Wang D G, Yang J X, Li M R. Nat. Commun., 2013, 4:1432.
[10] Pan C S, Zhu Y F. Environ. Sci. Technol., 2010, 44:5570.
[11] Cheng H F, Huang B B, Yang K S, Wang Z Y, Qin X Y, Zhang X Y, Dai Y. ChemPhysChem, 2010, 11:2167.
[12] Wei W, Dai Y, Huang B B. J. Phys. Chem. C, 2009, 113:5658.
[13] Chen R G, Bi J H, Wu L, Wang W J, Li Z H, Fu X Z. Inorg. Chem., 2009, 48:9072.
[14] Zhang X, Ai Z H, Jia F L, Zhang L Z. J. Phys. Chem. C, 2008, 112:747.
[15] Huang W L, Zhu Q S. J. Comput. Chem., 2009, 30:183.
[16] Nelson B P, Candal R, Corn R M, Anderson M A. Langmuir, 2000, 16(15):6094.
[17] 潘成思(Pan C S). 清华大学博士学位论文(Doctoral Dissertation of Tsinghua University), 2011.
[18] Zheng Y, Duan F, Chen M Q, Xie Y. J. Mol. Catal. A:Chem., 2010, 317:34.
[19] Taniguchi H, Kuwabara A, Kim J, Kim Y, Moriwake H, Kim S, Hoshiyama T, Koyama T, Mori S, Takata M, Hosono H, Inaguma Y, Itoh M. Angew. Chem. Int. Ed., 2013, 52:8088.
[20] Anil K R P, Srinivas B, Durga K V, Subrahmanyam M. J. Mater. Sci. Technol., 2013, 29:639.
[21] Guo H W, Wang X F, Gao D N. Mater. Lett., 2012, 67:280.
[22] Feng X, Qi X, Li J, Yang L W, Qiu M C, Yin J J, Lu F, Zhong J X. Appl. Surf. Sci., 2011, 257:5571.
[23] 王燕(Wang Y), 王秀峰(Wang X F), 于成龙(Yu C L), 田清泉(Tian Q Q).无机盐工业(Inorg. Chem. Ind.), 2007, 39(4):38.
[24] Lu J Q, Wang X F, Wu Y T, Xu Y Q. Mater. Lett., 2012, 74:200.
[25] Duan J, Liu Y, Pan X H, Zhang Y B, Yu J D, Nakajim K, Taniguchi H. Catal. Commun., 2013, 39:65.
[26] Zhang P Y, Hu J C, Li J L. RSC Adv., 2011, 1:1072.
[27] Dai X J, Luo Y S, Fu S Y, Chen W Q, Lu Y. Solid State Sci., 2010, 12:637.
[28] Cheng G, Xiong J Y, Yang H, Lu Z, Chen R. Mater. Lett., 2012, 77:25.
[29] Xie H D, Jia C X, Jiang Y R, Wang X C. Mater. Chem. Phys., 2012, 133:1003.
[30] Wu Y T, Li M L, Yuan J, Wang X F. Appl. Phys. A, 2017, 123:543.
[31] Zhang L, Wang W Z, Sun S M, Xu J H, Shang M, Ren J. Appl. Catal. B, 2010, 100:97.
[32] Batool S S, Hassan S, Imran Z, Rasool K, Ahmad M, Rafiq M A. Int. J. Environ. Sci. Technol., 2016, 13:1497.
[33] Zhang L, Wang W Z, Sun S M, Jiang D, Gao E P. CrystEngComm, 2013, 15:10043.
[34] Liu X L, Wang W J, Liu Y Y, Huang B B, Dai Y, Qin X Y, Zhang X Y. RSC Adv., 2015, 5:55957.
[35] Wan Z, Zhang G K. J. Mater. Chem. A, 2015, 3:16737.
[36] Yang C T, Lee W W, Lin H P, Dai Y M, Chi H T, Chen C C. RSC Adv., 2016, 6:40664.
[37] Liu D, Yao W Q, Wang J, Liu Y F, Zhang M, Zhu Y F. Appl. Catal. B, 2015, 172/173:100.
[38] Liu D, Wang J, Zhang M, Liu Y F, Zhu Y F. Nanoscale, 2014, 6(24):15222.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[5] 张辉, 王珊珊, 余金山. 低对称性二维ReS2及其异质结的化学气相沉积法制备及性质[J]. 化学进展, 2022, 34(6): 1440-1452.
[6] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[7] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[8] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[9] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[10] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[11] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[12] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[13] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[14] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[15] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
阅读次数
全文


摘要

Bi2SiO5半导体光催化剂